Multivariate Characterization of Essential Oils for Their Antibacterial Activity Against Escherichia coli: A Data-Driven Interpretation of Experimental Results
Abstract
1. Introduction
2. Results
2.1. GC–MS Analysis
2.2. Antimicrobial Activity Against Escherichia coli
2.3. Important Compounds
2.4. Principal Component Multivariate Analysis
2.5. Discriminant Analysis
2.6. Partial Least Squares Multivariate Analysis
3. Discussion
3.1. GC–MS Analysis
3.2. Antimicrobial Activity Against Escherichia coli
3.3. Multivariate Identification of Compounds Associated with Antibacterial Activity
4. Materials and Methods
4.1. Samples
4.2. GC–MS Analysis
4.3. Antimicrobial Activity Against Escherichia coli
4.4. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GC-MS | Gas chromatography coupled with mass spectrometry |
| EO | Essential oil |
| MIC | Minimum inhibitory concentration |
| PCA | Principal components analysis |
| DA | Discriminant analysis |
| PLS | Partial least squares analysis |
References
- Rosini, R.; Nicchi, S.; Pizza, M.; Rappuoli, R. Vaccines Against Antimicrobial Resistance. Front. Immunol. 2020, 11, 1048. [Google Scholar] [CrossRef]
- Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.A.; Karaman, R. The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins 2019, 11, 656. [Google Scholar] [CrossRef]
- Polly, M.; de Almeida, B.L.; Lennon, R.P.; Cortês, M.F.; Costa, S.F.; Guimarães, T. Impact of the COVID-19 Pandemic on the Incidence of Multidrug-Resistant Bacterial Infections in an Acute Care Hospital in Brazil. Am. J. Infect. Control 2022, 50, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The Antibiotic Resistance Crisis: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- May, M. How to Fight Antibiotic Resistance. Nat. Med. 2023, 29, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Croxen, M.A.; Finlay, B.B. Molecular Mechanisms of Escherichia coli Pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic Resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024-Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024; pp. 1–72. [Google Scholar]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory Effects of Selected Plant Essential Oils on the Growth of Four Pathogenic Bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 2007, 18, 414–420. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus Cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, N.L.; Ribbeck, K. Selected Antimicrobial Essential Oils Eradicate pseudomonas spp. and Staphylococcus aureus Biofilms. Appl. Environ. Microbiol. 2012, 78, 4057–4061. [Google Scholar] [CrossRef]
- Sparkman, O.D. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy Robert P. Adams. J. Am. Soc. Mass Spectrom. 2005, 16, 1902–1903. [Google Scholar] [CrossRef]
- Etri, K.; Pluhár, Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. Plants 2024, 13, 1375. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris Essential Oil: Chemical Composition and Antimicrobial Activity. J. Med. Life 2014, 7, 56. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Mar Contreras, M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef]
- Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity Screening of Thymus vulgaris L. Essential Oil in Brine Shrimp Nauplii and Cancer Cell Lines. Sci. Rep. 2021, 11, 13178. [Google Scholar] [CrossRef] [PubMed]
- El Yaagoubi, M.; Mechqoq, H.; El Hamdaoui, A.; Jrv Mukku, V.; El Mousadik, A.; Msanda, F.; El Aouad, N. A Review on Moroccan Thymus Species: Traditional Uses, Essential Oils Chemical Composition and Biological Effects. J. Ethnopharmacol. 2021, 278, 114205. [Google Scholar] [CrossRef]
- Halat, D.H.; Krayem, M.; Khaled, S.; Younes, S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022, 14, 2104. [Google Scholar] [CrossRef]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fang, J.; Wang, H.; Zhang, B.; Wang, N.; Yao, X.; Li, H.; Qiu, J.; Deng, X.; Leng, B.; et al. Natural Medicine Can Substitute Antibiotics in Animal Husbandry: Protective Effects and Mechanisms of Rosewood Essential Oil against Salmonella Infection. Chin. J. Nat. Med. 2024, 22, 785–796. [Google Scholar] [CrossRef]
- de Siqueira, R.J.; Rodrigues, K.M.S.; da Silva, M.T.B.; Junior, C.A.B.C.; Duarte, G.P.; Magalhães, P.J.C.; dos Santos, A.A.; Maia, J.G.S.; da Cunha, P.J.S.; Lahlou, S. Linalool-Rich Rosewood Oil Induces Vago-Vagal Bradycardic and Depressor Reflex in Rats. Phytother. Res. 2014, 28, 42–48. [Google Scholar] [CrossRef]
