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Abstract: We present the first comprehensive study on the prediction of reactivity for propynamides.
Covalent inhibitors like propynamides often show improved potency, selectivity, and unique pharma-
cologic properties compared to their non-covalent counterparts. In order to achieve this, it is essential
to tune the reactivity of the warhead. This study shows how three different in silico methods can
predict the in vitro properties of propynamides, a covalent warhead class integrated into approved
drugs on the market. Whereas the electrophilicity index is only applicable to individual subclasses
of substitutions, adduct formation and transition state energies have a good predictability for the
in vitro reactivity with glutathione (GSH). In summary, the reported methods are well suited to
estimate the reactivity of propynamides. With this knowledge, the fine tuning of the reactivity is
possible which leads to a speed up of the design process of covalent drugs.

Keywords: targeted covalent inhibitors; drug discovery; covalent warheads; reactivity assessment;
glutathione; propynamide

1. Introduction

Covalent drugs have been known as therapeutic agents for decades and are success-
fully applied for several diseases with different indications [1-3]. Identification of covalent
drugs in the last century had a serendipity-driven component, and the mode of action was
often confirmed after release to the market and patient treatment [4]. Aspirin (Figure 1, com-
pound I), penicillin (II), and omeprazole (III) are classical and highly successful examples
of covalent drugs discovered serendipitously. Despite these early successes, further rational
exploration of covalent drugs in the past stagnated, arguably due to findings associating
highly reactive metabolites with toxicity findings, raising concerns about the use of reactive
functional groups in covalently binding drugs. However, recent analysis indicates no major
disadvantages of approved covalent drugs with respect to severe side effects compared to
non-covalent drugs [5]. Successful market entries and recent developments, including the
successful targeting of “undruggable” targets such as KRAS, led to a resurgence of covalent
drugs. General benefits include high potency due to the high binding energy contribution
of the covalent bond and (for irreversible covalent binders) an extended pharmacodynamic
effect, decoupled from the pharmacokinetic properties of the compound [2,6].

The analysis and inclusion of target structure information support the identification of
new covalent drugs, including structure-based design and virtual screening approaches [7-10].
In addition, successful screening against KRAS G12C with further optimization cycles led to
a clinical candidate, including structure-based design efforts in combination with targeted
compound library synthesis [11,12]. From a mechanistic point of view, covalent inhibitors
interact with a target protein in a two-step process (Scheme 1). In a first step, covalent
inhibitors interact with the target via non-covalent interactions like hydrogen bonds, dis-
persion and hydrophobic interactions, and salt bridges. This brings the reactive functional

Pharmaceuticals 2023, 16, 116. https://doi.org/10.3390/ph16010116

https:/ /www.mdpi.com/journal /pharmaceuticals


https://doi.org/10.3390/ph16010116
https://doi.org/10.3390/ph16010116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0003-4493-0368
https://orcid.org/0000-0002-6935-6940
https://orcid.org/0000-0002-5832-3959
https://doi.org/10.3390/ph16010116
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16010116?type=check_update&version=3

Pharmaceuticals 2023, 16, 116

20f13

group, the so-called “warhead”, in close proximity to a reactive function within the target
protein, e.g., the thiol function of a cysteine. Hence, in a second step, reactions between
these reactive functions lead to the formation of a covalent bond between the ligand and
the protein target [13-19]. The so-called targeted covalent inhibitors (TCI) were designed
to address catalytic or non-catalytic nucleophiles with their electrophilic warheads through
either a reversible or irreversible mechanism [20-25]. To reduce the potential for toxicity, of-
ten associated with unspecific covalent binding, a balanced warhead reactivity is a primary
design goal for TClIs [18]. Currently, several TCIs are on the market with valuable target
product profiles [5]. The clinical success of TCIs was initiated with the covalent inhibition
of enzymes of the protein kinase family [26]. A selected subset of covalent drugs on the
market or in clinical development is shown in Figure 1, targeting the epidermal growth
factor receptor (EGFR) [21], Bruton’s tyrosine kinase (BTK) [6,22-24], Janus kinase 3 (JAK3),
and other TEC kinase family members with a cysteine residue in the binding pocket [25].
Osimertinib (IV) is targeting EGFR, whereas ritlecitinib (VI) is covalently addressing JAK3
and other TEC kinase family members. The remaining TCIs (V, VII, VIII, and IX) are
covalent inhibitors of BTK. Whereas osimertinib (IV), ibrutinib (V), and ritlecitinib (VI)
contain an acrylamide warhead to address a non-catalytic cysteine residue, next-generation
BTK inhibitors include a propynamide warhead functional group. Acalabrutinib (VIII) and
tirabrutinib (VII) were launched in 2017 and 2020, whereas branebrutinib (IX) is currently
in Phase II clinical trials, showing the value of the propynamide warhead for covalent
drug design.

