Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,366)

Search Parameters:
Keywords = GC–MS profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1115 KB  
Article
Classification of Beers Through Comprehensive Physicochemical Characterization and Multi-Block Chemometrics
by Paris Christodoulou, Eftichia Kritsi, Antonis Archontakis, Nick Kalogeropoulos, Charalampos Proestos, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Beverages 2026, 12(1), 15; https://doi.org/10.3390/beverages12010015 - 15 Jan 2026
Abstract
This study addresses the ongoing challenge of accurately classifying beers by fermentation type and product category, an issue of growing importance for quality control, authenticity assessment, and product differentiation in the brewing sector. We applied a multiblock chemometric framework that integrates phenolic profiling [...] Read more.
This study addresses the ongoing challenge of accurately classifying beers by fermentation type and product category, an issue of growing importance for quality control, authenticity assessment, and product differentiation in the brewing sector. We applied a multiblock chemometric framework that integrates phenolic profiling obtained via GC–MS, antioxidant and antiradical activity derived from in vitro assays, and complementary colorimetric and physicochemical measurements. Principal Component Analysis (PCA) revealed clear compositional structuring within the dataset, with p-coumaric, gallic, syringic, and malic acids emerging as major contributors to variance. Supervised machine-learning classification demonstrated robust performance, achieving approximately 93% accuracy in discriminating top- from bottom-fermented beers, supported by a well-balanced confusion matrix (25 classified and 2 misclassified samples per group). When applied to ale–lager categorization, the model retained strong predictive ability, reaching 90% accuracy, largely driven by the C* chroma value and the concentrations of tyrosol, acetic acid, homovanillic acid, and syringic acid. The integration of multiple analytical blocks significantly enhanced class separation and minimized ambiguity between beer categories. Overall, these findings underscore the value of multi-block chemometrics as a powerful strategy for beer characterization, supporting brewers, researchers, and regulatory bodies in developing more reliable quality-assurance frameworks. Full article
Show Figures

Graphical abstract

26 pages, 3209 KB  
Article
Sensory-Driven Characterisation of the Lugana DOC White Wines Aging Ability Through Odour Activity Value, Aroma Vectors, and Clustering Approaches
by Micaela Boido, Maria Alessandra Paissoni, Davide Camoni, Riccardo Severi, Stefano Ferrari, Beatrice Cordero, Simone Giacosa, Luca Rolle and Susana Río Segade
Beverages 2026, 12(1), 13; https://doi.org/10.3390/beverages12010013 - 14 Jan 2026
Viewed by 21
Abstract
Lugana DOC is an Italian PDO white wine from the south coast of Lake Garda, produced with ‘Trebbiano di Lugana’ grapes (synonym of ‘Trebbiano di Soave’ and ‘Verdicchio bianco’) and characterised by tropical fruit, citrus, and balsamic notes due to the presence of [...] Read more.
Lugana DOC is an Italian PDO white wine from the south coast of Lake Garda, produced with ‘Trebbiano di Lugana’ grapes (synonym of ‘Trebbiano di Soave’ and ‘Verdicchio bianco’) and characterised by tropical fruit, citrus, and balsamic notes due to the presence of volatile thiols and methyl salicylate, respectively. To deepen the knowledge of the aromatic profile of these wines and to study how they evolve during aging, the chemical and sensory profile of 12 Lugana DOC wines from the same winery in different consecutive vintages (2008–2019, evaluated in 2023) were analysed. Sensory analysis data were subjected to hierarchical cluster analysis, identifying four main groups that appropriately distinguished the aged wines from the young wines. Younger wines had a greenish yellow colour and were characterised mainly by fruity, citrus, floral, and flinty notes related to thiol compound contribution. Older wines, divided into three different clusters, shifted colour towards orange and were characterised by descriptors related to oxidative aging (e.g., cooked fruit, marsala-like, figs, nuts) or retained pleasant varietal and evolutionary notes (e.g., citrus, white flowers, flint, vanilla) confirmed by their chemical markers detected by GC-MS and LC-MS. Full article
Show Figures