- Santos, É.Q.D.; da Silva Pantoja, L.V.; Farias, S.V.; Pinheiro, B.G.; Andrade, E.H.; Mendes, P.F.S.; Cruz, J.N.; Monteiro, M.C.; Davis, K.; Lima, R.R.; et al. Linalool-Rich Rosewood Essential Oil (Aniba rosaeodora Ducke) Mitigates Emotional and Neurochemical Impairments Induced by Ethanol Binge-like Exposure during Adolescence in Female Rats. Biomed. Pharmacother. 2024, 178, 117120. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.K.A.M.; Maia, L.; Figueiredo, P.L.B.; Folador, A.; Ramos, A.R.; Andrade, E.H.; Maia, J.G.S.; Setzer, W.N.; da Silva, J.K.R. Essential Oil Composition and DNA Barcode and Identification of Aniba Species (Lauraceae) Growing in the Amazon Region. Molecules 2021, 26, 1914. [Google Scholar] [CrossRef]
- Zellner, B.D.A.; Lo Presti, M.; Soares Barata, L.E.; Dugo, P.; Dugo, G.; Mondello, L. Evaluation of Leaf-Derived Extracts as an Environmentally Sustainable Source of Essential Oils by Using Gas Chromatography-Mass Spectrometry and Enantioselective Gas Chromatography-Olfactometry. Anal. Chem. 2006, 78, 883–890. [Google Scholar] [CrossRef]
- Sampaio, L.D.F.S.; Maia, J.G.S.; De Parijós, A.M.; De Souza, R.Z.; Barata, L.E.S. Linalool from Rosewood (Aniba rosaeodora Ducke) Oil Inhibits Adenylate Cyclase in the Retina, Contributing to Understanding Its Biological Activity. Phytother. Res. 2012, 26, 73–77. [Google Scholar] [CrossRef]
- Simić, A.; Soković, M.D.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P.D. The Chemical Composition of Some Lauraceae Essential Oils and Their Antifungal Activities. Phytother. Res. 2004, 18, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; Calabrese, K.d.S.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Chaudhari, A.K.; Das, S.; Tiwari, S.; Maurya, A.; Singh, V.K.; Dubey, N.K. Chitosan Encompassed Aniba rosaeodora Essential Oil as Innovative Green Candidate for Antifungal and Antiaflatoxigenic Activity in Millets with Emphasis on Cellular and Its Mode of Action. Front. Microbiol. 2022, 13, 970670. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef]
- Pandey, V.K.; Srivastava, S.; Dash, K.K.; Singh, R.; Dar, A.H.; Singh, T.; Farooqui, A.; Shaikh, A.M.; Kovacs, B. Bioactive Properties of Clove (Syzygium aromaticum) Essential Oil Nanoemulsion: A Comprehensive Review. Heliyon 2023, 10, e22437. [Google Scholar] [CrossRef]
- Mergulhão, N.L.O.N.; Bulhões, L.C.G.; Silva, V.C.; Duarte, I.F.B.; Basílio-Júnior, I.D.; Freitas, J.D.; Oliveira, A.J.; Goulart, M.O.F.; Barbosa, C.V.; Araújo-Júnior, J.X. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals 2024, 17, 599. [Google Scholar] [CrossRef]
- Hekmatpanah, A.; Sharifzadeh, A.; Shokri, H.; Abbaszadeh, S.; Nikaein, D. Efficacy of Syzygium aromaticum Essential Oil on the Growth and Enzymatic Activity of Pathogenic Candida albicans Strains. Curr. Med. Mycol. 2022, 8, 12–19. [Google Scholar] [CrossRef]
- Stojanović, I.Ž.; Radulović, N.S.; Mitrović, T.L.; Stamenković, S.M.; Stojanović, G.S. Volatile Constituents of Selected Parmeliaceae Lichens. J. Serbian Chem. Soc. 2011, 76, 987–994. [Google Scholar] [CrossRef]
- Monzote, L.; Machín, L.; González, A.; Scull, R.; Gutiérrez, Y.I.; Satyal, P.; Gille, L.; Setzer, W.N. Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis. Pharmaceuticals 2024, 17, 64. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Kuttithodi, A.M.; Alfarhan, A.; Rajagopal, R.; Barcelo, D. Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil. Molecules 2021, 26, 6698. [Google Scholar] [CrossRef] [PubMed]
- Samuel Mérida-Reyes, M.; Alejandro Muñoz-Wug, M.; Oliva-Hernández, B.E.; Gaitán-Fernández, I.C.; Luiz, D.; Simas, R.; Ribeiro Da Silva, A.J.; Francisco Pérez-Sabino, J. Composition and Antibacterial Activity of the Essential Oil from Pimenta dioica (L.) Merr. from Guatemala. Medicines 2020, 7, 59. [Google Scholar] [CrossRef]
- Kumar, A.N.; Venkatesh, B.; Krishna Vamsi, M.; Kumar, J.K.; Satya Srinivas, K.V.N.; Babu, G.D.K.; Verma, R.S. Optimising Essential Oil Yields and Quality from Pimenta dioica (L.) Merr. Leaf: Impact of NaCl Concentrations, PH Media and Sequential Separation of Essential Oil Components during Hydrodistillation. Nat. Prod. Res. 2024, 1–8. [Google Scholar] [CrossRef]