E+1 .~ E* . ° E-l
K' Kinact

Scheme 1. A two-step mechanism of covalent inhibition. E = enzyme, I = covalent inhibitor, E*I = non-
covalent complex, and E-I = covalent complex. While K; depends on non-covalent interactions, Kinact
is influenced by intrinsic compound reactivity.

To tailor and estimate warhead reactivity of covalent drugs, experimental setups are
used, however with the limitations of compound availability and limited throughput of
experimental testing [27]. For the prospective design of covalent inhibitors, computational
approaches were introduced to speed up and fine-tune warhead reactivity by making
reliable predictions [28-30]. The correlation with experimentally derived reactivity data is
used to judge the predictiveness of calculated warhead reactivities. As such, assays based
on reactivity in the presence of glutathione (GSH) are often applied due to the physiological
relevance of the endogenous nucleophile GSH to clear electrophiles, e.g., reactive electrophilic
metabolites, via the formation of highly polar GSH adducts. Mimicking physiological
conditions, the half-life of adduct formation in the presence of excess GSH under pseudo-
first-order kinetic conditions is often used as a measure of the reactivity for warheads within
covalently bound compounds, which can be used to estimate the predictiveness of compu-
tational approaches [28,29,31,32]. Whereas predictions correlate well with experiment for
certain compound subsets, for example the use of Hammett parameters for aromatic acry-
lamides [33] or the electrophilicity index [34] for unsubstituted acrylamides [35,36], those
approaches are limited to certain warhead substitution patterns or warhead classes [37].
Of more general use are quantum mechanical (QM)-derived adduct formation energies
or QM transition state energy calculations. Such QM-derived reactivity predictions were
successfully applied for different warhead classes [38,39]. In addition, large numbers of
computationally demanding QM calculations could be the basis for machine-learning mod-
els to further increase the number of compounds for reactivity prediction with shorter cycle
times [37]. In this work, we describe the expansion of our previously reported “Blreactive”
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approach for propynamides, a covalent warhead class included in clinical candidates and

approved drugs on the market.
n % " NH P//':‘
>rj;Q< \J@[% %}
) y }\ oH o—

° ]

ol
N N
1] \ N /\[‘( [
- 0 \ ‘ NnF | A
N)J\/ k\N NH
N NN
l
1\ Vv Vi
/N
; - =N 0 NH.
HN
\

N ] N — £ o
b l\/u / al 0 (ln /[\
H R
Vil Vil IX

Figure 1. Selected approved drugs that are on the market with covalent mode of action identified after
product launch (aspirin (I), penicillin G (II), and omeprazole (III) [18,37]). Selected targeted covalent
inhibitors (TCls) on the market designed to covalently interact with target protein (osimertinib (IV) [21],
ibrutinib (V) [22], ritlecitinib (VI) [25], tirabrutinib (VII) [23], acalabrutinib (VIII) [24]), and in phase
II clinical trials (branebrutinib (IX) [6]).

