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Abstract: It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin
(2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very
potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the
antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can
confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP),
with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but
instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation
process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with
IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating
that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate
could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by
ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone
does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed,
and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the
redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by
chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment
does not result in ‘biotargeting’ quercetin.

Keywords: 2R,3R-dihydroquercetin; redox modulation; quercetin; quinone; epimerization

1. Introduction

Redox energy is essential for life, as it fuels all our biochemical processes [1]. Most
redox energy is safely channeled in the biochemical networks, but for some unknown
reason, part of the oxidizing energy flow is uncontrolled [2]. This disordered energy can,
seemingly quite randomly, damage our cells, and result in oxidative-stress-related diseases
such as cardiovascular disease, arthritis, cancer, atherosclerosis, aging, and neurological
and neurodegenerative disorders [3,4]. In a healthy body, the oxidizing and reducing forces
are—to a large extent—balanced and generate a reasonably controlled energy flow in which
the accumulation of oxidative damage is kept within limits, and we can enjoy a lifespan
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of, on average, 80 years [5]. Intriguingly, the disordered energy also has a ‘good’ side, as
it is involved in cell signaling, e.g., it can lead to adaptation of cells, making them more
resilient [6].

Antioxidants might be used to modulate and redirect the disordered redox energy [7].
To do this, the antioxidants have to be present at the right place and at the right moment, e.g.,
within the proper time window at locations where the energy is disordered. An example of
this targeting of antioxidants is that quercetin can be set free from quercetin-glucuronides
at the site of inflammation by glucuronidases that are released by inflammatory cells [8,9].
Quercetin has a higher redox-modulating potency than its glucuronide, and thus ‘liberating’
quercetin will result in bioactiviation [10]. Moreover, quercetin is more lipophilic compared
with its glucuronide, and will not be that effectively removed by the blood at the site of
inflammation [11]. Both the bioactivation as well as the retention of quercetin result in
targeting of the redox modulator at the site of inflammation, the location where it then can
display its anti-inflammatory activity [12].

Another targeting strategy that has been proposed is that the oxidative environment
produced by the disordered energy may lead to the bioactivation of antioxidants [13].
Rogozhin et al. have reported that by scavenging oxidative species, the flavonoid 2R,3R-
dihydroquercetin (2R,3R-DHQ) is oxidized to form a quinone-like product that rearranges
to create quercetin (Figure 1) [14]. 2R,3R-DHQ lacks the C2–C3 double bound, which is one
of the main requirements for a flavonoid to act as a good antioxidant [15,16]. Quercetin con-
tains this C2–C3 double bound. In most assays, quercetin is the most potent antioxidant [17].
This has been linked to its anti-inflammatory, anti-diabetic, anti-fibrotic, anti-coagulative,
anti-bacterial, anti-atherogenic, anti-hypertensive, and anti-proliferative activities observed
in numerous in vivo and in vitro studies [18,19]. This would mean that the conversion of
2R,3R-DHQ to quercetin results in the targeting of the redox modulator in an oxidative
environment, the location where quercetin can then display its potent redox-modulating
activity. The aim of the present study is to evaluate this hypothesis and to further elaborate
the redox-modulating activity of 2R,3R-DHQ.
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Figure 1. Proposed ‘bioactivation’ of 2R,3R-dihydroquercetin (2R,3R-DHQ) in an oxidative environ-
ment to quercetin. Quercetin possesses a C2–C3 double bound (indicated by the green ellipse), which
makes it a better antioxidant than 2R,3R-DHQ.

