Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = GSH adducts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1590 KiB  
Article
Dietary Supplementation of Novel Aflatoxin Oxidase CotA Alleviates Aflatoxin B1-Induced Oxidative Stress, Lipid Metabolism Disorder, and Apoptosis in the Liver of Japanese Quails
by Hao Lv, Zhiyong Rao, Yuting Li, Wei Zhang, Lihong Zhao, Zhixiang Wang and Yongpeng Guo
Animals 2025, 15(11), 1555; https://doi.org/10.3390/ani15111555 - 26 May 2025
Viewed by 421
Abstract
This research explored the role of aflatoxin oxidase CotA in mitigating aflatoxin B1 (AFB1)-induced hepatotoxicity in Japanese quails. A total of 225 female Japanese quails, aged two weeks, were randomly assigned to three dietary groups: a control diet, an AFB [...] Read more.
This research explored the role of aflatoxin oxidase CotA in mitigating aflatoxin B1 (AFB1)-induced hepatotoxicity in Japanese quails. A total of 225 female Japanese quails, aged two weeks, were randomly assigned to three dietary groups: a control diet, an AFB1-contaminated diet, and an AFB1-contaminated diet supplemented with aflatoxin oxidase CotA for three weeks. The results indicate that quails receiving the AFB1-contaminated diet exhibited reduced body weight gain, pronounced vacuolar degeneration within hepatocytes, and inflammatory cell infiltration. Additionally, the AFB1 group demonstrated an increased liver index and elevated serum liver enzyme activities (ALT, AST, and ALP). Supplementation with CotA improved body weight gain and conferred protection against AFB1-induced liver injury. Furthermore, the addition of CotA significantly enhanced liver antioxidant enzyme activities (T-AOC, GST, GSH-Px, POD, and CAT), reduced hepatic H2O2 and MDA levels, and upregulated the mRNA expression levels of genes in the Nrf2 pathway in quails exposed to AFB1. AFB1 exposure led to lipid droplet accumulation in liver tissues and elevated serum TG and LDL-C levels. However, the introduction of CotA mitigated AFB1-induced alterations in lipid metabolism. Furthermore, dietary supplementation with CotA inhibited AFB1-induced hepatocyte apoptosis and decreased the mRNA expression of apoptosis-related genes, including Bax, caspase-9, and caspase-3. Notably, the AFB1+CotA group exhibited a significant reduction in AFB1 residues and AFB1-DNA adducts in quail liver tissues compared to the AFB1 group. These findings indicate that aflatoxin oxidase CotA holds promise as a feed additive to alleviate AFB1-induced hepatotoxicity. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

18 pages, 1792 KiB  
Article
Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing–Remitting and Progressive Multiple Sclerosis
by Ljiljana Stojkovic, Ana Djordjevic, Milan Stefanovic, Aleksandra Stankovic, Evica Dincic, Tamara Djuric and Maja Zivkovic
Int. J. Mol. Sci. 2024, 25(20), 11024; https://doi.org/10.3390/ijms252011024 - 14 Oct 2024
Cited by 8 | Viewed by 1937
Abstract
Ferroptosis, a lipid peroxidation- and iron-mediated type of regulated cell death, relates to both neuroinflammation, which is common in relapsing-remitting multiple sclerosis (RRMS), and neurodegeneration, which is prevalent in progressive (P)MS. Currently, findings related to the molecular markers proposed in this paper in [...] Read more.
Ferroptosis, a lipid peroxidation- and iron-mediated type of regulated cell death, relates to both neuroinflammation, which is common in relapsing-remitting multiple sclerosis (RRMS), and neurodegeneration, which is prevalent in progressive (P)MS. Currently, findings related to the molecular markers proposed in this paper in patients are scarce. We analyzed circulatory molecular indicators of the main ferroptosis-related processes, comprising lipid peroxidation (malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and hexanoyl–lysine adduct (HEL)), glutathione-related antioxidant defense (total glutathione (reduced (GSH) and oxidized (GSSG)) and glutathione peroxidase 4 (GPX4)), and iron metabolism (iron, transferrin and ferritin) to estimate their contributions to the clinical manifestation of MS and differences between RRMS and PMS disease course. In 153 patients with RRMS and 69 with PMS, plasma/serum lipid peroxidation indicators and glutathione were quantified using ELISA and colorimetric reactions, respectively. Iron serum concentrations were determined using spectrophotometry, and transferrin and ferritin were determined using immunoturbidimetry. Compared to those with RRMS, patients with PMS had decreased 4-HNE (median, 1368.42 vs. 1580.17 pg/mL; p = 0.03). Interactive effects of MS course (RRMS/PMS) and disease-modifying therapy status on MDA (p = 0.009) and HEL (p = 0.02) levels were detected. In addition, the interaction of disease course and self-reported fatigue revealed significant impacts on 4-HNE levels (p = 0.01) and the GSH/GSSG ratio (p = 0.04). The results also show an association of MS course (p = 0.03) and EDSS (p = 0.04) with GSH levels. No significant changes were observed in the serum concentrations of iron metabolism indicators between the two patient groups (p > 0.05). We suggest circulatory 4-HNE as an important parameter related to differences between RRMS and PMS. Significant interactions of MS course and other clinically relevant parameters with changes in redox processes associated with ferroptosis support the further investigation of MS with a larger sample while taking into account both circulatory and central nervous system estimation. Full article
(This article belongs to the Special Issue Lipid Peroxidation and Protein Carbonylation in Human Diseases)
Show Figures