- Alrashidi, A.A.; Noumi, E.; Snoussi, M.; De Feo, V. Chemical Composition, Antibacterial and Anti-Quorum Sensing Activities of Pimenta dioica L. Essential Oil and Its Major Compound (Eugenol) against Foodborne Pathogenic Bacteria. Plants 2022, 11, 540. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Upadhyay, N.; Singh, A.; Dkhar, M.S.; Kayang, H.; Prakash, B.; Dubey, N.K. Chemically Characterised Pimenta dioica (L.) Merr. Essential Oil as a Novel Plant Based Antimicrobial against Fungal and Aflatoxin B1 Contamination of Stored Maize and Its Possible Mode of Action. Nat. Prod. Res. 2020, 34, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Tavares, I.M.d.C.; dos Santos, R.R.C.; Costa, F.S.; de Jesus, G.L.S.; Sanches, A.; Silva, F.N.; Irfan, M.; de Oliveira, R.A.; Franco, M. Improving the Extraction Yield of Essential Oil from Pimenta dioica (L.) Merr. Using Aspergillus Niger ATCC 1004 Enzyme Blend. Biotechnol. Appl. Biochem. 2025, 72, 225–236. [Google Scholar] [CrossRef]
- Tissandié, L.; Viciana, S.; Brevard, H.; Meierhenrich, U.J.; Filippi, J.J. Towards a Complete Characterisation of Guaiacwood Oil. Phytochemistry 2018, 149, 64–81. [Google Scholar] [CrossRef]
- Luns, D.A.R.; Martins, R.; Pombal, S.; Rodilla, J.M.L.; Githaka, N.W.; Vaz, I.d.S.; Logullo, C. Effect of Essential Oils against Acaricide-susceptible and Acaricide-Resistant Rhipicephalus Ticks. Exp. Appl. Acarol. 2021, 83, 597. [Google Scholar] [CrossRef]
- Andrade, M.A.; Azevedo, C.S.; Motta, F.N.; Santos, M.L.; Silva, C.L.; Santana, J.M.; Bastos, I.M. Essential Oils: In Vitro Activity against Leishmania amazonensis, Cytotoxicity and Chemical Composition. BMC Complement. Altern. Med. 2016, 16, 444. [Google Scholar] [CrossRef]
- Fekri, N.; El Amir, D.; Owis, A.; AbouZid, S. Studies on Essential Oil from Rose-Scented Geranium, Pelargonium graveolens L’Hérit. (Geraniaceae). Nat. Prod. Res. 2021, 35, 2593–2597. [Google Scholar] [CrossRef]
- Seo, E.; Cho, Y.; Lee, J.M.; Seol, G.H. Inhalation of Pelargonium graveolens Essential Oil Alleviates Pain and Related Anxiety and Stress in Patients with Lumbar Spinal Stenosis and Moderate to Severe Pain. Pharmaceuticals 2023, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- M’hamdi, Z.; Davì, F.; Elhourri, M.; Amechrouq, A.; Mondello, F.; Cacciola, F.; Laganà Vinci, R.; Mondello, L.; Miceli, N.; Taviano, M.F. Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco. Molecules 2024, 29, 4036. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Vukic, M.; Vukovic, N.L.; Čmiková, N.; Verešová, A.; Schwarzová, M.; Babošová, M.; Porhajašová, J.I.; Kluz, M.; Waszkiewicz-Robak, B.; et al. An In-Depth Study on the Chemical Composition and Biological Effects of Pelargonium graveolens Essential Oil. Foods 2023, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.; Hawash, M.; Qadi, M.; Abualhasan, M.; Odetallah, A.; Qasim, G.; Awayssa, R.; Akkawi, A.; Abdullah, I.; Al-Maharik, N. Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. Molecules 2022, 27, 5721. [Google Scholar] [CrossRef]
- Fajinmi, O.O.; Kulkarni, M.G.; Benická, S.; Ćavar Zeljković, S.; Doležal, K.; Tarkowski, P.; Finnie, J.F.; Van Staden, J. Antifungal Activity of the Volatiles of Agathosma betulina and Coleonema album Commercial Essential Oil and Their Effect on the Morphology of Fungal Strains Trichophyton rubrum and T. mentagrophytes. S. Afr. J. Bot. 2019, 122, 492–497. [Google Scholar] [CrossRef]
- Posthumus, M.A.; van Beek, T.A.; Collins, N.F.; Graven, E.H. Chemical Composition of the Essential Oils of Agathosma betulina, A. crenulata and an A. betulina × crenulata Hybrid (Buchu). J. Essent. Oil Res. 1996, 8, 223–228. [Google Scholar] [CrossRef]
- Viljoen, A.M.; Moolla, A.; Van Vuuren, S.F.; Van Zyl, R.L.; Hüsnü, K.; Başer, C.; Demirci, B.; Özek, T.; Trinder-Smith, T.H. The Biological Activity and Essential Oil Composition of 17 Agathosma (Rutaceae) Species. J. Essent. Oil Res. 2006, 18, 2–16. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial Activity and Chemical Composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis Essential Oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Nikolić, M.; Smiljković, M.; Marković, T.; Ćirića, A.; Glamočlija, J.; Marković, D.; Soković, M. Sensitivity of Clinical Isolates of Candida to Essential Oils from Burseraceae Family. EXCLI J. 2016, 15, 280. [Google Scholar]
- Noumi, E.; Ahmad, I.; Adnan, M.; Patel, H.; Merghni, A.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Kadri, A.; Caputo, L.; et al. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023, 28, 7691. [Google Scholar] [CrossRef]
- Murbach Teles Andrade, B.F.; Conti, B.J.; Santiago, K.B.; Fernandes, A.J.; Sforcin, J.M. Cymbopogon Martinii Essential Oil and Geraniol at Noncytotoxic Concentrations Exerted Immunomodulatory/Anti-Inflammatory Effects in Human Monocytes. J. Pharm. Pharmacol. 2014, 66, 1491–1496. [Google Scholar] [CrossRef]
