Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Mango Peels and Sample Preparation
2.2. Analysis of Volatile Profile from Mango Peel by HS–SPME/GC–MS
2.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Relative Humidity Content of Samples
3.2. Volatile Characterization
3.2.1. Monoterpenes
3.2.2. Sesquiterpenes
3.2.3. Alcohols, Aldehydes, Ketones and Esters
3.2.4. Furanic Compounds and C13 Norisoprenoids
3.3. Hierarchical Clustered Heatmap
3.4. Principal Component Analysis
3.5. Sensory Evaluation
| Fresh Mango Peels | Dried Mango Peels | |||||
|---|---|---|---|---|---|---|
| Green | Ripe | Overripe | Green | Ripe | Overripe | |
| Olfactive Descriptor | ||||||
| Green/Herbaceous | 7.9 ± 1.1 a | 6.6 ± 0.3 b | 4.8 ± 0.3 c | 3.3 ± 0.8 c | 4.3 ± 2.3 c | 3.9 ± 1.2 c |
| Citrus | 6.9 ± 0.9 | 7.8 ± 1.3 | 5.3 ± 2.1 | 6.2 ± 0.6 | 6.5 ± 0.2 | 5.8 ± 1.1 |
| Pine/Resinous | 7.0 ± 0.2 b | 8.9 ± 1.2 a | 6.5 ± 1.1 b | 3.3 ± 1.8 c | 4.0 ± 2.1 c | 3.0 ± 0.2 c |
| Floral | 2.4 ± 0.9 c | 6.3 ± 0.5 b | 8.5 ± 0.3 a | 7.4 ± 1.1 a | 8.3 ± 1.4 a | 8.0 ± 1.0 a |
| Caramel/Honey-like | ND | ND | ND | 7.5 ± 0.8 | 8.0 ± 1.6 | 8.6 ± 1.2 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Major Tropical Fruits Market Review 2023. 2024. Available online: https://openknowledge.fao.org/items/60fb0b9e-f904-4690-8ccc-3539ca2cf2c3 (accessed on 18 September 2024).
- Tharanathan, R.M.; Yashoda, H.M.; Prabha, T.N. Mango (Mangifera indica L.), “The king of fruits”—An overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Ajila, C.M.; Prasada Rao, U.J.S. Mango peel dietary fibre: Composition and associated bound phenolics. J. Funct. Foods 2013, 5, 444–450. [Google Scholar] [CrossRef]
- Asif, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Sarfraz, F.; Sidhu, M.A.I.; Rehman, H.U.; Aftab, S. Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends Food Sci. Technol. 2016, 53, 102–112. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.L.; Norulaini, N.A.N.; Sahena, F.; Mohd Omar, A.K. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Oliver-Simancas, R.; Labrador-Fernández, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Comprehensive research on mango by-products applications in food industry. Trends Food Sci. Technol. 2021, 118, 179–188. [Google Scholar] [CrossRef]
- Oliver-Simancas, R.; Muñoz-García, R.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Mango by-products as a natural source of valuable odor-active compounds. J. Sci. Food Agric. 2020, 100, 4688–4695. [Google Scholar] [CrossRef]
- Liu, B.; Xin, Q.; Zhang, M.; Chen, J.; Lu, Q.; Zhou, X.; Li, X.; Zhang, W.; Feng, W.; Pei, H.; et al. Research progress on mango post-harvest ripening physiology and the regulatory technologies. Foods 2022, 12, 173. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef]
- Munafo, J.P.; Didzbalis, J.; Schnell, R.J.; Schieberle, P.; Steinhaus, M. Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by application of a comparative aroma extract dilution analysis. J. Agric. Food Chem. 2014, 62, 4544–4551. [Google Scholar] [CrossRef]
- Pandit, S.S.; Kulkarni, R.S.; Chidley, H.G.; Giri, A.P.; Pujari, K.H.; Köllner, T.G.; Degenhardt, J.; Gershenzon, J.; Gupta, V.S. Changes in volatile composition during fruit development and ripening of ‘Alphonso’ mango. J. Sci. Food Agric. 2009, 89, 2071–2081. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Quijano, C.E.; Salamanca, G.; Pino, J.A. Aroma volatile constituents of colombian varieties of mango (Mangifera indica L.). Flavour Fragr. J. 2007, 22, 401–406. [Google Scholar] [CrossRef]