Graphical abstract

18 pages, 1034 KB  
Article
Chemical Composition, Antimicrobial, Antioxidant, and Anticancer Activities of Jacquemontia pentantha Essential Oils
by Noorah A. Alkubaisi, Mashail Fahad Alsayed, Hissah Abdulrahman Alodaini, Fuad Alanazi, Abdulhadi M. Abdulwahed and Ibrahim M. Aziz
Molecules 2026, 31(2), 296; https://doi.org/10.3390/molecules31020296 - 14 Jan 2026
Viewed by 36
Abstract
Jacquemontia pentantha (Jacq.) G. Don. (Convolvulaceae): This is a plant with rich ethnobotanical uses, but its essential oil (EO) composition and overall biological properties remain largely uninvestigated. In this research, the J. pentantha EO (JPEO) is characterized in a thorough manner, [...] Read more.
Jacquemontia pentantha (Jacq.) G. Don. (Convolvulaceae): This is a plant with rich ethnobotanical uses, but its essential oil (EO) composition and overall biological properties remain largely uninvestigated. In this research, the J. pentantha EO (JPEO) is characterized in a thorough manner, with an evaluation of its in vitro antioxidant, antimicrobial, and cytotoxic properties, aiming to provide scientific support for ethnobotanical uses, as well as the definition of new potentialities. The EOs were isolated from the aerial part of the plant via hydrodistillation, and a qualitative analysis of the components was carried out via GC–MS. The biological properties were investigated by means of standard in vitro assays: namely, DPPH and ABTS for the measurement of antioxidant activity, the disk diffusion technique, and the microbroth dilution assay for the evaluation of antimicrobial activity against six bacterial species, as well as for the assessment of the activity against five species of Candida fungi, whereas the cytotoxic activity against MCF-7 and HepG2 cells was assessed using the MTT assay. Preliminary characterization of the EOs via GC/MS revealed a particular “chemical profile” with a high concentration of himachalene-type sesquiterpenes, namely, β-himachalene (6.47%) and (+)-α-himachalene (6.46%), together with phenolic monoterpenoids. The EOs showed significant antioxidant activity (IC50 = 172.41 and 378.94 µg/mL, respectively), high phenolic content (97.34 mg GAE/g), and significant antibacterial activity (MIC = 4.68 µg/mL), especially against Pseudomonas aeruginosa, as well as against Candida albicans (MFC = 3.90 µg/mL), together with dose-dependent cytotoxic effects on the two cell lines, with IC50 = 161.62 and 151.87 µg/mL, respectively. This research indicates that the EO of this plant is a potential source of a certain “chemical profile” with noteworthy antibacterial and cytotoxic properties, thus providing scientific support for its ethnobotanical use and highlighting its particular potential for developing pharmaceutical agents against infections and cancer. Full article
Show Figures

Figure 1

21 pages, 3919 KB  
Article
Myristicin from Athamanta sicula L.: A Potential Natural Antimicrobial Agent
by Antonella Porrello, Alessia Sordillo, Natale Badalamenti, Giusy Castagliuolo, Giuseppe Bazan, Daniela Di Girolamo, Mario Varcamonti, Anna Zanfardino and Maurizio Bruno
Antibiotics 2026, 15(1), 79; https://doi.org/10.3390/antibiotics15010079 - 13 Jan 2026
Viewed by 125
Abstract
Athamanta L. is a small genus of the Apiaceae family, comprising only sixteen species and subspecies, which are distributed in the Canary Islands, Central Europe, and the Mediterranean basin. Background/Objectives: Since the time of Dioscurides, the species of this genus have been [...] Read more.
Athamanta L. is a small genus of the Apiaceae family, comprising only sixteen species and subspecies, which are distributed in the Canary Islands, Central Europe, and the Mediterranean basin. Background/Objectives: Since the time of Dioscurides, the species of this genus have been reported to have had several ethnopharmacological activities, and some of them are also used currently. Athamanta sicula L., growing in Italy, Tunisia, Algeria, and Morocco, is the only species of this genus present in Sicily. To further explore the phytochemical profile and biological properties of this species, the present study focused on the essential oil (EO) extracted from the aerial parts of wild A. sicula populations collected in central Sicily. Methods: The chemical composition of the EO, obtained by hydrodistillation, was determined by GC–MS analysis. The presence of myristicin was confirmed by isolation and by 1H-NMR spectroscopic characterization. Results: The EO and its main constituents have been tested for possible antimicrobial properties against several bacterial strains, showing MIC values in the of 15–30 mg/mL range, and the mechanism of action was further investigated, revealing membrane-targeting effects consistent with outer membrane permeabilization. In addition, antibiofilm activity (with up to ~80% inhibition of biofilm formation at sub-MICs), antioxidant potential (demonstrating dose-dependent radical scavenging activity), and biocompatibility with eukaryotic cells were assessed to provide a comprehensive pharmacological profile of A. sicula EO. Specifically, the most abundant constituent was myristicin (62.2%), the principal representative of the phenylpropanoid class (64.4%). Hydrocarbon monoterpenes represented the second class of the EO (27.4%), with β-phellandrene (12.2%) as the main compound. Conclusions: Myristicin emerged as the key contributor to the antimicrobial and antibiofilm activity of the EO. The obtained results highlight the relevance of A. sicula EO as a myristicin-rich essential oil with notable in vitro biological activity. Full article
(This article belongs to the Section Plant-Derived Antibiotics)
Show Figures