2. Materials and Methods

Calculations: The calculations were done similarly to our recent paper on acryl
amides [37]. To mimic the reaction of the warhead, GSH methanethiolate (CH3S™) was used
as a reactant. All calculations were performed with Gaussian16 [40] using wB97XD/ cc-
pVDZ [41-43] as the level of theory, and CPCM to take solvent effects into account [44,45].
A truncation algorithm according to reference [35] for the molecular structures was used
to speed up the calculations. In the same publication, it was shown that the truncation
algorithm has no effect on predictability. To generate a reasonable ensemble of conformers,
we generated one conformation with CORINA [46,47] and added four additional confor-
mations using OMEGA [48,49]. To test the reliability of the small double zeta basis set,
single-point calculations with cc-pVQZ on the structures gained by wB97XD/cc-pVDZ
were performed (Figure S1).
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In the first step, for each compound, the structure of each conformation is optimized
by DFT. From this structure, the electrophilicity index w is calculated.

2
(% (ELumo + EHOMO)

Erumo — Enomo

w =

for the calculation of the electrophilicity index, the LUMO and HOMO orbitals with high
localization on the warhead are chosen. Both pi-orbital combinations (in the N—C—O
plane and perpendicular) are investigated. Only the perpendicular results are shown. The
in-plane orbitals show a slightly worse correlation.

To calculate the transition state structure, a methanethiolate is placed at 2.4 Angstroms
from the electrophilic carbon atom and at a 90° angle from the propyl carbon atoms
of the optimized structure. All but the warhead atoms and the methanethiolate atoms
are positionally constrained. This structure is minimized using MMFF99s [50] within
RDK:it [51]. This first guess of the TS structure is used to generate additional potential
TS structures with different angles for sulfur to attack the electrophilic carbon. There is
the possibility for an attack from the side (TS1, O—C—C—S5-angle: 90°), from the bottom
(TS2, O—C—C—S-angle: 180°), and from the top (TS3, when the oxygen defines the top,
O—C—C—S-angle: 0°) (Figures S3-S5 in Supplementary Information). Additionally, the
carbon atom from the methanethiolate can point away from the carbonyl (TS_a, C(=0)—
C—S—C-angle: ~180°), towards the carbonyl (TS_c, C(=0)—C—S—C-angle: ~0°), or in
between these extremes (TS_b, C(=0)—C—S—C-angle: ~90°). Subsequently, a restrained
optimization (C—S bond fixed at 2.4 Angstrom) of the described complexes is performed
by the MMFF99s force field, followed by a restrained DFT optimization (level of theory as
described above). After the preoptimization, a transition state search is initiated to identify
the energetically most favored transition state (Figure 2). For exemplary compounds,
the intrinsic reaction coordinate was followed to confirm the correct product. For all
compounds, the eigenvector corresponding to the imaginary frequency in the transition
state agrees with the reaction mechanism, showing a displacement towards the electrophile.

Figure 2. The energetically most favored transition state found in this study. The relevant LUMO
orbitals are shown in Figure S2.

To calculate the adduct formation energy, methanethiolate is added to the propylamine,
and sulfur is connected to the electrophilic carbon of the propargyl. The resulting molecule
is preoptimized with MMFF99s and RDKit. Subsequently, energy minimization by DFT is
performed.

All structures are verified as minima or transition states on the potential energy
surface by calculating the Hessian. Thermodynamic contributions are calculated at 298.15 K
and 1 atm with the ideal gas phase approximation. The final energies contain zero-point
vibrational energy, translational, and rotational contributions to enthalpy and free enthalpy,
and will be referred to throughout the whole manuscript.

The ensemble energy over all conformations of a compound is calculated as the
Boltzmann average over all conformations for educts, products, or transition states.

In total, approximately 118,000 quantum mechanical calculations were carried out,
resulting in GSH activity predictions for 1219 unique molecules.

To establish methods that predict the reactivity of propynamides, a small benchmark
data set of 28 molecules was generated, with four different variants of the warhead and
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seven different scaffold molecules (Figure 3). Out of these 28 molecules, 12 are synthesized,
and their half-lives with GSH are measured. This benchmark dataset was expanded with
more drugs like propynamides extracted from PubChem [52,53]. More structural diversity
was added by generating virtual compounds, starting from the PubChem dataset. For this,
an internal matched molecular pair algorithm [54] was used to implement transformation
rules [55] to generate variations of the non-covalent part of the PubChem dataset. For
PubChem molecules and benchmark molecules, results are available in the Supplementary
Information.
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Figure 3. Benchmark molecules used for reactivity prediction of propynamide variations. The
variations are divided into a right-hand side with different warheads (1-4) and a left-hand side with
different non-covalent scaffolds (a—g).