- Aziz, M.I.; Hasan, M.M.; Ullah, R.; Bari, A.; Khan, M.A.; Hasnain, S.Z.U.; Baloch, R.; Akram, M.; Obaid, A.; Ullah, A.; et al. Potential Role of Citrus bergamia Flower Essential Oil against Oral Pathogens. BMC Complement. Med. Ther. 2024, 24, 157. [Google Scholar] [CrossRef]
- Costa, R.; Dugo, P.; Navarra, M.; Raymo, V.; Dugo, G.; Mondello, L. Study on the Chemical Composition Variability of Some Processed Bergamot (Citrus bergamia) Essential Oils. Flavour Fragr. J. 2010, 25, 4–12. [Google Scholar] [CrossRef]
- Noshad, M.; Alizadeh Behbahani, B.; Nikfarjam, Z. Chemical Composition, Antibacterial Activity and Antioxidant Activity of Citrus bergamia Essential Oil: Molecular Docking Simulations. Food Biosci. 2022, 50, 102123. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Colica, C.; Menichini, F. Comparative Study on the Antioxidant Capacity and Cholinesterase Inhibitory Activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. Peel Essential Oils. J. Food Sci. 2012, 77, H40–H46. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovic, N.L.; Čmiková, N.; Galovičová, L.; Schwarzová, M.; Šimora, V.; Kowalczewski, P.Ł.; Kluz, M.I.; Puchalski, C.; Bakay, L.; et al. Salvia sclarea Essential Oil Chemical Composition and Biological Activities. Int. J. Mol. Sci. 2023, 24, 5179. [Google Scholar] [CrossRef]
- Schmiderer, C.; Grassi, P.; Novak, J.; Weber, M.; Franz, C. Diversity of Essential Oil Glands of Clary Sage (Salvia sclarea L., Lamiaceae). Plant Biol. 2008, 10, 433–440. [Google Scholar] [CrossRef]
- Kuzma, Ł.; Kalemba, D.; Rózalski, M.; Rózalska, B.; Marzena, W.S.; Krajewska, U.; Wysokinska, H. Chemical Composition and Biological Activities of Essential Oil from Salvia sclarea Plants Regenerated in Vitro. Molecules 2009, 14, 1438–1447. [Google Scholar] [CrossRef]
- Alam, P.; Imran, M.; Ali, A.; Majid, H. Cananga odorata (Ylang-Ylang) Essential Oil Containing Nanoemulgel for the Topical Treatment of Scalp Psoriasis and Dandruff. Gels 2024, 10, 303. [Google Scholar] [CrossRef]
- Borgonetti, V.; López, V.; Galeotti, N. Ylang-Ylang (Cananga odorata (Lam.) Hook. f. & Thomson) Essential Oil Reduced Neuropathic-Pain and Associated Anxiety Symptoms in Mice. J. Ethnopharmacol. 2022, 294, 115362. [Google Scholar]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul Kadir, H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid. Based Complement. Alternat. Med. 2015, 2015, 896314. [Google Scholar] [CrossRef]
- Sukkanon, C.; Nararak, J.; Bangs, M.J.; Chareonviriyaphap, T. Cananga odorata (Magnoliales: Annonaceae) Essential Oil Produces Significant Avoidance Behavior in Mosquitoes. J. Med. Entomol. 2022, 59, 291–300. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, S.; Yao, L. Inhalation of Cananga odorata Essential Oil Relieves Anxiety Behaviors in Autism-like Rats via Regulation of Serotonin and Dopamine Metabolism. J. Integr. Med. 2023, 21, 205–214. [Google Scholar] [CrossRef]
- Idaomar, M.; El Hamss, R.; Bakkali, F.; Mezzoug, N.; Zhiri, A.; Baudoux, D.; Muñoz-Serrano, A.; Liemans, V.; Alonso-Moraga, A. Genotoxicity and Antigenotoxicity of Some Essential Oils Evaluated by Wing Spot Test of Drosophila melanogaster. Mutat. Res. Toxicol. Environ. Mutagen. 2002, 513, 61–68. [Google Scholar] [CrossRef]
- Andrianoelisoa, H.S.; Menut, C.; Ramanoelina, P.; Raobelison, F.; de Chatelperron, P.C.; Danthu, P. Chemical Composition of Essential Oils From Bark and Leaves of Individual Trees of Ravensara aromatica Sonnerat. J. Essent. Oil Res. 2010, 22, 66–70. [Google Scholar] [CrossRef]
- Andrianoelisoa, H.S.; Menut, C.; de Chatelperron, P.C.; Saracco, J.; Ramanoelina, P.; Danthu, P.; Danthu, P. Intraspecific Chemical Variability and Highlighting and Chemotypes of Leaf Essential Oils from Ravensara aromatica Sonnerat, a Tree Endemic to Madagascar. Flavour Fragr. J. 2006, 21, 833–838. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J. Chemical Composition, Antioxidant and Antimicrobial Activity of Chamomile Flowers Essential Oil (Matricaria chamomilla L.). J. Essent. Oil Bear. Plants 2016, 19, 2017–2028. [Google Scholar] [CrossRef]
- Pirzad, A.; Alyari, H.; Shakiba, M.R.; Zehtab-Salmasi, S.; Mohammadi, A. Essential Oil Content and Composition of German Chamomile (Matricaria chamomilla L.) at Different Irrigation Regimes. J. Agron. 2006, 5, 451–455. [Google Scholar] [CrossRef]