Figure 1

25 pages, 1241 KB  
Article
Unlocking the Secrets of Roman Chamomile (Anthemis nobilis L.) Essential Oil: Structural Elucidation and Acute Toxicity of New Esters
by Niko S. Radulović and Marko Z. Mladenović
Molecules 2026, 31(2), 256; https://doi.org/10.3390/molecules31020256 - 12 Jan 2026
Viewed by 136
Abstract
To address gaps in the characterization of Roman chamomile (Anthemis nobilis L., Asteraceae)—an ethnobotanically and commercially important species—we profiled its essential oil (EO), focusing on esters that are incompletely characterized or unreported. Comprehensive GC-MS of two commercial EOs and their chromatographic fractions, [...] Read more.
To address gaps in the characterization of Roman chamomile (Anthemis nobilis L., Asteraceae)—an ethnobotanically and commercially important species—we profiled its essential oil (EO), focusing on esters that are incompletely characterized or unreported. Comprehensive GC-MS of two commercial EOs and their chromatographic fractions, combined with synthesis and co-injection of reference compounds, enabled the identification of 190 constituents. We uncovered a homologous series of angelates, tiglates, and senecioates by partial-ion-current (PIC) screening (m/z 55, 83, 100, 101), augmented by co-injection and NMR confirmation. Among these EO constituents, four esters, methallyl 3-methylbutanoate (6h), methallyl senecioate (3h), 3-methylpentyl 2-methylbutanoate (5c), and 5-methylhexyl angelate (2g) are reported here as new natural products and previously unreported compounds in the literature. Selected methacrylates and related α,β-unsaturated esters underwent model Michael additions to methanethiol (generated in situ from dimethyl disulfide and NaBH4), confirming their thiol-acceptor reactivity. In an Artemia salina assay, the EO and most esters were non-toxic; methacrylates showed only low toxicity at the highest concentrations. These results refine the chemical map of A. nobilis EO and highlight specific ester families for future mechanistic and biological evaluation. Full article
Show Figures

Graphical abstract

15 pages, 2706 KB  
Article
Analysis of Distillate Fractions Collected from a Small Commercial Pot Still Using NMR and GC-MS
by Hina Ali, Mohamed A. Abdelaziz, J. Andrew Jones, Neil D. Danielson and Michael W. Crowder
Separations 2026, 13(1), 27; https://doi.org/10.3390/separations13010027 - 12 Jan 2026
Viewed by 78
Abstract
In an effort to evaluate the performance of a 5-gallon pot still in separating yeast-derived congeners during the distillation of a grain-based distiller’s beer, the distillates of a fermented mash of cracked corn, malted barley, and wheat were characterized using 1H NMR [...] Read more.
In an effort to evaluate the performance of a 5-gallon pot still in separating yeast-derived congeners during the distillation of a grain-based distiller’s beer, the distillates of a fermented mash of cracked corn, malted barley, and wheat were characterized using 1H NMR spectroscopy and GC-MS. A quantitative comparison using these two techniques is uncommon. Results revealed significant variation in congener concentrations across runs, with a notable discrepancy in the third run possibly due to bacterial contamination, as indicated by high 1-propanol levels. Key congeners, such as acetaldehyde, ethyl acetate, furfural, phenylethanol, and 1,1-diethoxyethane, showed expected distillation behavior across ten fractions, based on their respective boiling points. However, methanol and 1-propanol showed a fairly flat concentration profile across all ten fractions, while those for ethyl octanoate and ethyl hexanoate decreased rapidly and were undetected at fraction 5. White dog (unaged whiskey) fractions from column and combination stills were also analyzed, and the results demonstrate that the small 5-gallon still separates congeners as well as these stills. Finally, a comparison of congener concentrations demonstrates that NMR and GC-MS do not yield identical concentrations of congeners, despite exhibiting similar trends in congener concentrations in the fractions from the still, with GC-MS suggesting higher levels. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Graphical abstract