Glutathione reactivity assay: GSH adduct formation data were determined by an
inline kinetic HPLC/UV /MS-based assay. A 10 mM DMSO compound stock solution was
diluted by a factor of 1:20 with (a) 50 mM phosphate buffer with pH 7.4 and (b) 50 mM
phosphate buffer with pH 7.4 plus a 10-fold molar excess of GSH and incubated at 37 °C
for different time periods. For (a) 0, 120, and 360 min (providing stability data in plain
buffer medium) and for (b) 0, 2.5, 5, 10, 60, 120, 240, and 360 min (providing stability data
in the presence of a 10-fold molar excess of GSH).

The decay of the compound is followed by HPLC/UYV, and MS is used for parent and
GSH adduct identification. Assuming first-order kinetics, half-lives are calculated using
Arrhenius plots in both media, where k is obtained from the slope of the graph of the
logarithm of the peak area (UV-signal) as a function of time.

3. Results and Discussion

In the following section, different transition states are compared for a meaningful
discussion, followed by the introduction of a small benchmark dataset where different
methods are applied to predict the reactivity of propynamides. In a subsequent analysis,
additional and partly public compounds are calculated.

3.1. Finding the Transition State

To sample a high variety of different transition states, we started with different input
structures to find the transition state with the lowest energy. Several combinations were
tested, and it was found that for the investigated ligands, TS1c is the energetically most
favorable configuration (Figures 2 and S7; all investigated transition states are depicted in
Figures S3-S5). Because of this, in the following, only the results for TS1c are discussed.
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3.2. Benchmark Dataset

For a first benchmark set, we selected different propynamides that were divided into
a right-hand side (RHS), where the warhead carries different substitutions, and a left-hand
side (LHS), with different non-covalent scaffolds (Figure 3). The terminal alkyne warhead
as in (1) is known to have a high degree of reactivity, while the methyl substitution (2) leads
to less reactive compounds. Additionally, the reactivities for tert-butyl (tBu, 3) and phenyl
(4) substituents were analyzed.

To probe the effect of the non-covalent scaffolds, we selected propynamides with
aromatic and aliphatic substituents. Additionally, some ring systems and the influence of
secondary and tertiary amines are investigated. The propynamides 1-4 were synthesized
with scaffolds a, b, and e and tested in a GSH assay afterwards (Table 1). All compounds
are stable in plain buffer medium.

Table 1. GSH results for selected molecules in the benchmark dataset.

Molecule GSH ty5/h Molecule GSH ty)5/h
la 0.19 3a >1000
1b 0.25 3b >1000
le 1.22 3e >1000
2a 20.79 4a 6.56
2b 37.68 4b 14.63
2e >1000 4e 63.25

Angst et al. found a higher reactivity of hydrogen-substituted propynamides when
compared to methyl-substituted ones. Their compound with hydrogen has a GSH half-life
of 0.1 h compared to 79.6 h for the methyl-substituted variant [56]. We see the same trend
here, with hydrogen-substituted propynamides (1) being the most reactive compounds,
followed by methyl-substituted ones (2). Phenyl-substituted warheads show a similar
reactivity as their methyl-substituted counterparts (4) and the least reactive substitution is
the tBu group (3).

In a recent publication, propynamides were assessed by the electrophilicity index and
showed acceptable correlation with transition state energies [36]. The advantage of the
electrophilicity index is that only a single structure optimization of the covalent ligand has
to be performed. To follow up this investigation, the electrophilicity index was calculated
using the warhead-associated orbitals as described in [33].

