Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (891)

Search Parameters:
Keywords = GRA6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 (registering DOI) - 1 Aug 2025
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 (registering DOI) - 1 Aug 2025
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm
by Xin Jin, Tingzhe Pan, Heyang Yu, Zongyi Wang and Wangzhang Cao
Energies 2025, 18(15), 4057; https://doi.org/10.3390/en18154057 (registering DOI) - 31 Jul 2025
Viewed by 77
Abstract
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift [...] Read more.
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift of the forecasting trend often occurs. Therefore, this paper proposes a gray relation analysis–frequency-enhanced decomposition transformer (GRA-FEDformer) method for forecasting power loads in power systems. Firstly, considering the impact of different weather factors on power loads, the correlation between various factors and power loads was analyzed using the GRA method to screen out the high-correlation factors as model inputs. Secondly, a frequency decomposition method for long short-time-scale components was utilized. Its combination with the transformer-based model can give the deep learning model an ability to simultaneously capture the fluctuating behavior of the short time scale and the overall trend of changes in the long time scale in power loads. The experimental results show that the proposed method had better forecasting performance than the other methods for a one-year dataset in a region of Morocco. In particular, the advantages of the proposed method were more obvious in the forecasting task with a longer forecasting length. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

25 pages, 1438 KiB  
Article
Optimized Ultrasound-Assisted Extraction for Enhanced Recovery of Valuable Phenolic Compounds from Olive By-Products
by Xavier Expósito-Almellón, Álvaro Munguía-Ubierna, Carmen Duque-Soto, Isabel Borrás-Linares, Rosa Quirantes-Piné and Jesús Lozano-Sánchez
Antioxidants 2025, 14(8), 938; https://doi.org/10.3390/antiox14080938 - 30 Jul 2025
Viewed by 184
Abstract
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound [...] Read more.
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound amplitude, and specific energy) were optimized via Response Surface Methodology (RSM) to enhance polyphenol recovery and yield. Ethanol concentration proved to be the most influential factor. Optimal conditions for olive pomace were 100% ethanol, 46 μm amplitude, and 25 J∙mL−1 specific energy, while olive leaves required 72% ethanol with similar ultrasound settings. Under these conditions, extracts were prepared and analyzed using HPLC-ESI-QTOF-MS and DPPH assays. The optimized UAE process achieved yields of 15–20% in less than 5 min and under mild conditions. Optimal extracts showed high oleuropein content (6 mg/g in leaves, 5 mg/g in pomace), lower hydroxytyrosol levels, and minimal oxidized derivatives, suggesting reduced degradation compared to conventional methods. These findings demonstrate UAE’s effectiveness in recovering valuable phenolics from olive by-products, supporting sustainable and efficient resource use. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Figure 1

21 pages, 13309 KiB  
Article
Genome-Wide Identification, Evolution and Expression Analysis of GRAS Transcription Factor Gene Family Under Viral Stress in Nicotiana benthamiana
by Keyan Yao, Shuhao Cui, Songbai Zhang, Hao Cao, Long He and Jie Chen
Plants 2025, 14(15), 2295; https://doi.org/10.3390/plants14152295 - 25 Jul 2025
Viewed by 265
Abstract
The GRAS gene family not only performs a variety of regulatory functions in plant growth and development but also plays a key role in the defense mechanisms of plants in response to environmental stresses. Although GRASs have been identified in many species, research [...] Read more.
The GRAS gene family not only performs a variety of regulatory functions in plant growth and development but also plays a key role in the defense mechanisms of plants in response to environmental stresses. Although GRASs have been identified in many species, research on them in Nicotiana benthamiana remains relatively limited until now. In this study, we comprehensively analyzed the GRAS gene family in N. benthamiana plants. Phylogenetic analysis displayed that all identified NbGRASs were classified into eight different subfamilies. Gene duplication analysis revealed that segmental duplication was the main driving force for the expansion of the NbGRAS gene family, with a total of 40 segmental duplication pairs identified. NbGRASs were unevenly distributed across the 19 chromosomes. Additionally, both gene families exhibited a relatively weak codon usage bias, a pattern shaped by mutational and selective pressures. Expression analysis showed that NbGRASs had tissue-specific expression patterns, with relatively high expression levels being observed in leaves and roots. The expression of NbGRASs was significantly changed under tomato yellow leaf curl virus or bamboo mosaic virus infection, suggesting that these NbGRASs can be involved in the plant’s antiviral response. These findings provide new perspectives for in-depth understanding of the evolution and functions of the GRAS gene family in N. benthamiana. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