20 pages, 4578 KB  
Article
Genome-Wide Identification and Expression Analysis of LOX-HPL-ADH Pathway Genes Contributing to C6 Volatile Diversity in Chinese Plum (Prunus salicina)
by Menghan Wu, Gaigai Du, Mengmeng Zhang, Siyu Li, Yanke Geng, Yuan Wang, Danfeng Bai, Shaobin Yang, Gaopu Zhu, Fangdong Li and Taishan Li
Horticulturae 2026, 12(1), 85; https://doi.org/10.3390/horticulturae12010085 - 12 Jan 2026
Viewed by 96
Abstract
The characteristic green-note aroma of Chinese plum (Prunus salicina) is largely defined by C6 aldehydes and alcohols synthesized through the fatty acid pathway involving lipoxygenase (LOX), hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH). However, the LOX/HPL/ADH gene families and their potential [...] Read more.
The characteristic green-note aroma of Chinese plum (Prunus salicina) is largely defined by C6 aldehydes and alcohols synthesized through the fatty acid pathway involving lipoxygenase (LOX), hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH). However, the LOX/HPL/ADH gene families and their potential contributions to C6 volatile formation remain poorly characterized in Chinese plum. Here, we integrated genome-wide identification with cultivar-level volatile profiling and RT–qPCR expression analyses to link candidate genes with C6 volatile accumulation. We identified 8 PsLOX, 3 PsHPL, and 13 PsADH genes and classified them into 2, 1, and 3 subfamilies, respectively. Conserved motifs/domains were shared within each family, whereas gene-structure variation suggested functional divergence; segmental duplication was the main driver of family expansion. To explore their functional relevance to aroma biosynthesis, five major C6 aldehydes and alcohols were analyzed in ten cultivars using solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC–MS), revealing substantial diversity in green-note composition. Combined with reverse transcription quantitative polymerase chain reaction (qRT–PCR) expression profiling, low PsADH2.7 expression was associated with high hexanal content, whereas elevated PsLOX5 and PsADH2.2 expression corresponded to increased 1-hexanol accumulation. High 2-ethyl-1-hexanol levels were linked to increased PsLOX4.1 and PsHPL1.3 but decreased PsADH1.2 expression. In addition, (Z)-3-hexen-1-ol abundance showed strong positive correlations with PsLOX3.1, PsHPL1.2, and PsADH2.6 expression. This integrated genomic and expression–metabolite analysis highlights candidate genes potentially involved in C6 aldehyde/alcohol biosynthesis underlying the green-note aroma of Chinese plum and provides genetic targets for aroma-oriented breeding. Full article
Show Figures