Figure 1

14 pages, 1197 KiB  
Article
Adherence to Mediterranean Diet and Biomarkers of Redox Balance and Inflammation in Old Patients Hospitalized in Internal Medicine
by Francesco Bellanti, Aurelio Lo Buglio, Michał Dobrakowski, Aleksandra Kasperczyk, Sławomir Kasperczyk, Gaetano Serviddio and Gianluigi Vendemiale
Nutrients 2024, 16(19), 3359; https://doi.org/10.3390/nu16193359 - 2 Oct 2024
Cited by 2 | Viewed by 1803
Abstract
Background/Objectives: We have previously described that low adherence to the Mediterranean diet (MD) in elderly patients admitted in internal medicine wards is linked to poorer clinical outcomes. This investigation was designed to explore whether adherence to the MD is related to circulating markers [...] Read more.
Background/Objectives: We have previously described that low adherence to the Mediterranean diet (MD) in elderly patients admitted in internal medicine wards is linked to poorer clinical outcomes. This investigation was designed to explore whether adherence to the MD is related to circulating markers of redox balance and inflammation in this clinical scenario. Methods: A cross-sectional study was performed on 306 acute old patients hospitalized in internal medicine wards. Adherence to the MD was estimated by the Italian Mediterranean Index (IMI). The circulating markers of redox balance were assessed in serum and erythrocytes and correlated with inflammatory markers across different MD adherence groups. Results: Compared to the patients with high adherence, those with low adherence to the MD exhibited severely impaired redox balance, as evidenced by a higher GSSG/GSH ratio and increased serum hydroxynonenal/malondialdehyde–protein adducts. No modifications were described in the expression of antioxidant enzymes in peripheral blood mononuclear cells. Patients with low adherence to the MD exhibited a higher neutrophil-to-lymphocyte ratio and markers of systemic inflammation, as well as raised levels of interleukin-6 and tumor necrosis factor, compared to those with high MD adherence. A strong association was observed between the circulating markers of redox balance and inflammation/immune response, with the highest regression coefficients found in the low adherence group. Conclusions: Old patients admitted to internal medicine wards with low adherence to the MD display unfavorable profiles of the circulating markers of redox balance and inflammation. It is conceivable that such effects on redox balance can be linked to the high polyphenol content of MD. This study supports the rationale for intervention trials that attest to the effectiveness of MD as a nutritional strategy for disease prevention. Full article
(This article belongs to the Special Issue Effects of Dietary Polyphenols on Immune System)
Show Figures

Figure 1

17 pages, 2838 KiB  
Article
The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase
by Kenneth R. Olson, Tsuyoshi Takata, Kasey J. Clear, Yan Gao, Zhilin Ma, Ella Pfaff, Karthik Mouli, Thomas A. Kent, Prentiss Jones, Jon Fukuto, Gang Wu and Karl D. Straub
Antioxidants 2024, 13(8), 991; https://doi.org/10.3390/antiox13080991 - 15 Aug 2024
Cited by 1 | Viewed by 1466
Abstract
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 [...] Read more.
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography–mass spectrometry, electron paramagnetic resonance (EPR), UV–vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2–6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV–vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