25 pages, 3903 KiB  
Article
An Integrated Multi-Criteria Decision Method for Remanufacturing Design Considering Carbon Emission and Human Ergonomics
by Changping Hu, Xinfu Lv, Ruotong Wang, Chao Ke, Yingying Zuo, Jie Lu and Ruiying Kuang
Processes 2025, 13(8), 2354; https://doi.org/10.3390/pr13082354 - 24 Jul 2025
Viewed by 295
Abstract
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing [...] Read more.
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing process, which will take away the energy-saving and emission reduction benefits of remanufacturing. In addition, remanufacturing design schemes rarely consider the human ergonomics of the product, which leads to uncomfortable handling of the product by the customer. To reduce the remanufacturing carbon emission and improve customer comfort, it is necessary to select a reasonable design scheme to satisfy the carbon emission reduction and ergonomics demand; therefore, this paper proposes an integrated multi-criteria decision-making method for remanufacturing design that considers the carbon emission and human ergonomics. Firstly, an evaluation system of remanufacturing design schemes is constructed to consider the remanufacturability, cost, carbon emission, and human ergonomics of the product, and the evaluation indicators are quantified by the normalization method and the Kansei engineering (KE) method; meanwhile, the hierarchical analysis method (AHP) and entropy weight method (EW) are used for the calculation of the subjective and objective weights. Then, a multi-attribute decision-making method based on the combination of an assignment approximation of ideal solution ranking (TOPSIS) and gray correlation analysis (GRA) is proposed to complete the design scheme selection. Finally, the feasibility of the scheme is verified by taking a household coffee machine as an example. This method has been implemented as an application using Visual Studio 2022 and Microsoft SQL Server 2022. The research results indicate that this decision-making method can quickly and accurately generate reasonable remanufacturing design schemes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

12 pages, 1798 KiB  
Article
Protective Efficacy Induced by Virus-like Particles Expressing Dense Granule Protein 5 of Toxoplasma gondii
by Su In Heo, Hae-Ji Kang, Jie Mao, Zhao-Shou Yang, Md Atique Ahmed and Fu-Shi Quan
Vaccines 2025, 13(8), 787; https://doi.org/10.3390/vaccines13080787 - 24 Jul 2025
Viewed by 357
Abstract
Background: Toxoplasma gondii (T. gondii) causes severe disease in immunocompromised individuals and pregnant women, underscoring the urgent need for effective vaccines against toxoplasmosis. The dense granule protein 5 (GRA5) of T. gondii plays a key role in parasitic cyst formation. [...] Read more.
Background: Toxoplasma gondii (T. gondii) causes severe disease in immunocompromised individuals and pregnant women, underscoring the urgent need for effective vaccines against toxoplasmosis. The dense granule protein 5 (GRA5) of T. gondii plays a key role in parasitic cyst formation. Methods: This study evaluated the protective immune responses induced by a virus-like particle (VLP) vaccine expressing the T. gondii-derived antigen GRA5 in a mouse model challenged with the ME49 strain of T. gondii. GRA5 VLPs were generated using a baculovirus expression system, and VLP formation was confirmed by Western blotting and visualized using transmission electron microscopy. Mice were intranasally immunized with GRA5 VLPs three times at 4-week intervals to induce immune responses, followed by infection with T. gondii ME49. Results: Intranasal immunization with GRA5 VLPs induced parasite-specific IgG antibody responses in the serum and both IgG and IgA antibody responses in the brain. Compared to the non-immunized group, immunized mice exhibited significantly higher levels of germinal center B cells and antibody-secreting cell responses. Moreover, the VLP vaccine suppressed the production of IFN-γ and IL-6 cytokines, leading to a significant reduction in brain inflammation and decreased cyst counts following lethal challenge with T. gondii ME49 infection. Conclusion: These findings suggest that the GRA5 VLP vaccine derived from T. gondii elicits a protective immune response, highlighting its potential as an effective vaccine candidate against toxoplasmosis. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines: 2nd Edition)
Show Figures