Figure 1

31 pages, 4403 KB  
Article
HPLC/GC–MS and Electronic Sensing Reveal Tissue-Wide Differences in Bioactive and Flavor Compound Distribution in Coffee Fruits Across Multiple Varieties
by Lu-Xia Ran, Xiao-Hua Dai, Er-Fang Ren, Jin-Hong Li, Lin Yan, Usman Rasheed and Gan-Lin Chen
Foods 2026, 15(2), 269; https://doi.org/10.3390/foods15020269 - 12 Jan 2026
Viewed by 330
Abstract
The quality of different coffee varieties varies, and the corresponding bioactive value of coffee processing byproducts is often overlooked. For that, we employed HPLC, GC-MS, and electronic sensory analyses to evaluate the key bioactive components, antioxidant potential, and flavor traits of green coffee [...] Read more.
The quality of different coffee varieties varies, and the corresponding bioactive value of coffee processing byproducts is often overlooked. For that, we employed HPLC, GC-MS, and electronic sensory analyses to evaluate the key bioactive components, antioxidant potential, and flavor traits of green coffee bean and coffee processing byproducts of seven coffee varieties. The results showed that green coffee beans (Oe+Ie) and exocarp (Ep) possessed strong antioxidant activity and high total phenolic content (TPC), caffeine and trigonelline content. Among the varieties, DR390 contained higher levels of total phenols, caffeine, and trigonelline, whereas DR402 was rich in caffeine and chlorogenic acid. In addition, RY3 exhibited higher TPC, total flavonoid content (TFC), caffeine, and chlorogenic acid. The parchment (Pc) layer was rich in soluble sugars (1.83–5.43%), while the silverskin (Sk) contained relatively high levels of chlorogenic acid (3.58–4.69 mg/g). Flavor analysis identified eleven classes of volatile compounds in green coffee bean (Oe+Ie) and byproducts (Ep, Pc, Sk), with esters, ketones, alcohols, and aldehydes being the most prevalent. Seven key aroma compounds, including methyl salicylate, phenethyl alcohol, nonanal, and benzaldehyde, were identified across the various structural tissues of coffee fruit. Distinct flavor profiles were observed among the coffee fruit parts: green coffee bean (Oe+Ie) was nutty; the Ep showed fruity and cocoa-like aromas; the Pc and Sk exhibited papery and nutty aromas, respectively. Varieties DR397, DR402, and RY3 exhibited pronounced aroma profiles. Comprehensive analysis showed that DR402 and RY3 had higher overall scores for bioactive and flavor components than other varieties in their groups. In summary, green coffee bean (Oe+Ie) exhibited strong antioxidant activity and high levels of bioactive compounds. Coffee byproducts, such as the Ep, hold potential for extracting natural antioxidants and bioactive compounds to develop specialty products or for other high-value utilization. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 2995 KB  
Article
In Vitro and In Silico Evaluation of Essential Oils from Three “Rosemary” Species Present in Chile as a Sustainable Alternative for Post-Harvest Fungi Control
by Alejandro Madrid, Evelyn Muñoz, Valentina Silva, Camila Venegas, Francisca Valdes, Constanza Reyes, Nelson Caro, Patricio Godoy, Enrique Werner, Katy Díaz and Iván Montenegro
Agronomy 2026, 16(2), 171; https://doi.org/10.3390/agronomy16020171 - 9 Jan 2026
Viewed by 235
Abstract
Phytopathogenic fungi that affect postharvest are a serious problem for agriculture, so this research explores the antifungal potential of three different “rosemary” species growing in Chile through in vitro and in silico assays. The analysis of essential oils (GC/MS) reveals the dominant constituents [...] Read more.
Phytopathogenic fungi that affect postharvest are a serious problem for agriculture, so this research explores the antifungal potential of three different “rosemary” species growing in Chile through in vitro and in silico assays. The analysis of essential oils (GC/MS) reveals the dominant constituents of Salvia rosmarinus (camphor: 66.96%), Baccharis linearis (lachnophyllum ester: 88.62%) and Fabiana imbricata (an oxygenated sesquiterpene: 43.66%) and shows profiles that differ from chemotypes of the same species from other areas of the world. B. linearis oil was shown to be a versatile antifungal substance, inhibiting Botrytis cinerea and Monilinia fructicola at moderate concentrations; F. imbricata oil stood out as a major inhibitor of mycelial growth of the same isolate of M. fructicola used to test B. linearis oil (EC50 of 15.86 + 0.67 µg/mL) and completely inhibited of its conidial germination. In silico assays confirmed the complexity of interactions of F. imbricata sequiterpenoids with catalytic sites of succinate dehydrogenase and catalase 2, key enzymes in mycelial growth and in maintaining redox homeostasis in the early development of M. fructicola, respectively. The results of this research make F. imbricata a good candidate for the development of a formulation applicable in vivo as an eco-friendly post-harvest antifungal agent. Full article
Show Figures