The correlation of the electrophilicity index with the experimental GSH values is poor
(R?: 0.38, Figure 4A). While some correlation may be seen within the methyl- and tBu-
warheads, due to the small number of data points, we refrained from a closer inspection.
With the electrophilicity index, there are even tBu warheads that are predicted to be more
reactive than hydrogen-substituted warheads. This shows that the electrophilicity index is
only applicable within one class of compounds [57]. In this study, the aim is to also probe
the influence of substitutions on the warhead, and the electrophilicity index is not suitable
for this task.

In addition to the electrophilicity index, the transition state energy and adduct for-
mation energy are calculated. The adduct formation energy has the advantage of being
calculated with two structure optimizations, for the educts and the product, thus taking
roughly double the time of the calculation of the electrophilicity index. Compared to the
latter one, the predictability is massively increased (R?: 0.81, Figure 4B). Compound 3a
shows a too small adduct formation energy in relation to the experimental GSH value.
Additionally, the other tBu propynamides are predicted to be a little bit too reactive, but the
overall trend is good. The methyl-substituted warheads all follow the same trend, with the
terminal alkyne warhead being the most reactive one. One important success factor for the
implementation is to focus on the correct conformation of the product. Only by sampling
the conformational space of the product can a good correlation be obtained (see Section 2).
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Figure 4. Calculation for the benchmark set with the combination of different warheads and scaffolds:
(A) the result of the electrophilicity index (RZ: 0.38), (B) the result of the adduct formation energy
(RZ: 0.81), (C) the result for the transition state energy (R%: 0.86), and (D) the correlation between
transition state energy and adduct formation energy. (R?: 0.76, MAE: 0.91 kcal/mol). Four exemplary
structures are shown.

The calculation of the transition state energy is the most tedious task here. For such a
calculation, the starting structure must be very close to the correct transition state structure;
otherwise, the calculation will not converge to the correct transition state. Additionally, the
computational demand is higher than for an optimization. Nonetheless, the correlation with
the experimental data is very good (R?: 0.86, Figure 4C). Hydrogen-substituted warheads
have the lowest activation energy E,, followed by the methyl- and phenyl-substituted ones.
Again, the tBu substituted warheads are predicted to be more reactive than they really are.
This trend is illustrated with intrinsic reaction coordinates for compound pairs 1a/b/e and
2a/b/e in the Supporting Information (Figure S6).

One possible reason is that the adduct formation energy and transition state energy
overestimate the reactivity of the tBu substituted warheads, which may stem from the
truncated methanethiolate (CH3S™) that was used in this study as a surrogate for cysteine
residue of GSH. This may result in an underestimation of steric repulsion, activation
energies, and adduct formation energies.

It is striking that for compound 2e, the transition state energy and the adduct formation
energy both predict a much more reactive compound than the experiment.

A direct comparison of the adduct formation energy and the transition state energy shows
that both values correlate well with each other (RZ: 0.76, Figure 4D). As this can be expected for
this class, earlier results show that it does not hold true for 2-Chloroacetamides [36].

The correlations between the electrophilicity index and adduct formation energy and
transition state energy are shown in the Supplementary Information (Figure S8). In general,
the correlation is very poor.
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3.3. Results for the Literature Known Compounds

To go beyond a small benchmark dataset, compounds from internal and external
sources and virtual compounds with a propynamide group were included in the analysis, as
described in the Methods Section. All reported GSH data come from in-house experiments
to ensure assay consistency. Results are shown in Figure 5. A CSV file with results can be
found in the Supplementary Materials.
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Figure 5. Calculation for the whole dataset with the combination of different warheads and scaffolds:
(A) the result of the electrophilicity index (R?: 0.47), (B) the result of the adduct formation energy
(R?: 0.82), (C) the result for the transition state energy (R%: 0.86), and (D) the correlation between
transition state energy and adduct formation energy. (R?: 0.73, MAE: 0.61 kcal /mol).

The full dataset shows a similar trend as the benchmark dataset. The electrophilicity
index has a slightly better correlation with experimental GSH values (Figure 5A) than the
benchmark dataset but remains inferior to the other methods discussed herein. Looking
at different classes, the R? values are good for phenyl-substituted warheads, mediocre for
hydrogen, and bad for methyl substitutions (R% = 0.96, 0.41, and 0.12; R%0yeran = 0.47).