22 pages, 2943 KiB  
Article
Reaction Mechanisms of H2S Oxidation by Naphthoquinones
by Kenneth R. Olson, Kasey J. Clear, Tsuyoshi Takata, Yan Gao, Zhilin Ma, Ella Pfaff, Anthony Travlos, Jennifer Luu, Katherine Wilson, Zachary Joseph, Ian Kyle, Stephen M. Kasko, Prentiss Jones Jr, Jon Fukuto, Ming Xian, Gang Wu and Karl D. Straub
Antioxidants 2024, 13(5), 619; https://doi.org/10.3390/antiox13050619 - 20 May 2024
Cited by 3 | Viewed by 3019
Abstract
1,4-naphthoquinones (NQs) catalytically oxidize H2S to per- and polysufides and sulfoxides, reduce oxygen to superoxide and hydrogen peroxide, and can form NQ-SH adducts through Michael addition. Here, we measured oxygen consumption and used sulfur-specific fluorophores, liquid chromatography tandem mass spectrometry (LC-MS/MS), [...] Read more.
1,4-naphthoquinones (NQs) catalytically oxidize H2S to per- and polysufides and sulfoxides, reduce oxygen to superoxide and hydrogen peroxide, and can form NQ-SH adducts through Michael addition. Here, we measured oxygen consumption and used sulfur-specific fluorophores, liquid chromatography tandem mass spectrometry (LC-MS/MS), and UV-Vis spectrometry to examine H2S oxidation by NQs with various substituent groups. In general, the order of H2S oxidization was DCNQ ~ juglone > 1,4-NQ > plumbagin >DMNQ ~ 2-MNQ > menadione, although this order varied somewhat depending on the experimental conditions. DMNQ does not form adducts with GSH or cysteine (Cys), yet it readily oxidizes H2S to polysulfides and sulfoxides. This suggests that H2S oxidation occurs at the carbonyl moiety and not at the quinoid 2 or 3 carbons, although the latter cannot be ruled out. We found little evidence from oxygen consumption studies or LC-MS/MS that NQs directly oxidize H2S2–4, and we propose that apparent reactions of NQs with inorganic polysulfides are due to H2S impurities in the polysulfides or an equilibrium between H2S and H2Sn. Collectively, NQ oxidation of H2S forms a variety of products that include hydropersulfides, hydropolysulfides, sulfenylpolysulfides, sulfite, and thiosulfate, and some of these reactions may proceed until an insoluble S8 colloid is formed. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

32 pages, 4744 KiB  
Article
Comparison of the Regenerative Metabolic Efficiency of Lipid Extracts from Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis on Fibroblasts
by Anna Stasiewicz, Tiago Conde, Maria do Rosario Domingues, Pedro Domingues, Michał Biernacki and Elżbieta Skrzydlewska
Antioxidants 2024, 13(3), 276; https://doi.org/10.3390/antiox13030276 - 24 Feb 2024
Cited by 6 | Viewed by 2406
Abstract
UVA radiation leads to oxidative stress and inflammation in skin cells. Therefore, the aim of this study was to compare the effect of lipid extracts from microalgae Nannochloropsis oceanica (N.o.) (marine) and Chlorococcum amblystomatis (C.a.) (freshwater) on the redox [...] Read more.
UVA radiation leads to oxidative stress and inflammation in skin cells. Therefore, the aim of this study was to compare the effect of lipid extracts from microalgae Nannochloropsis oceanica (N.o.) (marine) and Chlorococcum amblystomatis (C.a.) (freshwater) on the redox balance and PUFA metabolism in human skin fibroblasts modified by UVA. Lipid extracts from both types of microalgae introduced into the fibroblast medium after UVA irradiation significantly reduced the level of ROS and enhanced expression of Nrf2, which increased the activity/level of antioxidants (SOD1/2, CAT, GSH, Trx). The reduction in oxidative stress was accompanied by a decrease in the level of 4-HNE, its protein adducts and protein carbonyl groups. Microalgae also reduced the activity of COX1/2, FAAH and MAGL increased by UVA, and as a consequence, the level of lipid mediators (especially after N.o.) decreased, both from the group of endocannabinoids (AEA, 2-AG, PEA) and eicosanoids (PGE2, 15d-PGJ2, TXB2, 15-HETE), acting mainly through receptors related to G protein, the expression of which increases after UVA. This further contributed to the reduction in oxidative stress and pro-inflammatory signaling at NF-κB and TNFα levels. Therefore, it is suggested that lipid extracts from both N.o. and C.a. microalgae can be used to regenerate fibroblast metabolism disturbed by UVA radiation. Full article
(This article belongs to the Special Issue Pharmacological Properties of Natural Antioxidants)
Show Figures