Figure 1

23 pages, 1396 KB  
Article
Physicochemical and Sensory Evaluation of Dark Chocolate Enriched with Aloe vera-Derived Polysaccharide
by Veronika Kotrcová, Ekambaranellore Prakash, Marcela Sluková, Jana Čopíková and Natália Palugová
Polysaccharides 2026, 7(1), 6; https://doi.org/10.3390/polysaccharides7010006 - 9 Jan 2026
Viewed by 211
Abstract
The demand for clean-label functional foods has increased interest in natural polysaccharides with health benefits. Acemannan, an O-acetylated glucomannan from Aloe vera, possesses antioxidant, immunomodulatory, and prebiotic activities, but its performance in fat-based systems is not well understood. This study examined the [...] Read more.
The demand for clean-label functional foods has increased interest in natural polysaccharides with health benefits. Acemannan, an O-acetylated glucomannan from Aloe vera, possesses antioxidant, immunomodulatory, and prebiotic activities, but its performance in fat-based systems is not well understood. This study examined the incorporation of acemannan into dark chocolate at 1% and 5% (w/w) and its effects on physicochemical, rheological, antioxidant, and sensory properties. Particle size distribution remained within acceptable limits, though the 5% sample showed a larger mean size and broader span. Rheological tests confirmed shear-thinning behavior, with the higher concentration increasing viscosity at low shear and reducing it at high shear. Antioxidant activity measured by the DPPH assay showed modest improvement in enriched samples. Consumer tests with 30 panelists indicated a strong preference (89%) for the 1% formulation, which maintained a smooth mouthfeel and balanced sensory characteristics, while the 5% sample displayed more fruity and earthy notes with lower acceptance. GC–MS analysis revealed altered volatile profiles, and FTIR spectroscopy confirmed acemannan stability in the chocolate matrix. These findings demonstrate that acemannan can be incorporated into dark chocolate up to 1% as a multifunctional, structurally stable polysaccharide ingredient without compromising product quality. Full article
Show Figures

Graphical abstract

16 pages, 2278 KB  
Article
Headspace SPME GC–MS Analysis of Urinary Volatile Organic Compounds (VOCs) for Classification Under Sample-Limited Conditions
by Lea Woyciechowski, Tushar H. More, Sabine Kaltenhäuser, Sebastian Meller, Karolina Zacharias, Friederike Twele, Alexandra Dopfer-Jablonka, Tobias Welte, Thomas Illig, Georg M. N. Behrens, Holger A. Volk and Karsten Hiller
Metabolites 2026, 16(1), 57; https://doi.org/10.3390/metabo16010057 - 8 Jan 2026
Viewed by 215
Abstract
Background/Objectives: Volatile organic compounds (VOCs) are emerging as non-invasive biomarkers of metabolic and disease-related processes, yet their reliable detection from complex biological matrices such as urine remains analytically challenging. This study aimed to establish a robust, non-targeted headspace solid-phase microextraction gas chromatography–mass spectrometry [...] Read more.
Background/Objectives: Volatile organic compounds (VOCs) are emerging as non-invasive biomarkers of metabolic and disease-related processes, yet their reliable detection from complex biological matrices such as urine remains analytically challenging. This study aimed to establish a robust, non-targeted headspace solid-phase microextraction gas chromatography–mass spectrometry (HS–SPME GC–MS) workflow optimized for very small-volume urinary samples. Methods: We systematically evaluated the effects of pH adjustment and NaCl addition on VOC extraction efficiency using a 75 µm CAR/PDMS fiber and a sample volume of only 0.75 mL. Method performance was further assessed using concentration-dependent experiments with representative VOC standards and by application to real human urine samples analyzed in technical triplicates. Results: Acidification to pH 3 markedly improved extraction performance, increasing both total signal intensity and the number of detectable VOCs, whereas alkaline conditions and additional NaCl produced only minor effects. Representative VOC standards showed compound-specific linear dynamic ranges with minimal carry-over within the relevant analytical range. Application to real urine samples confirmed high analytical reproducibility, with triplicates clustering tightly in principal component analysis and most metabolites exhibiting relative standard deviations below 25%. Conclusions: The optimized HS–SPME GC–MS method enables comprehensive, non-targeted urinary VOC profiling from limited sample volumes. This workflow provides a robust analytical foundation for exploratory volatilomics studies under sample-limited conditions and supports subsequent targeted method refinement once specific compounds or chemical classes have been prioritized. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