2. Results
2.1. Oxidation of 2R,3R-DHQ by H2O2 and HRP Does Not Results in the Formation of Quercetin

Addition of H2O2 and HRP to the 2R,3R-DHQ solution resulted in the oxidation of
2R,3R-DHQ (Figure 2A). The decrease in UV spectrum at 330 nm (the λmax of 2R,3R-DHQ)
demonstrated that 2R,3R-DHQ was consumed, which is consistent with the decrease in
the 2R,3R-DHQ peak at 12.7 min in the HPLC chromatogram of the incubation mixture
(Figure 3B). Moreover, the reaction of 2R,3R-DHQ with H2O2 and HRP leads to an increase
in absorbance at 420 nm and 270 nm, which can be ascribed to the formation of oxidation
product(s). The results for both HPLC and LCMS-IT-TOF showed no detectible quercetin
formation in the incubation mixture. Based on analogy with other studies on, e.g., the
oxidation of quercetin and epicatechin, the oxidation product of 2R,3R-DHQ might be
2R,3R-DHQ quinone [20,21]. However, the 2R,3R-DHQ quinone was not successfully
detected either by HPLC or LCMS-IT-TOF/MS. This indicates the instability of 2R,3R-DHQ
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quinone, which is comparable to the instability of quercetin quinone and (-)-epicatechin
quinone [22]. The formation of the latter quinones was proven by trapping the quinone
with GSH; therefore, we here used the same strategy. 
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Figure 2. UV scans of an incubation mixture containing 50 µM 2R,3R-DHQ, 3.2 nM HRP and 33 µM
H2O2 (A); the incubation mixture of A also containing 50 µM ascorbate (B); the incubation mixture of
A also containing 100 µM GSH (C). The reaction was started by the addition of HRP. Directly after
starting the reaction, five UV scans were made at 2 min intervals. The insert shows the difference in
absorption of each scan compared with that of the first scan. A typical example is presented.
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Figure 3. HPLC chromatograms of a 50 µM 2R,3R-DHQ (A) and a 50 µM quercetin (E) calibration stan-
dard, and of the incubation mixture containing 50 µM 2R,3R-DHQ, 3.2 nM HRP and 33 µM H2O2 (B),
in presence of 50 µM ascorbate (C) or 100 µM GSH (D). The incubation mixtures were injected into
the HPLC system 8.5 min after starting the reaction with HRP. The retention time of 2R,3R-DHQ
and quercetin were 12.7 min and 25.6 min, respectively. The consumption of 2R,3R-DHQ in B and D
were 14.4 ± 0.3 µM, and 12.1 ± 1.8 µM, respectively. A negligible consumption of 2R,3R-DHQ was
observed in (C) (0.04 ± 0.02 µM).
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2.2. Trapping the Quinone Formed in the Oxidation of 2R,3R-DHQ by GSH

When 2R,3R-DHQ was oxidized by H2O2 and HRP in the presence of GSH, an isos-
bestic point was seen in the UV spectrum at 280 nm, which was not present in the UV spec-
trum of the incubation mixture without GSH. This indicates that a GSH adduct is formed
(Figure 2C). HPLC analysis of the incubation mixture with GSH showed a peak in the chro-
matogram at 10.7 min (Figure 3D), which is not found in the HPLC chromatogram of the
incubation mixture without GSH. IT-TOF/MS analysis of the incubation of 2R,3R-DHQ with
H2O2, HRP and GSH confirmed the presence of 2R,3R-DHQ-GSH adduct. The protonated
and fragmented ions of 2R,3R-DHQ-GSH adduct were 272.0853 m/z, 317.0127 m/z and
335.0218 m/z, whereas 2R,3R-DHQ yielded fragment ions at 125.0284 m/z, 175.0424 m/z,
177.0221 m/z, 241.0525 m/z and 285.0430 m/z (Figure 4). The formation of 2R,3R-DHQ-GSH
adduct demonstrates that H2O2 and HRP converts 2R,3R-DHQ into its quinone.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 14 
 

 

Figure 3. HPLC chromatograms of a 50 µM 2R,3R-DHQ (A) and a 50 µM quercetin (E) calibration 

standard, and of the incubation mixture containing 50 µM 2R,3R-DHQ, 3.2 nM HRP and 33 µM 

H2O2 (B), in presence of 50 µM ascorbate (C) or 100 µM GSH (D). The incubation mixtures were 

injected into the HPLC system 8.5 min after starting the reaction with HRP. The retention time of 

2R,3R-DHQ and quercetin were 12.7 min and 25.6 min, respectively. The consumption of 2R,3R-

DHQ in B and D were 14.4 ± 0.3 µM, and 12.1 ± 1.8 µM, respectively. A negligible consumption of 

2R,3R-DHQ was observed in (C) (0.04 ± 0.02 µM). 

 

Figure 4. IT-TOF MS/MS spectra of 2R,3R-DHQ (A) and the 2R,3R-DHQ-GSH adduct (B) with char-

acteristic fragment ions. 

0 100 200 300 400

0.0

1.0

2.0

3.0

4.0

0 100 200 300 400 500 600

0.0

0.5

1.0

1.5

R
el

at
iv

e 
In

te
n
si

ty

´100,000

125.0284
177.0221 241.0525

285.0430

175.0424

m/z

A

R
el

at
iv

e 
In

te
n
si

ty

´10,000

m/z

208.9920

317.0127

272.0853

335.0218

B

Figure 4. IT-TOF MS/MS spectra of 2R,3R-DHQ (A) and the 2R,3R-DHQ-GSH adduct (B) with
characteristic fragment ions.