- Uehara, A.; Tommis, B.; Belhassen, E.; Satrani, B.; Ghanmi, M.; Baldovini, N. Odor-Active Constituents of Cedrus atlantica Wood Essential Oil. Phytochemistry 2017, 144, 208–215. [Google Scholar] [CrossRef]
- Singh, S.; Kurmi, A.; Gowda, M.R.S.; Singh, M.K.; Hiremath, C.; Sundaresan, V.; Tandon, S.; Padalia, R.C.; Verma, R.K.; Saikia, D.; et al. Chemical Investigation, Quality Assessment, and Antimicrobial Activity of Davana (Artemisia pallens Wall. ex DC) Essential Oil Collected from Different Locations in India. J. Essent. Oil Res. 2022, 34, 290–302. [Google Scholar] [CrossRef]
- Clery, R.A.; Cason, J.R.L.; Zelenay, V. Constituents of Cypriol Oil (Cyperus scariosus R.Br.): N-Containing Molecules and Key Aroma Components. J. Agric. Food Chem. 2016, 64, 4566–4573. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Cruz, A.P.M.; Nishimura, F.G.; dos Santos, V.C.O.; Steling, E.G.; Kress, M.R.V.Z.; Marins, M.; Fachin, A.L. Essential Oil-Based Soap with Clove and Oregano: A Promising Antifungal and Antibacterial Alternative against Multidrug-Resistant Microorganisms. Molecules 2024, 29, 4682. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Rodríguez-Lázaro, D.; Domínguez, R.; Zhong, J.; Lorenzo, J.M. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms 2020, 8, 924. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Galvan, D.; Effting, L.; Torres Neto, L.; Conte-Junior, C.A. An Overview of Research of Essential Oils by Self-Organizing Maps: A Novel Approach for Meta-Analysis Study. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3136–3163. [Google Scholar] [CrossRef]
- Reichling, J. Anti-Biofilm and Virulence Factor-Reducing Activities of Essential Oils and Oil Components as a Possible Option for Bacterial Infection Control. Planta Med. 2020, 86, 520–537. [Google Scholar] [CrossRef]
- Rohatgi, A.; Gupta, P. Natural and Synthetic Plant Compounds as Anti-Biofilm Agents against Escherichia coli O157:H7 Biofilm. Infect. Genet. Evol. 2021, 95, 105055. [Google Scholar] [CrossRef]
- Park, J.M.; Yuk, Y.S.; Lee, Y.K.; Kim, J.K. The Antibacterial Activity of 17 Essential Oils against Escherichia coli. Asian J. Beauty Cosmetol. 2022, 20, 33–41. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial Activity of Essential Oils and Other Plant Extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef]
- Zahra Sadiki, F.; El Idrissi, M.; Sbiti, M. Antibacterial Effect of Essential Oil of Thymus hyemalis against Five Bacterial Strains Isolated from Hospital Infections. Spec. J. Med. Res. Health Sci. 2019, 4, 59–64. [Google Scholar]
- Servi, H.; Demir, U.; Servi, E.Y.; Gundogdu, B.; Barak, T.H. Antiproliferative and Antibacterial Activities of Four Commer-Cial Essential Oil Samples from Boswellia carteri, B. Sserrata, and Two Chemotypes of Canarium luzonicum. J. Essent. Oil Bear. Plants 2023, 26, 79–94. [Google Scholar] [CrossRef]
- Outemsaa, B.; Oubihi, A.; Jaber, H.; Haida, S.; Kenfaoui, I.; Ihamdan, R.; El Azhari, H.; Ouhssine, M. Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oil of Illicium verum. E3S Web Conf. 2021, 319, 01052. [Google Scholar] [CrossRef]
- Freire, J.M.; Cardoso, M.G.; Batista, L.R.; Andrade, M.A. Essential Oil of Origanum majorana L., Illicium verum Hook. f. and Cinnamomum zeylanicum Blume: Chemical and Antimicrobial Characterization. Rev. Bras. Plantas Med. 2011, 13, 209–214. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.; Zhou, H.; Zhao, C.; Lin, L. Antimicrobial Activity and Mechanisms of Salvia sclarea Essential Oil. Bot. Stud. 2015, 56, 16. [Google Scholar] [CrossRef]
- Yoo, Y.W.; Lee, H.J.; Kim, S.; Bae, M.S.; Lee, M.J.; Shim, J.-H.; Cho, S.S. Chemical Composition and in Vitro Antimicrobial and Antioxidant Activities of Commercially Available Essential Oils against Multidrug Resistant Bacteria. J. Life Sci. 2014, 24, 266–273. [Google Scholar] [CrossRef]
- Göger, G.; Demirci, B.; Ilgın, S.; Demirci, F. Antimicrobial and Toxicity Profiles Evaluation of the Chamomile (Matricaria recutita L.) Essential Oil Combination with Standard Antimicrobial Agents. Ind. Crops Prod. 2018, 120, 279–285. [Google Scholar] [CrossRef]
- Jha, V.; Kadam, P.; Jain, T.; Bhargava, A.; Marick, A.; Saiya, B.; Maiti, S.; Pandya, S.; Patel, R.; Jadhav, N. Investigation of Physico-Chemical Properties and Evaluation of the Biological Potential of Essential Oil Extracted from Artemisia pallens. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 494–507. [Google Scholar] [CrossRef]