Figure 1

18 pages, 849 KiB  
Article
Antimicrobial Activity of Greek Native Essential Oils Against Escherichia coli O157:H7 and Antibiotic Resistance Strains Harboring pNorm Plasmid, mecA, mcr-1 and blaOXA Genes
by Rafail Fokas, Zoi Anastopoulou and Apostolos Vantarakis
Antibiotics 2025, 14(8), 741; https://doi.org/10.3390/antibiotics14080741 - 24 Jul 2025
Viewed by 860
Abstract
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains [...] Read more.
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains (reference, pNorm, mecA, mcr-1, blaOXA and O157:H7). We aimed to identify oils with broad-spectrum efficacy and clarify the chemical constituents responsible. Methods: Disk-diffusion assays measured inhibition zones at dilutions from 50% to 1.56% (v/v). MIC and MBC values were determined by broth microdilution. GC–MS profiling identified dominant components, and Spearman rank-order correlations (ρ) linked composition to activity. Shapiro–Wilk tests (W = 0.706–0.913, p ≤ 0.002) indicated non-normal data, so strain comparisons used Kruskal–Wallis one-way ANOVA with Dunn’s post hoc and Bonferroni correction. Results: Oregano, thyme and dittany oils—rich in carvacrol and thymol—exhibited the strongest activity, with MIC/MBC ≤ 0.0625% (v/v) against all strains and inhibition zones > 25 mm at 50%. No strain-specific differences were detected (H = 0.30–3.85; p = 0.998–0.571; padj = 1.000). Spearman correlations confirmed that carvacrol and thymol content strongly predicted efficacy (ρ = 0.527–0.881, p < 0.001). Oils dominated by non-phenolic terpenes (rosemary, peppermint, lavender, cistus, helichrysum) showed minimal or no activity. Conclusions: Phenolic-rich EOs maintain potent, strain-independent antimicrobial effects—including against multidrug-resistant and O157:H7 strains—via a multi-target mode that overcomes classical resistance. Their low-dose efficacy and GRAS status support their use as clean-label food preservatives or adjuncts to antibiotics or bacteriophages to combat antimicrobial resistance. Full article
Show Figures

Figure 1

21 pages, 6068 KiB  
Article
Comprehensive Genomic Analysis of GRAS Transcription Factors Reveals Salt-Responsive Expression Profiles in Pecan (Carya illinoinensis)
by Ming Xu, Yu Chen and Guoming Wang
Forests 2025, 16(7), 1199; https://doi.org/10.3390/f16071199 - 21 Jul 2025
Viewed by 221
Abstract
Salt stress severely limits the growth and ornamental value of pecan (Carya illinoinensis) in salinized regions, yet the transcriptional mechanisms underlying its stress adaptation remain unclear. In this study, a comprehensive genomic analysis of the GRAS transcription factor family identified 58 [...] Read more.
Salt stress severely limits the growth and ornamental value of pecan (Carya illinoinensis) in salinized regions, yet the transcriptional mechanisms underlying its stress adaptation remain unclear. In this study, a comprehensive genomic analysis of the GRAS transcription factor family identified 58 CiGRAS genes in pecan. These genes were classified into 11 subfamilies and showed conserved motifs and gene structures, with variation in promoter cis-elements suggesting diverse regulatory functions. Chromosomal distribution and duplication analysis indicated that whole-genome and dispersed duplication events were the main drivers of CiGRAS expansion. Transcriptome data revealed tissue-specific expression and strong responsiveness to salt and other stresses. Under 0.6% NaCl treatment, several CiGRAS genes were significantly upregulated, especially at 48 h. Gene co-expression analysis further highlighted GRAS-enriched modules associated with redox regulation and stress signaling. qRT-PCR validation confirmed time-specific induction of seven CiGRAS genes under salt stress. These findings provide insights into the evolutionary dynamics and stress-related roles of CiGRAS genes and offer candidate regulators for improving pecan salt tolerance in ecological greening and landscape applications. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