2.3. Ascorbate Regenerates 2R,3R-DHQ Quinone to 2R,3R-DHQ

The addition of ascorbate to the incubation mixture containing 2R,3R-DHQ, H2O2,
and HRP did not result in a net consumption of 2R,3R-DHQ, since the absorbance of UV
spectrum between 300 and 400 nm remained unchanged (Figure 2B). However, ascorbate
was consumed, which was evidenced by the decrease in absorbance at 265 nm (λmax of
ascorbate). The parallel control experiment showed that there was much less ascorbate
consumption in the incubation of ascorbate, H2O2 and HRP (Figure 5A). Therefore, it
is concluded that 2R,3R-DHQ is oxidized by H2O2 and HRP into 2R,3R-DHQ quinone,
and the quinone is then regenerated by ascorbate into 2R,3R-DHQ before the quinone is
degraded. Assuming that the reaction of ascorbate and 2R,3R-DHQ quinone is 1:1, the rate



Int. J. Mol. Sci. 2023, 24, 14220 6 of 13

of 2R,3R-DHQ quinone formation is equal to ascorbate consumption by H2O2 and HRP,
which is 1.61 ± 0.10 µM/min (Figure 5A). Moreover, HPLC analysis confirmed that there
was no net 2R,3R-DHQ consumption in the incubation system when ascorbate was present
in the incubation (0.04 ± 0.02 µM) (Figure 3C). This rate of 2R,3R-DHQ quinone formation
is similar to the rate of 2R,3R-DHQ consumption in the incubation system in which 2R,3R-
DHQ was oxidized by H2O2 and HRP without ascorbate, namely 14.35 ± 0.26 µM in
8.5 min, which is 1.68 ± 0.03 µM/min (Figures 3B and 4C).
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Figure 5. The rate of ascorbate consumption and 2R,3R-DHQ quinone production (A) in the incu-
bation mixture of 50 µM ascorbate, 33 µM H2O2, 3.2 nM HRP and when indicated, also containing
50 µM 2R,3R-DHQ. The reaction was started with the addition of HRP. The consumption rate of
ascorbate was calculated from the reduction in the absorption at 265 nm using a molar extinction
coefficient of 12,840 M−1·cm−1. The difference between the ascorbate consumption with and without
2R,3R-DHQ was ascribed to reduction of the 2R,3R-DHQ quinone generated by the HRP catalyzed
oxidation of 2R,3R-DHQ. This was used to estimate the rate of 2R,3R-DHQ quinone formation. The
rate of DHQ consumption (B) in the incubation mixture of 50 µM 2R,3R-DHQ, 33 µM H2O2, 3.2 nM
HRP with or without 50 µM ascorbate was calculated according to result of HPLC.

So, when 2R,3R-dihdroquercetin is oxidized by H2O2 and HRP in presence of ascor-
bate, 2R,3R-DHQ quinone is formed. The quinone might epimerize as shown in Figure 6.
In the quinone intermediate, the C2-C1′ bound changes from a single bound to a double
bound. Converting this double bound back to a single bound can be achieved in two
manners and therefore leads to (partial) epimerization at the asymmetric C2 carbon. This
would result in (partial) conversion of 2R,3R-DHQ quinone to 2R,3S-DHQ quinone. Due
to the limited stability of the quinone itself, this could not be investigated directly by
examining the quinone itself.

As shown above, in presence of ascorbate, the quinone is reduced before it is degraded.
If the epimerization of the quinone would take place and thus 2R,3R-DHQ quinone and
2S,3R-DHQ quinone are formed, the reduction of 2S,3R-DHQ quinone by ascorbate will
yield 2S,3R-DHQ, and the reduction of 2R,3R-DHQ quinone by ascorbate will yield 2R,3R-
DHQ (Figure 6). 2R,3R-DHQ and 2S,3R-DHQ can be identified separately using HPLC
since they are diastereoisomers (Supplementary data S1) [23]. However, in the incubation
mixture containing 2R,3R-DHQ, H2O2, HRP and ascorbate, only the 2R,3R isomer of DHQ
was detected by HPLC, with no other appreciable peaks. Apparently, there is no substantial
epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone.
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Figure 6. Reaction scheme of the potential epimerization of 2R,3R-DHQ after oxidation by HRP/H2O2

and subsequent reduction of the DHQ quinone by ascorbate. 2R,3R-DHQ is oxidized to form a
quinone-like oxidation product. Three possible tautomers of the formed oxidation product are shown,
e.g., 2R,3R-DHQ quinone, quinone intermediate, and 2S,3R-DHQ quinone. Reduction of 2R,3R-DHQ
quinone by ascorbate will lead to the formation of 2R,3R-DHQ. Reduction of 2S,3R-DHQ quinone by
ascorbate will lead to the formation of 2S,3R-DHQ. If the proposed tautomerization takes place by
recycling, this will lead to the partial epimerization of 2R,3R-DHQ into a mixture containing both
2R,3R-DHQ and 2S,3R-DHQ.