- Bail, S.; Buchbauer, G.; Schmidt, E.; Wanner, J.; Slavchev, A.; Stoyanova, A.; Denkova, Z.; Geissler, M.; Jirovetz, L. GC-MS-Analysis, Antimicrobial Activities and Olfactory Evaluation of Essential Davana (Artemisia pallens Wall. Ex DC) Oil from India. Nat. Prod. Commun. 2008, 3, 1057–1062. [Google Scholar] [CrossRef]
- de Rapper, S.L.; Tankeu, S.Y.; Kamatou, G.; Viljoen, A.; van Vuuren, S. The Use of Chemometric Modelling to Determine Chemical Composition-Antimicrobial Activity Relationships of Essential Oils Used in Respiratory Tract Infections. Fitoterapia 2021, 154, 105024. [Google Scholar] [CrossRef]

| Thymus vulgaris | Aniba roseodora | Syzygium aromaticum | Evernia prunastri * | Pimenta dioica | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | RetT | Compound | % |
| 25.9 | thymol | 50.0 | 17.0 | linalool | 86.2 | 28.6 | eugenol | 85.1 | 42.5 | methyl atrarate | 100.0 | 28.5 | eugenol | 71.6 |
| 13.3 | p-cymene | 17.4 | 13.7 | eucalyptol | 4.3 | 35.3 | eugenyl acetate | 7.3 | 30.6 | methyl eugenol | 12.5 | |||
| 14.9 | γ-terpinene | 7.2 | 24.0 | geraniol | 2.1 | 31.4 | trans-caryophyllene | 5.4 | 31.4 | trans-caryophyllene | 8.0 | |||
| 16.9 | linalool | 4.2 | 9.3 | α-pinene | 1.9 | 32.8 | α-humulene | 1.7 | ||||||
| 26.2 | carvacrol | 3.3 | 13.5 | limonene | 1.9 | |||||||||
| 20.7 | terpinen-4-ol | 2.6 | 11.2 | β-pinene | 1.7 | |||||||||
| 20.2 | borneol | 1.9 | ||||||||||||
| 31.4 | trans-caryophyllene | 1.8 | ||||||||||||
| 19.0 | camphor | 1.4 | ||||||||||||
| 13.0 | α-terpinene | 1.2 | ||||||||||||
| 11.8 | myrcene | 1.2 | ||||||||||||
| 13.7 | eucalyptol | 1.2 | ||||||||||||
| 10.0 | camphene | 1.1 | ||||||||||||
| Pelargonium graveolens | Bulnesia sarmientoi | Thymus hiemalis | Canarium luzonicum | Dalbergia sissoo | ||||||||||||
| RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | ||
| 23.0 | citronellol | 35.7 | 41.2 | bulnesol | 40.3 | 13.6 | eucalyptol | 30.6 | 13.5 | limonene | 50.1 | 16.9 | linalool | 79.8 | ||
| 24.0 | geraniol | 14.8 | 38.6 | guaiol | 34.9 | 19.0 | camphor | 9.3 | 36.6 | α-elemol | 25.7 | 21.3 | α-terpineol | 6.1 | ||
| 17.4 | phenethyl alcohol | 10.4 | 40.7 | β-eudesmol | 7.5 | 16.9 | linalool | 8.6 | 12.4 | α-phellandrene | 6.7 | 13.6 | eucalyptol | 3.8 | ||
| 29.7 | geranyl acetate | 7.1 | 39.9 | δ-eudesmol | 3.2 | 10.0 | camphene | 5.9 | 11.0 | sabinene | 4.7 | 16.3 | NI: 71, 43, 68, 41 | 3.6 | ||
| 25.1 | citronellyl formate | 4.6 | 39.5 | eudesmol (10-epi-δ) | 1.8 | 13.3 | p-cymene | 4.8 | 13.3 | p-cymene | 3.2 | 23.9 | geraniol | 2.7 | ||
| 28.9 | neryl acetate | 3.6 | 39.0 | guaiol | 1.6 | 20.2 | borneol | 4.6 | 21.3 | α-terpineol | 2.4 | 13.5 | limonene | 1.7 | ||
| 22.8 | nerol | 2.9 | 39.1 | rosifoliol | 1.2 | 9.3 | α-pinene | 3.7 | ||||||||
| 16.9 | linalool | 2.8 | 14.4 | trans-β-ocimene | 3.1 | |||||||||||
| 19.9 | isomenthone | 2.8 | 11.8 | myrcene | 3.0 | |||||||||||
| 39.5 | δ-eudesmol | 2.7 | 21.3 | α-terpineol | 2.6 | |||||||||||
| 26.2 | lavandulyl acetate | 1.4 | 11.2 | β-pinene | 2.4 | |||||||||||
| 28.5 | citronellyl acetate | 1.1 | 31.4 | trans-caryophyllene | 2.1 | |||||||||||
| 24.7 | geranial | 2.0 | ||||||||||||||
| 14.9 | δ-terpinene | 1.9 | ||||||||||||||
| 13.5 | limonene | 1.8 | ||||||||||||||
| 20.6 | terpinen-4-ol | 1.8 | ||||||||||||||
| 11.0 | sabinene | 1.4 | ||||||||||||||
| 23.4 | neral | 1.4 | ||||||||||||||
| 34.5 | bicyclogemacrene | 1.1 | ||||||||||||||
| Illicum verum | Cymbopogon martinii | Agathosma betulina | Citrus bergamia | Salvia sclarea | ||||||||||||
| RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | RetT | Compound | % | ||
| 25.6 | trans-anethole | 90.92 | 24.1 | geraniol | 76.87 | 19.5 | menthone | 32.5 | 13.5 | limonene | 37.0 | 24.0 | linalyl acetate | 62.2 | ||
| 21.5 | estragole | 3.10 | 29.7 | geranyl acetate | 9.63 | 13.5 | limonene | 20.0 | 24.0 | linalyl acetate | 31.1 | 16.9 | linalool | 23.3 | ||
| 13.5 | limonene | 1.22 | 31.3 | trans-caryophyllene | 3.54 | 19.9 | isomenthone | 11.5 | 16.9 | linalool | 11.3 | 21.3 | α-terpineol | 4.5 | ||
| 16.9 | linalool | 2.80 | 26.0 | diosphenol | 8.5 | 11.2 | β-pinene | 6.7 | 29.7 | geranyl acetate | 2.4 | |||||
| 13.5 | limonene | 1.22 | 24.5 | pseudodiosphenol | 7.4 | 14.9 | γ-terpinene | 6.6 | 31.3 | trans-caryophyllene | 1.5 | |||||
| 23.3 | pulegone | 5.3 | 9.3 | α-pinene | 1.1 | 28.8 | neryl acetate | 1.2 | ||||||||
| 13.7 | eucalyptol | 3.8 | 33.9 | γ-muurolene | 1.2 | |||||||||||
| 9.3 | α-pinene | 2.5 | ||||||||||||||
| 11.8 | myrcene | 1.4 | ||||||||||||||