21 pages, 1209 KB  
Review
Intelligent Discrimination of Grain Aging Using Volatile Organic Compound Fingerprints and Machine Learning: A Comprehensive Review
by Liuping Zhang, Jingtao Zhou, Guoping Qian, Shuyi Liu, Mohammed Obadi, Tianyue Xu and Bin Xu
Foods 2026, 15(2), 216; https://doi.org/10.3390/foods15020216 - 8 Jan 2026
Viewed by 125
Abstract
Grain aging during storage leads to quality deterioration and significant economic losses. Traditional analytical approaches are often labor-intensive, slow, and inadequate for modern intelligent grain storage management. This review summarizes recent advances in the intelligent discrimination of grain aging using volatile organic compound [...] Read more.
Grain aging during storage leads to quality deterioration and significant economic losses. Traditional analytical approaches are often labor-intensive, slow, and inadequate for modern intelligent grain storage management. This review summarizes recent advances in the intelligent discrimination of grain aging using volatile organic compound (VOC) fingerprints combined with machine learning (ML) techniques. It first outlines the biochemical mechanisms underlying grain aging and identifies VOCs as early and sensitive biomarkers for timely determination. The review then examines VOC determination methodologies, with a focus on headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), for constructing volatile fingerprinting profiles, and discusses related method standardization. A central theme is the application of ML algorithms, including Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN)) for feature extraction and pattern recognition in high-dimensional datasets, enabling effective discrimination of aging stages, spoilage types, and grain varieties. Despite these advances, key challenges remain, such as limited model generalizability, the lack of large-scale multi-source databases, and insufficient validation under real storage conditions. Finally, future directions are proposed that emphasize methodological standardization, algorithmic innovation, and system-level integration to support intelligent, non-destructive, real-time grain quality monitoring. This emerging framework provides a promising powerful pathway for enhancing global food security. Full article
Show Figures

Figure 1

16 pages, 968 KB  
Article
Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization
by Rodrigo Oliver-Simancas, María Consuelo Díaz-Maroto, Álvaro Fernández-Ochoa, María Soledad Pérez-Coello and María Elena Alañón
Foods 2026, 15(2), 215; https://doi.org/10.3390/foods15020215 - 8 Jan 2026
Viewed by 144
Abstract
Comprehensive characterization of the mango peel volatilome is essential to revealing its aromatic potential and enabling its revalorization as a natural flavoring. The volatile profile of Mangifera indica L. var. Osteen peels at three ripening stages (green, ripe, overripe) was analyzed before and [...] Read more.
Comprehensive characterization of the mango peel volatilome is essential to revealing its aromatic potential and enabling its revalorization as a natural flavoring. The volatile profile of Mangifera indica L. var. Osteen peels at three ripening stages (green, ripe, overripe) was analyzed before and after thermal drying (45 °C, 18 h): an unavoidable stabilization step for valorization applications. HS–SPME/GC–MS enabled the identification of 76 volatile compounds across different key aroma-contributing families: monoterpenes, sesquiterpenes, alcohols, aldehydes, ketones, esters, furanics and norisoprenoids. The ripening stage significantly influenced the qualitative and quantitative volatilome in fresh samples but drying heavily reduced those differences. Multivariate analyses confirmed that the drying process is the dominant factor shaping the stabilized peels’ volatilome. These findings underscore the industrial relevance of this side-stream: regardless of ripening stage, mango peels can be uniformly stabilized to be upcycled into aroma-rich ingredients. It simplifies raw material sourcing and supports food waste revalorization strategies in flavor and fragrance developments. Full article
Show Figures