16 pages, 1464 KiB  
Article
Yeast Oral Delivery of DAF16 shRNAs Results in Effective Gene Silencing in C. elegans
by Benedetta Caraba, Arianna Montanari, Emily Schifano, Fabiana Stocchi, Giovanna Costanzo, Daniela Uccelletti and Cristina Mazzoni
Curr. Issues Mol. Biol. 2025, 47(7), 570; https://doi.org/10.3390/cimb47070570 - 20 Jul 2025
Viewed by 314
Abstract
Plant Parasitic Nematodes (PPNs) are a major problem in agriculture. Damage caused by PPNs has been estimated at USD 80–157 billion annually. The estimates could be even worse in the future in the context of a growing world population in a climate change [...] Read more.
Plant Parasitic Nematodes (PPNs) are a major problem in agriculture. Damage caused by PPNs has been estimated at USD 80–157 billion annually. The estimates could be even worse in the future in the context of a growing world population in a climate change scenario and with the removal/reduction in the use of some nematodicides due to the strong ecological impact. Biocontrol Agents (BCAs) currently constitute only 8.8% of the general pesticide market. With a view to an ecological transition, the transition from pesticides to biopesticides represents an important challenge that appears necessary not only for organic farming, but also in so-called integrated agriculture. Among the possible BCAs, microorganisms, and in particular yeast, which enjoys the GRAS (Generally Recognized As Safe) status, have the advantage of being able to be produced on a large scale by fermentation on waste substrates at low cost. In this paper, as proof of concept we constructed yeast strains expressing short hairpin RNAs (shRNAs) targeting the daf-16 gene in C. elegans. We demonstrate that oral ingestion of yeast cells expressing DAF16 shRNA is efficient in lowering daf-16 expression and lifespan, suggesting a sustainable RNA interference-based strategy to inhibit the development of PPNs. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

20 pages, 3636 KiB  
Article
The Prediction of Civil Building Energy Consumption Using a Hybrid Model Combining Wavelet Transform with SVR and ELM: A Case Study of Jiangsu Province
by Xiangxu Chen, Jinjin Mu, Zihan Shang and Xinnan Gao
Mathematics 2025, 13(14), 2293; https://doi.org/10.3390/math13142293 - 17 Jul 2025
Viewed by 188
Abstract
As a pivotal economic province in China, Jiangsu’s efforts in civil building energy conservation are critical to achieving the national “dual carbon” goals. This paper proposes a hybrid model that integrates wavelet transform, support vector regression (SVR), and extreme learning machine (ELM) to [...] Read more.
As a pivotal economic province in China, Jiangsu’s efforts in civil building energy conservation are critical to achieving the national “dual carbon” goals. This paper proposes a hybrid model that integrates wavelet transform, support vector regression (SVR), and extreme learning machine (ELM) to predict the civil building energy consumption of Jiangsu Province. Based on data from statistical yearbooks, the historical energy consumption of civil buildings is calculated. Through a grey relational analysis (GRA), the key factors influencing the civil building energy consumption are identified. The wavelet transform technique is then applied to decompose the energy consumption data into a trend component and a fluctuation component. The SVR model predicts the trend component, while the ELM model captures the fluctuation patterns. The final prediction results are generated by combining these two predictions. The results demonstrate that the hybrid model achieves superior performance with a Mean Absolute Percentage Error (MAPE) of merely 1.37%, outperforming both individual prediction methods and alternative hybrid approaches. Furthermore, we develop three prospective scenarios to analyze civil building energy consumption trends from 2023 to 2030. The analysis reveals that the observed patterns align with the Environmental Kuznets Curve (EKC). These findings provide valuable insights for provincial governments in future policy-making and energy planning. Full article
Show Figures