Figure 1

14 pages, 680 KiB  
Article
Sarcopenia Is Associated with Changes in Circulating Markers of Antioxidant/Oxidant Balance and Innate Immune Response
by Francesco Bellanti, Aurelio Lo Buglio, Stefano Quiete, Michał Dobrakowski, Aleksandra Kasperczyk, Sławomir Kasperczyk and Gianluigi Vendemiale
Antioxidants 2023, 12(11), 1992; https://doi.org/10.3390/antiox12111992 - 11 Nov 2023
Cited by 4 | Viewed by 1930
Abstract
(1) Background: The involvement of redox balance alterations and innate immunity is suggested to play a key role in the pathogenesis of sarcopenia. This investigation aimed to define and relate modifications in circulating markers of redox homeostasis and the innate immune response in [...] Read more.
(1) Background: The involvement of redox balance alterations and innate immunity is suggested to play a key role in the pathogenesis of sarcopenia. This investigation aimed to define and relate modifications in circulating markers of redox homeostasis and the innate immune response in human sarcopenia. (2) Methods: A total of 32 subjects aged >65 years old and affected by sarcopenia according to the second “European Working Group on sarcopenia in older people” guidelines were compared with 40 non-sarcopenic age-matched controls. To assess systemic redox homeostasis, reduced (GSH) and oxidized (GSSG) blood glutathione and plasma malondialdehyde (MDA)– and 4-hydroxy-2,3-nonenal (HNE)–protein adducts were measured. Immune cells and circulating interleukins were determined to compare the innate immune response between both groups. (3) Results: Impaired redox balance in sarcopenic patients, characterized by a high blood GSSG/GSH ratio and plasma MDA/HNE–protein adducts, was sustained by reduced antioxidants in peripheral blood mononuclear cells. Furthermore, sarcopenic patients showed higher neutrophil-to-lymphocyte ratios and interleukin (IL)-4, IL-6, IL-10, and tumor necrosis factor (TNF) with respect to non-sarcopenic patients. Linear regression analysis resulted in a strong association between redox balance and immune response markers in the sarcopenic group. (4) Conclusions: These results support the interplay between redox homeostasis alteration and disruption of the innate immune response in the pathogenesis of sarcopenia. Full article
(This article belongs to the Special Issue Redox Regulation of the Innate Immunity and Aging)
Show Figures

Figure 1

30 pages, 1728 KiB  
Review
The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates
by Sofia K. Georgiou-Siafis and Asterios S. Tsiftsoglou
Antioxidants 2023, 12(11), 1953; https://doi.org/10.3390/antiox12111953 - 1 Nov 2023
Cited by 81 | Viewed by 9540
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1–5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox [...] Read more.
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1–5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts’ formation enhances our knowledge of the human metabolome. GSH–hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)–nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state. Full article
(This article belongs to the Special Issue Glutathione Redox Cycle)
Show Figures

Figure 1

13 pages, 2420 KiB  
Article
Unraveling the Antioxidant Activity of 2R,3R-dihydroquercetin
by Yaping Xu, Zhengwen Li, Yue Wang, Chujie Li, Ming Zhang, Haiming Chen, Wenxue Chen, Qiuping Zhong, Jianfei Pei, Weijun Chen, Guido R. M. M. Haenen and Mohamed Moalin
Int. J. Mol. Sci. 2023, 24(18), 14220; https://doi.org/10.3390/ijms241814220 - 18 Sep 2023
Cited by 6 | Viewed by 2176
Abstract
It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, [...] Read more.
It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP), with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed, and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment does not result in ‘biotargeting’ quercetin. Full article
Show Figures