The adduct formation energy and the transition state energy are again very good
at predicting the experimental GSH half-life (R? = 0.82/0.86, Figure 5B,C). For several
compounds, GSH reactivity is reported with operator values.

The good correlation between the transition state energy and the adduct formation
energy creates confidence that both established models are able to predict the reactivity of
propynamides in this dataset (Figure 5D).

3.4. Extending the Warhead Substitutions

There is a big influence of the electronegativity of the substituents on the reactivity of
the warhead. To further expand the chemical space, seven additional warhead substitutions
were chosen that span a wider range of electronic effects on the warhead (Figure 6). The
hypothesis is that electron-withdrawing groups enhance the reactivity while electron-
donating groups reduce the reactivity.
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Figure 6. Example molecules to further test the influence of a warhead substitution pattern.

N

The calculated results confirm the hypothesis that the reactivity and electronic effect
of the substitutions are highly correlated (Figure 7). The most reactive warhead in this
subset is the trifluoromethyl substituted propynamide (5), which has a strong electron-
withdrawing effect, followed by the nitrophenyl substituent (6). Substituents with smaller
electronic effects like methylphenyl (9) and trifluorophenyl (8) have a smaller effect, while
electron pushing substituents like methoxyphenyl (10) and aminophenyl (11) reduce the
reactivity. This knowledge can be leveraged to specifically fine-tune warhead reactivity.
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Figure 7. Calculated transition states and adduct formation energies for the seven new warhead
substituted molecules with the molecules from the benchmark set 1d—4d.
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4. Conclusions

Our results demonstrate that the reactivity of propynamides, a warhead class included
in several clinical candidates and approved drugs, is of high interest in drug design and can
be predicted by in silico methods. A thorough analysis of transition state structures showed
that in the most accessible transition state, the sulfur from methanethiolate (CH3S™) attacks
the warhead perpendicular to the carbonyl-ethynyl plane (Figure 2). Recent publications
indicate that the electrophilicity index could be used to predict, for example, the reactivity
of acrylamides, another warhead type included in approved drugs [33,35,36]. However,
our investigations show limitations when predicting the reactivity of propynamides with
different substitutions on the warhead. The reactivity of the propynamide warhead can be
best described by the transition state energy and the adduct formation energy.

A comprehensive benchmark for a wide range of substituted propynamides shows a
considerable influence of warhead substitutions on reactivities. This effect can be mainly
understood by electronic properties. The most reactive warhead features a substitution with a
simple hydrogen, followed by methyl- and tert-butyl substituents. Phenyl substitutions show
a similar reactivity to methyl substitutions (predicted reactivity: H > CH3~Phenyl > tBu). As a
rule of thumb, electron-withdrawing groups increase the reactivity while electron-donating
groups reduce the reactivity, and bulky substituents may inhibit the reaction totally.

For substitutions on the scaffold part, aromatic systems are more reactive than aliphatic
ones, as illustrated by the benchmark dataset.

We also report 12 experimental values of half-lives in a GSH assay for various propy-
namides. This data can be used to develop additional methods for the prediction of GSH
reactivity. In a follow-up study, we are aiming to use the transition state energies and
adduct formation energies to build a machine learning model for the rapid prediction
of these properties. This has already been done for acrylamides and can speed up the
prediction for propynamides tremendously [37].

Insight into the reactivity of propynamides helps in the design of new TCls that target,
for example, a cysteine nucleophile. The prediction of the reactivity of compounds from the
public dataset shows that its applicability domain expands to pharmaceutically relevant
molecules. The composed data can be useful for scientists to understand the reactivity of
covalent drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16010116/s1, Figure S1: Comparison between the cc-pVDZ and
the cc-pVQZ transition state energies for the molecules in the benchmark set; Figure S2: LUMO
and LUMO+1 orbitals; Figure S3: Geometries of possible transition states compound 1a; Figure S4:
Geometries of possible transition states compound 1a; Figure S5: Geometries of possible transition
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