| 24.0 | NI: 43, 69, 112, 70, 55 | 1.2 | ||||||||||||||
| 20.7 | terpinen-4-ol | 1.1 | ||||||||||||||
| Ravensara aromatica | Matricaria chamomilla | Cananga odorata | ||||||||||||||
| RetT | Compound | % | RetT | Compound | RetT | RetT | Compound | RetT | ||||||||
| 13.5 | limonene | 16.0 | 14.6 | isobutyl angelate | 20.9 | 33.9 | γ-muurolene | 18.9 | ||||||||
| 11.0 | sabinene | 9.8 | 32.9 | trans-β-farnesene | 15.7 | 19.8 | benzyl acetate | 11.9 | ||||||||
| 30.6 | methyl eugenol | 8.2 | 44.1 | α-bisabolol oxide a | 15.5 | 35.0 | trans, trans-α-farnesene | 8.8 | ||||||||
| 31.3 | trans-caryophyllene | 6.1 | 19.3 | 2-methylbutyl angelate | 11.5 | 16.9 | linalool | 8.1 | ||||||||
| 13.3 | p-cymene | 5.3 | 15.2 | (2z)-hexenyl tiglate | 5.3 | 44.7 | benzyl benzoate | 7.2 | ||||||||
| 16.9 | linalool | 5.0 | 40.7 | α-bisabolol oxide b | 3.5 | 13.1 | p-methyl anisole | 6.6 | ||||||||
| 33.9 | γ-muurolene | 4.8 | 41.7 | α-bisabolone oxide a | 3.4 | 31.4 | trans-caryophyllene | 5.0 | ||||||||
| 9.3 | α-pinene | 4.4 | 18.7 | trans-pinocarveol | 3.3 | 29.7 | geranyl acetate | 4.5 | ||||||||
| 20.6 | terpinen-4-ol | 3.9 | 19.1 | isoamyl angelate | 2.9 | 16.5 | clorius | 4.2 | ||||||||
| 36.6 | elemicin | 3.3 | 8.6 | isobutyl isobutyrate | 2.0 | 32.4 | trans-cinnamyl acetate | 4.0 | ||||||||
| 21.4 | estragole | 3.3 | 13.0 | isopentyl isobutyrate | 1.3 | 47.2 | farnesyl acetate | 2.8 | ||||||||
| 12.5 | δ-3-carene | 3.1 | 33.9 | γ-muurolene | 1.2 | 48.3 | benzyl salicylate | 2.3 | ||||||||
| 11.1 | β-pinene | 2.7 | 32.9 | α-humulene | 1.9 | |||||||||||
| 12.9 | α-terpinene | 2.3 | 35.5 | δ-cadinene | 1.8 | |||||||||||
| 11.7 | myrcene | 1.8 | 40.7 | cadin-4-en-10-ol | 1.5 | |||||||||||
| 13.6 | eucalyptol | 1.5 | 8.9 | prenyl acetate | 1.1 | |||||||||||
| 10.0 | camphene | 1.4 | ||||||||||||||
| 32.8 | α-humulene | 1.3 | ||||||||||||||
| 29.5 | α-copaene | 1.2 | ||||||||||||||
| Cedrus atlantica | Artemisia pallens | Cyperus scariosus | ||||||
|---|---|---|---|---|---|---|---|---|
| RetT | Compound | % | RetT | Compound | % | RetT | Compound | % |
| 34.8 | β-himachalene | 47.2 | 37.9 | davanone D | 56.4 | 30.7 | cyperene | 26.3 |
| 32.6 | α-himachalene | 17.2 | 34.6 | bicyclogermacrene | 8.5 | 33.2 | rotundene | 7.6 |
| 33.8 | γ-himachalene | 10.5 | 33.4 | trans-ethyl-cinnamate | 4.1 | 42.3 | cyperotundone | 5.6 |
| 45.1 | trans-α-atlantone | 2.6 | 34.9 | NI: 109, 43, 124 | 3.1 | 29.6 | α-copaene | 4.8 |
| 34.0 | himachalene-1,4-diene | 2.1 | 34.3 | β-selinene | 1.6 | 34.5 | eremophilene | 3.8 |
| 35.5 | δ-cadinene | 1.8 | 35.7 | NI: 109, 43, 124 | 1.6 | 38.0 | caryophyllene oxide | 3.0 |
| 35.7 | γ-dehydro-ar-himachalene | 1.6 | 40.3 | epi-α-cadinol | 1.6 | 34.3 | β-selinene | 2.7 |
| 39.1 | β-himachalene oxide | 1.4 | 37.8 | spathulenol | 1.6 | 41.5 | mustakone | 2.5 |
| 36.4 | trans-α-bisabolene | 1.2 | 37.1 | davanone B | 1.5 | 44.0 | NI: 93, 91, 218, 147, 121 | 2.3 |
| 29.5 | cis-ethyl-cinnamate | 1.2 | 35.5 | α-maaliene | 2.2 | |||
| 39.5 | NI: 175, 218, 147 | 2.2 | ||||||
| 33.6 | γ-gurjunene | 1.9 | ||||||
| 36.1 | isospathulenol | 1.5 | ||||||
| 34.6 | α-selinene | 1.4 | ||||||
| 34.9 | α-bulnesene | 1.4 | ||||||
| 34.1 | aristochelene | 1.4 | ||||||
| 29.0 | valerenyl acetate | 1.3 | ||||||
| 40.8 | NI: 93, 91, 107, 41 | 1.3 | ||||||
| 11.2 | β-pinene | 1.1 | ||||||
| 42.4 | NI: 123, 81, 95, 124, 107 | 1.1 | ||||||
| 32.6 | α-guaiene | 1.0 | ||||||
| Sample Tested | Absorbance |
|---|---|
| Negative control (tetracycline) | 0.00 |
| Thymus vulgaris | 0.67 |
| Aniba roseodora | 0.89 |
| Syzygium aromaticum | 1.42 |
| Evernia prunastri * | 1.47 |
| Pimenta dioica | 1.91 |
| Pelargonium graveolens | 3.09 |
| Bulnesia sarmientoi | 3.16 |
| Thymus hiemalis | 3.83 |
| Canarium luzonicum | 3.87 |
| Dalbergia sissoo | 3.90 |
| Illicum verum | 3.92 |
| Cymbopogon martinii | 4.00 |
| Agathosma betulina | 4.13 |
| Citrus bergamia | 4.18 |
| Salvia sclarea | 4.30 |
| Ravensara aromatica | 4.47 |
| Matricaria chamomilla | 4.55 |
| Cananga odorata | 4.58 |
| Positive control (DMSO) | 4.66 |
| Cedrus atlantica | 4.82 |
| Artemisia pallens | 4.88 |
| Cyperus scariosus | 4.91 |
| Compound Name | Number of Occurrences (GC-MS) | Shown to Be Important in DA | Showed to Be Important in PLS |
|---|---|---|---|
| thymol | Only in good | yes | yes |
| eugenol | Only in good | - | - |
| methyl atrarate | Only in good | yes | yes |
| linalool | 10 | - | - |
| limonene | 9 | - | - |
| trans-caryophyllene | 8 | - | - |