Figure 1

17 pages, 2846 KiB  
Article
IL-24 Is a Promising Molecular Adjuvant for Enhancing Protective Immunity Induced by DNA Vaccination Against Toxoplasma gondii
by Bohuai Xu, Xiuqiang Zhang, Yaowen Wang and Jia Chen
Microorganisms 2025, 13(7), 1661; https://doi.org/10.3390/microorganisms13071661 - 14 Jul 2025
Viewed by 280
Abstract
Toxoplasma gondii, a parasitic protozoan, causes zoonotic infections with severe health impacts in humans and warm-blooded animals, underscoring the urgent need for effective vaccines to control these infections. In this study, a DNA vaccine encoding TgROP5, TgROP18, TgGRA7, TgGRA15, and TgMIC6 was [...] Read more.
Toxoplasma gondii, a parasitic protozoan, causes zoonotic infections with severe health impacts in humans and warm-blooded animals, underscoring the urgent need for effective vaccines to control these infections. In this study, a DNA vaccine encoding TgROP5, TgROP18, TgGRA7, TgGRA15, and TgMIC6 was formulated using the eukaryotic expression vector pVAX I. IL-24 was delivered as a molecular adjuvant using plasmid pVAX-IL-24. BALB/c, C57BL/6, and Kunming mouse strains received the DNA immunization, after which antibody levels, cytokine production, and lymphocyte surface markers were analyzed to assess immune responses. Additionally, survival rates and brain cyst counts were measured 1 to 2 months post-vaccination in experimental models of toxoplasmosis. As a result, compared to controls, the DNA vaccine cocktail significantly increased serum IgG levels, Th1 cytokine production, and proportions of CD4+/CD8+ T cells, leading to extended survival and reduced brain cyst counts post-challenge with T. gondii ME49. Furthermore, the five-gene DNA vaccine cocktail conferred greater protection compared to single-gene immunizations. Co-administration of IL-24 significantly enhanced the immune efficacy of the multi-gene DNA vaccination. Our findings suggest that IL-24 is an effective molecular adjuvant, enhancing the protective immunity of DNA vaccines against T. gondii, supporting its potential role in vaccine strategies targeting other apicomplexan parasites. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

24 pages, 3617 KiB  
Article
Comparative Transcriptome Analysis in Tomato Fruit Reveals Genes, Pathways, and Processes Affected by the LEC1-LIKE4 Transcription Factor
by Venetia Koidou, Dimitrios Valasiadis, Nestor Petrou, Christina Emmanouilidou and Zoe Hilioti
Int. J. Mol. Sci. 2025, 26(14), 6728; https://doi.org/10.3390/ijms26146728 - 14 Jul 2025
Viewed by 325
Abstract
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) [...] Read more.
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) transcription factor, in tomato fruit development using RNA-sequencing data from zinc-finger nuclease (ZFN)-targeted disruption lines. Differential gene expression (DEG) analyses of two independent l1l4 mutant lines compared to the wild-type line revealed significant alterations in key metabolic pathways and regulatory networks that are implicated in fruit ripening. Specifically, L1L4 disruption impacted the genes and pathways related to the fruit’s color development (carotenoid and flavonoids), texture (cell wall modification), flavor (sugar and volatile organic compound metabolism), and ripening-related hormone signaling. The analyses also revealed multiple differentially expressed histones, histone modifiers, and transcription factors (ERFs, MYBs, bHLHs, WRKYs, C2H2s, NACs, GRAS, MADs, and bZIPs), indicating that L1L4 participates in a complex regulatory network. These findings provide valuable insights into the role of L1L4 in orchestrating tomato fruit development and highlight it as a potential target for genetically improving the fruit quality. Full article
(This article belongs to the Special Issue Genomics, Genetics, and the Future of Fruit Improvement)
Show Figures