Graphical abstract

18 pages, 2313 KiB  
Article
On the Role of ROS and Glutathione in the Mode of Action Underlying Nrf2 Activation by the Hydroxyanthraquinone Purpurin
by Qiuhui Ren, Wouter Bakker, Sebastiaan Wesseling, Hans Bouwmeester and Ivonne M. C. M. Rietjens
Antioxidants 2023, 12(8), 1544; https://doi.org/10.3390/antiox12081544 - 2 Aug 2023
Cited by 3 | Viewed by 2321
Abstract
Purpurin is a major anthraquinone present in the roots of Rubia cordifolia (madder). Purpurin is known to activate Nrf2 (Nuclear transcription factor erythroid 2-related factor 2) EpRE (electrophile responsive element) mediated gene expression as a potential beneficial effect. This study aimed to elucidate [...] Read more.
Purpurin is a major anthraquinone present in the roots of Rubia cordifolia (madder). Purpurin is known to activate Nrf2 (Nuclear transcription factor erythroid 2-related factor 2) EpRE (electrophile responsive element) mediated gene expression as a potential beneficial effect. This study aimed to elucidate the balance between the electrophilicity or pro-oxidant activity of purpurin underlying the Nrf2 induction. For this, Nrf2 activation with modified intracellular glutathione (GSH) levels was measured in an Nrf2 CALUX reporter gene assay. In addition, both cell-free and intracellular ROS formation of purpurin with modified (intracellular) GSH levels at different pH were quantified using the DCF-DA assay. GSH adduct formation was evaluated by UPLC and LC-TOF-MS analysis. GSH and GSSG levels following purpurin incubations were quantified by LC-MS/MS. We show that Nrf2 induction by purpurin was significantly increased in cells with buthionine sulfoximine depleted GSH levels, while Nrf2 induction was decreased upon incubation of the cells with N-acetylcysteine being a precursor of GSH. In cell-free incubations, ROS formation increased with increasing pH pointing at a role for the deprotonated form of purpurin. Upon incubations of purpurin with GSH at physiological pH, GSH adduct formation appeared negligible (<1.5% of the added purpurin). The addition of GSH resulted in conversion of GSH to GSSG and significantly reduced the ROS formation. Together these results demonstrate that Nrf2 induction by purpurin originates from intracellular ROS formation and not from its electrophilicity, which becomes especially relevant when intracellular GSH levels can no longer scavenge the ROS. The present study demonstrated that the efficiency of intracellular Nrf2 activation by purpurin and related anthraquinones will depend on (i) their pKa and level of deprotonation at the intracellular pH, (ii) the oxidation potential of their deprotonated form and (iii) the intracellular GSH levels. Thus, the Nrf2 induction by purpurin depends on its pro-oxidant activity and not on its electrophilicity. Full article
Show Figures

Figure 1

16 pages, 6905 KiB  
Article
In Vitro and Reactive Metabolites Investigation of Metabolic Profiling of Tyrosine Kinase Inhibitors Dubermatinib in HLMs by LC–MS/MS
by Nasser S. Al-Shakliah, Adnan A. Kadi, Hatem A. Abuelizz and Rashad Al-Salahi
Separations 2023, 10(6), 353; https://doi.org/10.3390/separations10060353 - 13 Jun 2023
Viewed by 2209
Abstract
Dubermatinib (DMB, TP-0903), a benzenesulfonamide, is an inhibitor of the tyrosine kinase AXL, which is a member of the TAM family and can prevent GAS6-mediated activation of AXL in cancer cells. Patients with previously treated chronic lymphocytic leukemia are being studied in phase [...] Read more.
Dubermatinib (DMB, TP-0903), a benzenesulfonamide, is an inhibitor of the tyrosine kinase AXL, which is a member of the TAM family and can prevent GAS6-mediated activation of AXL in cancer cells. Patients with previously treated chronic lymphocytic leukemia are being studied in phase I/II clinical trials to determine its antineoplastic potential (CLL). In the current work, the Xenosite web predictor tool was employed to predict the vulnerable sites of metabolism and the reactivity pathways (cyanide and GSH) of DMB. Subsequently, we present the analysis and identification of in vitro and reactive intermediates of DMB using liquid chromatography ion trap mass spectrometry (LC–ITMS). Human liver microsomes (HLMs) were exposed to dimethylbenzene in a laboratory setting, and the resulting metabolites were collected through protein precipitation. Intense reactivity toward nucleophilic macromolecules was seen in the metabolites of the piperazine and pyrimidine rings in DMB, iminium, and 2,5-quinone-imine, respectively. To assess the toxicities of the possibly reactive metabolites, DMB was incubated with HLMs in the presence of 1.0 mM KCN and 1.0 mM glutathione. The DMB metabolites found by LC–MS/MS were seven in vitro phase I metabolites, three cyano adducts, and two GSH conjugates. Phase I in vitro metabolic reactions included N-demethylation, hydroxylation, and dechlorination. DMB and its metabolites have not been investigated for their metabolism in vitro. Full article
Show Figures