Graphical abstract

21 pages, 2489 KB  
Article
Assessment of the Yield and Bioactive Compounds of Jambu (Acmella oleracea) Flowers and Leaves Extracted with CO2, 1,1,1,2-Tetrafluoroethane (R-134a), and Propane
by Marcos Antônio Avibar Ruzza, Raquel Laina Barbosa dos Santos, Nikolas Ramos Bernardes, Carlos Toshiyuki Hiranobe, Dener da Silva Souza, Michael Jones da Silva, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Leandro Ferreira-Pinto
ChemEngineering 2026, 10(1), 9; https://doi.org/10.3390/chemengineering10010009 - 7 Jan 2026
Viewed by 157
Abstract
This study compares the extraction of oils and bioactive compounds from Acmella oleracea using supercritical CO2, pressurized R-134a, and propane under systematically designed experimental conditions. Extraction yields ranged from 1.16–3.35% for CO2, 1.90–2.35% for R-134a, and 1.30–5.42% for propane. [...] Read more.
This study compares the extraction of oils and bioactive compounds from Acmella oleracea using supercritical CO2, pressurized R-134a, and propane under systematically designed experimental conditions. Extraction yields ranged from 1.16–3.35% for CO2, 1.90–2.35% for R-134a, and 1.30–5.42% for propane. Propane achieved the highest yields and the fastest plateau (~35 min), producing extracts dominated by unsaturated fatty acids (linoleic acid ≈ 85%). Supercritical CO2 generated the most diverse chemical profile, combining alkamides (spilanthol), triterpenoids (β-amyrone), and lipids, with a plateau at approximately 50 min, whereas R-134a selectively enriched β-amyrin acetate (~70%) with intermediate kinetics (~45 min). These yield values are typical for non-oilseed species, in which the low natural abundance of the target metabolites renders solvent selectivity more relevant than the total extract mass. Statistical modeling (R2 > 0.96) confirmed that pressure was the main driver of CO2 and propane extraction, whereas temperature dominated R-134a performance. The distinct selectivity patterns revealed by Gas chromatography–mass spectrometry (GC-MS) indicate that each solvent generates compositionally different extracts aligned with specific industrial applications in cosmetics, pharmaceuticals, and nutraceuticals. The unified comparison of these three fluids under a consistent experimental design provides practical insights for rational solvent selection: propane favors unsaturated lipids, CO2 preserves multifunctional compositions, and R-134a targets triterpenoid esters, supporting the economic feasibility of producing enriched, solvent-free plant extracts. Full article
Show Figures

Figure 1

21 pages, 454 KB  
Article
Multivariate Characterization of Essential Oils for Their Antibacterial Activity Against Escherichia coli: A Data-Driven Interpretation of Experimental Results
by Meta Kokalj Ladan, Marsela Supé Vide and Katja Schoss
Molecules 2026, 31(2), 207; https://doi.org/10.3390/molecules31020207 - 7 Jan 2026
Viewed by 229
Abstract
The growing problem of antimicrobial resistance emphasizes the urgent need for new and effective natural antimicrobial agents. This study assessed the antibacterial activity of twenty essential oils and one absolute against Escherichia coli and examined the relationship between their chemical composition and biological [...] Read more.
The growing problem of antimicrobial resistance emphasizes the urgent need for new and effective natural antimicrobial agents. This study assessed the antibacterial activity of twenty essential oils and one absolute against Escherichia coli and examined the relationship between their chemical composition and biological activity. The chemical profiles of the samples were determined using gas chromatography–mass spectrometry (GC–MS), and the resulting data were analysed using principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) methods to explore associations between composition and antibacterial activity. The results showed substantial variability among the tested essential oils, with those from Thymus vulgaris, Aniba rosaeodora, Syzygium aromaticum, Pimenta dioica, and the absolute of Evernia prunastri exhibiting the strongest activity. GC–MS analysis identified thymol, eugenol, and methyl atrarate as key bioactive constituents associated with strong antibacterial effects, while linalool, limonene, and α-terpineol were linked to moderate activity. Multivariate analyses provided further insight but were limited by data variability, highlighting compositional diversity rather than clear group separation. Overall, the findings demonstrate that essential oils are a promising source of natural antimicrobial agents and emphasise the importance of linking chemical composition with biological function to understand their potential therapeutic applications. Full article
(This article belongs to the Special Issue Essential Oils: Chemical Composition, Bioactive, and Application)
Show Figures

Figure 1

Back to TopTop