2.4. The HOMO/LUMO Energy and the Dual Descriptor of DHQ Quinone

Computer theoretical calculations were performed to confirm the results obtained.
The HOMO-LUMO gap energy and the single point energy can show the energy barrier
between compounds, and prove whether the isomerization of DHQ quinone exists or
not. For the epimerization of 2R,3R-DHQ quinone, the SP3 nature of the hybridisation
at the C2 carbon has to be converted into SP2, which most probably would involve the
creation of a double bound between the C2 carbon and the C1′ carbon on B-ring (the
conversion of the 2R,3R-DHQ quinone into a flat quinone intermediate). However, during
optimization of the flat quinone intermediate in the calculation system, the C2 carbon
mostly prefers to form a single bond with C1′ carbon. This indicates that the formation
of a double bond between the C2 carbon and the C1′ carbon is not likely. Therefore, the
epimerization on the C2 carbon does not occur, and the conversion of the 2R,3R-DHQ
quinone into a flat quinone intermediate is not energically preferable. This corroborates
the experimental findings that there is no isomerization of 2R,3R-DHQ quinone to 2S,3R-
DHQ quinone, and no epimerization of 2R,3R-DHQ to 2S,3R-DHQ when the quinone
was reduced by ascorbate. In the literature [24–26], the open quinone was proposed
as intermediate in the epimerization of 2R,3R-DHQ to 2S,3R-DHQ. Therefore, the open
quinone is also considered as intermediate in the oxidation and reduction of 2R,3R-DHQ.
It was found that the energy barrier between 2R,3R-DHQ quinone and the open quinone
was very high, similar to the energy barrier between the open quinone and 2S,3R-DHQ
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quinone (Supplementary data S2). Again, this corroborates that in our experiment, the
epimerization of 2R,3R-DHQ quinone does not occur.

The dual descriptor was utilized to locate the redox-active sites on 2R,3R-DHQ
quinone, where the nucleophilic and electrophilic reactions are prone to happen. In the
dual descriptor of 2R,3R-DHQ quinone, the green color represents the nucleophilic reaction
site, and the blue color represents the electrophilic reaction site. GSH is a nucleophilic
compound and therefore will adduct to the nucleophilic reaction site 2R,3R-DHQ quinone.
In the dual descriptor of 2R,3R-DHQ quinone, the C2′ and C5′ position in the B-ring were
the greenest, indicating that GSH will mostly adduct there (Supplementary data S2). This
further corroborates that the chemical reactivity of 2R,3R-DHQ quinone resides in its B-ring.

3. Discussion

To confirm the reported finding that 2R,3R-DHQ is converted to quercetin in an
oxidative environment, we repeated the experiment of Rogozhin et al., who oxidized 2R,3R-
DHQ with HRP/ H2O2 and reported the formation of quercetin [14]. We could reproduce
the conversion of 2R,3R-DHQ is into a reaction product by HRP/H2O2. Rogozhin et al.
analyzed the incubation mixture by recording the change in absorption and concluded
that the product was quercetin based on the absorption maximum at 420–440 nm [14].
We also found that the highest rise in absorption in the reaction mixture was between
420 and 440 nm. However, HPLC analysis showed that no quercetin was formed. Based
on the HRP/H2O2 oxidation of similar flavonoids, i.e., quercetin and (-)-epicatechin, we
assumed that 2R,3R-DHQ is converted to 2R,3R-DHQ quinone. The quinones of quercetin
and (-)-epicatechin could not be detected using HPLC, due to a limited stability, and the
formation of these quinones was demonstrated by trapping the quinones with GSH and
detecting the stable GSH adducts [20,27]. Using the same strategy, we were able to detect a
2R,3R-DHQ-GSH adduct, demonstrating that in the oxidation of 2R,3R-DHQ also a quinone
is formed.