Figure 1

22 pages, 2101 KiB  
Article
Forecast of CO2 and Pollutant Emission Reductions from Electric Vehicles in Beijing–Tianjin–Hebei
by Li Li, Honglin Liu and Bingchun Liu
Sustainability 2025, 17(14), 6386; https://doi.org/10.3390/su17146386 - 11 Jul 2025
Viewed by 287
Abstract
The promotion of new energy vehicles (NEVs) represents a critical strategy for mitigating carbon emissions and air pollution. To evaluate the CO2 and air pollutant reduction potential of NEVs in the Beijing–Tianjin–Hebei region, this study developed an integrated framework combining gray correlation [...] Read more.
The promotion of new energy vehicles (NEVs) represents a critical strategy for mitigating carbon emissions and air pollution. To evaluate the CO2 and air pollutant reduction potential of NEVs in the Beijing–Tianjin–Hebei region, this study developed an integrated framework combining gray correlation analysis (GRA) and bidirectional long short-term memory (BiLSTM), referred to as the GRA-BiLSTM model, to forecast the adoption trend of NEVs and calculate the CO2 and air pollutant emission reduction. The GRA-BiLSTM model developed in this study shows optimal predictive performance. The results indicate that new energy vehicles (NEVs) have great potential for environmental collaborative emission reduction in the transportation sector: it is predicted that by 2035, the total number of NEVs will be nearly 11.88 million, with a cumulative reduction of 2.76 billion tons of carbon emissions and significant reductions in various key air pollutants. This study provides an important quantitative basis for formulating pollution reduction and carbon reduction policies in the transportation sector. Full article
Show Figures

Figure 1

24 pages, 4352 KiB  
Article
Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis
by Yingying Qin, Ruifu Wang, Shuwan Chen, Qian Gao, Yiru Zhao, Shuo Chang, Mao Li, Fangfang Ma and Xuemei Ren
Plants 2025, 14(14), 2151; https://doi.org/10.3390/plants14142151 - 11 Jul 2025
Viewed by 323
Abstract
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, [...] Read more.
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, has emerged as a C4 model plant. Here, we revealed two SCR paralogs in foxtail millet—SiSCR1 and SiSCR2—which exhibit high sequence conservation with ZmSCR1/1h (Zea mays), OsSCR1/2 (Oryza sativa), and AtSCR (Arabidopsis thaliana), particularly within the C-terminal GRAS domain. Both SiSCR genes exhibited nearly identical secondary structures and physicochemical profiles, with promoter analyses revealing five conserved cis-regulatory elements. Robust phylogenetic reconstruction resolved SCR orthologs into monocot- and dicot-specific clades, with SiSCR genes forming a sister branch to SvSCR from its progenitor species Setaria viridis. Spatiotemporal expression profiling demonstrated ubiquitous SiSCR gene transcription across developmental stages, with notable enrichment in germinated seeds, plants at the one-tip-two-leaf stage, leaf 1 (two days after heading), and roots during the seedling stage. Co-expression network analysis revealed that there is a correlation between SiSCR genes and other functional genes. Abscisic acid (ABA) treatment led to a significant downregulation of the expression level of SiSCR genes in Yugu1 roots, and the expression of the SiSCR genes in the roots of An04 is more sensitive to PEG6000 treatment. Drought treatment significantly upregulated SiSCR2 expression in leaves, demonstrating its pivotal role in plant adaptation to abiotic stress. Analysis of heterologous expression under the control of the 35S promoter revealed that SiSCR genes were expressed in root cortical/endodermal initial cells, endodermal cells, cortical cells, and leaf stomatal complexes. Strikingly, ectopic expression of SiSCR genes in Arabidopsis led to hypersensitivity to ABA, and ABA treatment resulted in a significant reduction in the length of the meristematic zone. These data delineate the functional divergence and evolutionary conservation of SiSCR genes, providing critical insights into their roles in root/shoot development and abiotic stress signaling in foxtail millet. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

Back to TopTop