| eucalyptol | 6 | - | - |
| α-pinene | 5 | - | - |
| β-pinene | 5 | - | - |
| p-cymene | 4 | - | - |
| terpinen-4-ol | 4 | - | - |
| myrcene | 4 | - | - |
| geraniol | 4 | - | - |
| geranyl acetate | 4 | - | - |
| α-terpineol | 4 | yes | yes |
| γ-muurolene | 4 | yes | - |
| γ-terpinene | 3 | - | - |
| α-humulene | 3 | - | - |
| sabinene | 3 | - | - |
| methyl eugenol | <3 | yes | yes |
| cyperene | <3 | yes | yes |
| bulnesol | <3 | yes | yes |
| β-himachalene | <3 | yes | yes |
| davanone D | <3 | yes | yes |
| linalyl acetate | <3 | yes | - |
| citronellol | <3 | - | yes |
| menthone | <3 | - | yes |
| α-elemol | <3 | - | yes |
| Latin Name | Common Name | Manufacturer, Lot (County of Origin) | Plant Part |
|---|---|---|---|
| Thymus vulgaris | common thyme | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 7371 (France) | - |
| Aniba rosaeodora | rosewood | Aliacura, Cuxhavener Strasse 263, Hamburg, Germany. Lot 150000213 (Brasilien) | wood |
| Syzygium aromaticum | clove tree | Dagmar Köhler, BaccaraRose, Weseler Strasse 2, Alpen, Germany. Lot 29970 (Indonesien) | flowers |
| Evernia prunastri * | oakmoss | absolute 15% in ethanol, Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 5944 (Morocco) | moss |
| Pimenta dioica | allspice tree | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 11518 (Jamaica) | berries |
| Pelargonium graveolens | rose geranium | Caelo, Caesar&Loretz, GmbH Herderstrasse 31, Hilden, Germany. Lot 12354108 | - |
| Bulnesia sarmientoi | guaiacwood | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 8542 (Paraguay) | wood |
| Thymus hiemalis | winter thyme | Dagmar Köhler, BaccaraRose, Weseler Strasse 2, Alpen, Germany. Lot 33636 (Spain) | - |
| Canarium luzonicum | canarium elemi | Dragonspice Naturwaren, Im Staudfuß 4, Reutlingen, Germany. Lot W 20-08 (France) | resin |
| Dalbergia sissoo | indian rosewood | Manske, Geschwister-Scholl-Straße 7, Schwäbisch Hall, Germany. Lot 2014 102287 (India) | wood |
| Illicium verum | star anise | Lex, Vanganelska cesta 26, Koper, Slovenia. Lot 103190 | fruits |
| Cymbopogon martinii | palmarosa | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 4538 (Nepal) | - |
| Agathosma betulina | buchu | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 7123 (South Africa) | leaves |
| Citrus bergamia | bergamot orange | Dagmar Köhler, BaccaraRose, Weseler Strasse 2, Alpen, Germany. Lot 26562 (Italy) | peel |
| Salvia sclarea | clary sage | Lex, Vanganelska cesta 26, Koper, Slovenia. Lot 10200052 | flowering stems |
| Ravensara aromatica | ravensara | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 19698 (Madagascar) | leaves |
| Matricaria chamomilla | wild chamomiles | In-house production, University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva cesta 7, Ljubljana, Slovenia. (Egipt) | flowers |
| Cananga odorata | ylang ylang | Caelo, Caesar&Loretz, GmbH Herderstrasse 31, Hilden, Germany. Lot 12040607 | - |
| Cedrus atlantica | atlas cedar | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot 6066 (Morocco) | wood |
| Artemisia pallens | davana | Behawe, Zum Sporkfeld 48, Rietberg, Germany. Lot 111508 (India) | leaves and flowers |
| Cyperus scariosus | cypriol | Dagmar Köhler, Weseler Strasse 2, Alpen, Germany. Lot K00548 (India) | roots |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kokalj Ladan, M.; Supé Vide, M.; Schoss, K. Multivariate Characterization of Essential Oils for Their Antibacterial Activity Against Escherichia coli: A Data-Driven Interpretation of Experimental Results. Molecules 2026, 31, 207. https://doi.org/10.3390/molecules31020207
Kokalj Ladan M, Supé Vide M, Schoss K. Multivariate Characterization of Essential Oils for Their Antibacterial Activity Against Escherichia coli: A Data-Driven Interpretation of Experimental Results. Molecules. 2026; 31(2):207. https://doi.org/10.3390/molecules31020207
Chicago/Turabian StyleKokalj Ladan, Meta, Marsela Supé Vide, and Katja Schoss. 2026. "Multivariate Characterization of Essential Oils for Their Antibacterial Activity Against Escherichia coli: A Data-Driven Interpretation of Experimental Results" Molecules 31, no. 2: 207. https://doi.org/10.3390/molecules31020207
APA StyleKokalj Ladan, M., Supé Vide, M., & Schoss, K. (2026). Multivariate Characterization of Essential Oils for Their Antibacterial Activity Against Escherichia coli: A Data-Driven Interpretation of Experimental Results. Molecules, 31(2), 207. https://doi.org/10.3390/molecules31020207