Graphical abstract

15 pages, 4924 KiB  
Article
Investigation of Fenebrutinib Metabolism and Bioactivation Using MS3 Methodology in Ion Trap LC/MS
by Aishah M. Alsibaee, Haya I. Aljohar, Mohamed W. Attwa, Ali S. Abdelhameed and Adnan A. Kadi
Molecules 2023, 28(10), 4225; https://doi.org/10.3390/molecules28104225 - 22 May 2023
Cited by 2 | Viewed by 2641
Abstract
Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for [...] Read more.
Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry. Full article
(This article belongs to the Special Issue New Advances in Drug Metabolism and Pharmacokinetics)
Show Figures

Figure 1

17 pages, 4436 KiB  
Article
(E)-2-Benzylidenecyclanones: Part XVIII Study the Possible Link between Glutathione Reactivity and Cancer Cell Cytotoxic Effects of Some Cyclic Chalcone Analogs A Comparison of the Reactivity of the Open-Chain and the Seven-Membered Homologs
by Fatemeh Kenari, Szilárd Molnár, Igor D. Borges, Hamilton B. Napolitano and Pál Perjési
Int. J. Mol. Sci. 2023, 24(10), 8557; https://doi.org/10.3390/ijms24108557 - 10 May 2023
Cited by 4 | Viewed by 2226
Abstract
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione [...] Read more.
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds. Full article
(This article belongs to the Special Issue Chalcones: Biosynthesis, Functions, and Biological Implications)
Show Figures

Figure 1

24 pages, 1727 KiB  
Article
Redox and Nucleophilic Reactions of Naphthoquinones with Small Thiols and Their Effects on Oxidization of H2S to Inorganic and Organic Hydropolysulfides and Thiosulfate
by Kenneth R. Olson, Kasey J. Clear, Yan Gao, Zhilin Ma, Nathaniel M. Cieplik, Alyssa R. Fiume, Dominic J. Gaziano, Stephen M. Kasko, Jennifer Luu, Ella Pfaff, Anthony Travlos, Cecilia Velander, Katherine J. Wilson, Elizabeth D. Edwards, Karl D. Straub and Gang Wu
Int. J. Mol. Sci. 2023, 24(8), 7516; https://doi.org/10.3390/ijms24087516 - 19 Apr 2023
Cited by 5 | Viewed by 2422
Abstract
Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H [...] Read more.
Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2–4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S. Full article
Show Figures

Figure 1

13 pages, 2800 KiB  
Article
BIreactive: Expanding the Scope of Reactivity Predictions to Propynamides
by Markus R. Hermann, Christofer S. Tautermann, Peter Sieger, Marc A. Grundl and Alexander Weber
Pharmaceuticals 2023, 16(1), 116; https://doi.org/10.3390/ph16010116 - 12 Jan 2023
Cited by 4 | Viewed by 3091
Abstract
We present the first comprehensive study on the prediction of reactivity for propynamides. Covalent inhibitors like propynamides often show improved potency, selectivity, and unique pharmacologic properties compared to their non-covalent counterparts. In order to achieve this, it is essential to tune the reactivity [...] Read more.
We present the first comprehensive study on the prediction of reactivity for propynamides. Covalent inhibitors like propynamides often show improved potency, selectivity, and unique pharmacologic properties compared to their non-covalent counterparts. In order to achieve this, it is essential to tune the reactivity of the warhead. This study shows how three different in silico methods can predict the in vitro properties of propynamides, a covalent warhead class integrated into approved drugs on the market. Whereas the electrophilicity index is only applicable to individual subclasses of substitutions, adduct formation and transition state energies have a good predictability for the in vitro reactivity with glutathione (GSH). In summary, the reported methods are well suited to estimate the reactivity of propynamides. With this knowledge, the fine tuning of the reactivity is possible which leads to a speed up of the design process of covalent drugs. Full article
Show Figures

Figure 1

Back to TopTop