We also studied the possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ
quinone. The limited stability of the quinone prevented direct analysis of the quinone [28],
and therefore we could not investigate this by looking at the epimerization of the quinone
itself. We therefore investigated the reaction products of the ‘in situ’ generated quinone with
GSH and ascorbate. We found that after oxidation and trapping with GSH, only one GSH
adduct was found using HLPC analysis. After oxidation and reduction of the quinone by
ascorbate, only 2R,3R-DHQ was detected. When epimerization of the 2R,3R-DHQ-quinone
would have occurred, two GHS-adduct should have been formed, and after reduction by
ascorbate beside 2R,3R-DHQ also 2R,3S-DHQ should have been formed. Since neither
occurred, we conclude that there is no appreciable amount of epimerization of 2R,3R-DHQ
quinone to 2R,3S-DHQ quinone under the conditions we used. We could corroborate
this with chemical calculation, that shows that the energy barrier of the epimerization is
too high.

The findings that there is no appreciable amount of epimerization and GSH adducts
of the 2R,3R-DHQ-quonone on its B-ring, indicate that the oxidative energy is mainly
retained in B-ring. In respect to all the reactions described in this manuscript, 2R,3R-DHQ
behaves similar to (-)-epicatechin [20]. (-)-Epicatechin is a flavanol that, compared with the
dihydroflavonol 2R,3R-DHQ, lacks the double-bound oxygen on C4 [29]. Apparently, the
double bound oxygen, which is located on the AC-ring, has no drastic influence. This also
indicates that the B-ring is the pivotal moiety in the redox activity of 2R,3R-DHQ, as well
as (-)-epicatechin.

As also indicated above, the only difference between 2R,3R-DHQ and quercetin is the
presence of a double bound between C2 and C3. Due to the presence of this double bound,
quercetin has a large conjugated system over the entire backbone of the molecule [30],
whereas in 2R,3R-DHQ, the conjugated systems of the AC-ring and the B-ring are not
connected. The large system is one of the characteristics that makes quercetin a very
efficient antioxidant. Moreover, due to this large system, the oxidative energy can flow
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over the whole molecule [31]. The flexibility of the flow of the energy through the entire
quercetin molecule adds to its efficiency and increases the versatility of quercetin’s redox-
modulating potency [32,33]. For example, GSH will adduct quercetin quinone not only
at one position, but at both position 6 and 8 of the A-ring [34]. With the electron density
concentrated in its B-ring, 2R,3R-DHQ quinone is harder than quercetin quinone.

The chemical reactivity of the oxidized antioxidant is important, because oxidized
antioxidants that chemically seen is an electrophile can pass the disordered energy on to
other antioxidants such as GSH and ascorbate, or to redox switches [35]. Directing the
disordered energy by the redox-modulating antioxidant to turn on redox switches will
result in a major adaptive response of cells. Therefore, not only the difference in chemical
reactivity between 2R,3R-DHQ, quercetin and other flavonoids should be considered, also
how these compounds are ‘bioactivated’ to their corresponding electrophilic quinones in an
oxidative environment and differently redirect the disordered energy should be considered
in ‘understanding’ their biological effects. According to Pearson’s Hard and Soft Acids and
Bases concept: “hard” electrophiles will more likely react with “hard” nucleophiles, and
“soft” electrophiles will more likely react with “soft” nucleophiles [36]. However, this is
still mainly “terra incognita”. Identifying the electrophilic oxidation products of specific
flavonoids is a step further in the differentiation between bioactive flavonoids to finally
come up with a rational for selecting the appropriate flavonoid for a specific disorder.

4. Materials and Methods
4.1. Chemicals

2R,3R-DHQ, hydrogen peroxide (H2O2), horseradish peroxidase (HRP), ascorbate,
glutathione (GSH), and quercetin were purchased from Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China), and dissolved in assay buffer (100 mM ammonium bicarbonate,
pH 7.4).

4.2. 2R,3R-DHQ Oxidation

A 2R,3R-DHQ stock solution (1 mM) in ethanol (99% v/v) was prepared and diluted
in assay buffer. The oxidation of 2R,3R-DHQ was performed at 37 °C in an assay buffer that
contained 50 µM 2R,3R-DHQ, 3.2 nM HRP and 33 µM H2O2. In parallel, the same experi-
ments were performed in the presence of 50 µM ascorbate or 100 µM GSH. After starting
the reaction by adding HRP, 5 UV absorption spectrum (λ = 200–600 nm) was recorded with
2 min intervals [37]. Ascorbate consumption was determined from the reduction in the
absorption at 265 nm using a molar extinction coefficient of 12,840 M−1·cm−1. As control,
UV absorption of 5 UV scans of the above-mentioned single compounds were recorded.
The results showed no change of the absorption spectrum in time and are therefore not
shown. Additionally, reaction mixtures were analyzed 8.5 min after starting the reaction
with high-performance liquid chromatography (HPLC) and LCMS-ESI-IT-TOF/MS. During
the 8.5 min, the incubation mixture was spectrophotometrically monitored to check the
progress of the reaction.

4.3. HPLC Analysis

HPLC of the incubation mixtures was performed using Agilent HPLC 1260 system
and a diode array detector (Agilent Technologies, Santa Clara, CA, USA). An ZORBAX
SB-C18 column (250 × 4.6 mm, 5 µm) was used. The column was eluted with a mixture of
distilled water containing 1% (v/v) acetic acid (solvent A) and methanol (solvent B). The
gradient program was: 0–7 min: 5–40% B; 7–27 min: 40–55% B. After each injection, 55%
methanol was used to wash the column for 5 min, and the column was reequilibrated with
5% methanol for 5 min. The flow rate was 1.0 mL/min, and 10 µL of samples were injected.
The chromatograms presented were based on the detection at 270 nm [38].
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4.4. LCMS-ESI-IT-TOF/MS and MS/MS Analysis

The reaction products were separated using a Shimadzu HPLC system (Shimadzu
technologies, Japan), consisting of PDA diode array detector and Ion-trap time-of-flight
tandem mass spectrometry (IT-TOF). An ACQUITY UPLC®BEH C18 (2.1 × 100 mm,
1.7 µm) column was selected as the stationary phase. The mobile phase consists of a
mixture of 0.1% (v/v) formic acid in water (solvent A) and methanol (solvent B). The
gradient elution started with 10% B and increased linearly to 95% B over 10.1 min before
decreasing to 10% B over 5 min. The flow rate was set to 0.35 mL/min, and the column
temperature was maintained at 37 ◦C. An equilibrium period of 3.9 min was used between
the two injections. The injection volume was 10 µL [39].

The mass spectrometry experiments were performed with an electrospray ionization
(ESI) source operated in both positive and negative ion modes. The IT-TOF/MS was
operated using ESI as follows: positive ion voltage of 4.5 kV, negative ion voltage of
−3.5 kV, and detector voltage of 1.6 kV. Nitrogen was used as the nebulizing dry gas, and
argon was used as the collision gas. The nebulizing gas flow was 1.5 L/min, and the dry
gas pressure was 114 kPa. Both the curved desolvation line (CDL) temperature and the
block heater temperature were 200 ◦C. The m/z scan ranged from 100 to 1000 [40,41].

The eluate peaks corresponding to 2R,3R-DHQ and 2R,3R-DHQ-GSH adduct were
analyzed via IT-TOF MS/MS. In negative ion mode, the scanning range of secondary
mass spectrometry was 50–320 m/z and 250–700 m/z. The parent ions were crushed at
303.0530 m/z and 608.1192 m/z to generate characteristic ions. The ion accumulation time
was 10 ms. Both the CID collision energy and collision gas energy were 50%. The mass
number deviation was lower than 15 ppm.

4.5. The HOMO/LUMO Energy and the Dual Descriptor of DHQ Quinone

The equilibrium geometries of all compounds were optimized by Gaussian 09 pack-
age [42] using the DFT method at the M062X [43]/6-311+G (d,p) [44] level, whereas
Grimme’s DFT-D3 dispersion correction was also employed [45]. The solvent effects
on the tested compounds were taken into account via the application of the implemented
Solvation Model Density (SMD, Water) method [46]. The dual descriptor was generated
by the methods implemented in Multiwfn [47]. Graphical pictures of the dual descriptor,
Highest Occupied Molecular Orbital (HOMO) map, and Lowest Unoccupied Molecular
Orbital (LUMO) map were generated with the help of Multiwfn [48] and VMD [49].

4.6. Statistics

All experiments were performed at least in triplicate. Data were given as mean± standard
error of the mean (S.E.M.), or as a typical example.

5. Conclusions

During oxidation of 2R,3R-DHQ, its B-ring is oxidized and 2R,3R-DHQ quinone is
formed. This will not lead to the formation of quercetin; thus, ‘biotargeting’ of quercetin
from 2R,3R-DHQ in an oxidative environment does not occur. There is no isomerization
of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone. It appears that the redox activity of
2R,3R-DHQ quinone resides in its B-ring.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241814220/s1.
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