- Xi, W.; Zheng, H.; Zhang, Q.; Li, W. Profiling taste and aroma compound metabolism during apricot fruit development and ripening. Int. J. Mol. Sci. 2016, 17, 998. [Google Scholar] [CrossRef]
- Lalel, H.J.D.; Singh, Z.; Tan, S.C. Distribution of aroma volatile compounds in different parts of mango fruit. J. Hort. Sci. Biotechnol. 2003, 78, 131–138. [Google Scholar] [CrossRef]
- Bonneau, A.; Boulanger, R.; Lebrun, M.; Maraval, I.; Gunata, Z. Aroma compounds in fresh and dried mango fruit (Mangifera indica L. cv. Kent): Impact of drying on volatile composition. Int. J. Food Sci. Technol. 2016, 51, 789–800. [Google Scholar] [CrossRef]
- Ghosh, S.; Avinashe, H.; Dubey, N. Nutritional and Phytochemical Changes During Ripening in Mango: A Review. Curr. Nutr. Food Sci. 2023, 19, 519–528. [Google Scholar] [CrossRef]
- Oliver-Simancas, R.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Viability of pre-treatment drying methods on mango peel by-products to preserve flavouring active compounds for its revalorisation. J. Food Eng. 2020, 279, 109953. [Google Scholar] [CrossRef]
- Lalel, H.J.D.; Singh, Z.; Tan, S.C. Aroma volatiles production during fruit ripening of ‘Kensington Pride’ mango. Postharvest Biol. Technol. 2003, 27, 323–336. [Google Scholar] [CrossRef]
- Mesquita, P.R.R.; Pena, L.C.; dos Santos, F.N.; de Oliveira, C.C.; Magalhães-Junior, J.T.; Nascimento, A.S.; Rodrigues, F.M. Mango (Mangifera indica) aroma discriminate cultivars and ripeness stages. J. Braz. Chem. Soc. 2020, 31, 1424–1433. [Google Scholar] [CrossRef]
- White, I.R.; Blake, R.S.; Taylor, A.J.; Monks, P.S. Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics 2016, 12, 57. [Google Scholar] [CrossRef]
- Siddiq, M.; Sogi, D.S.; Roidoung, S. Mango processing and processed products. In Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Chapter 10. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Peter, S. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Skouroumounis, G.K.; Sefton, M.A. Acid-catalyzed hydrolysis of alcohols and their β-D-glucopyranosides. J. Agric. Food Chem. 2000, 48, 2033–2039. [Google Scholar] [CrossRef]
- ISO 1442:2023; ISO Determination of Moisture Content—Reference Method. ISO: Geneva, Switzerland, 2023.
- ISO 8589:2007; ISO Sensory Analysis—General Guidance for the Design of the Test Rooms. ISO: Geneva, Switzerland, 2007.
- ISO 8586:2023; ISO Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023.
- Pino, J.A. Odour-active compounds in mango (Mangifera indica L. cv. Corazón). Int. J. Food Sci. Technol. 2012, 47, 1944–1950. [Google Scholar] [CrossRef]
- Russo, P.; Adiletta, G.; Di Matteo, M.; Farina, V.; Corona, O.; Cinquanta, L. Drying kinetics and physico-chemical quality of mango slices. Chem. Eng. Trans. 2019, 75, 109–114. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; de Bartolomeis, P.; De Martino, L.; Manna, F.; Nazzaro, F.; De Feo, V.; Barba, A.A. Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Sci. Rep. 2022, 12, 3845. [Google Scholar] [CrossRef] [PubMed]
- Dehghani Mashkani, M.R.; Larijani, K.; Mehrafarin, A.; Naghdi Badi, H. Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Ind. Crops Prod. 2018, 112, 389–395. [Google Scholar] [CrossRef]
- Kwasnica, A.; Pachura, N.; Carbonell-Barrachina, A.A.; Issa-Issa, H.; Szumny, D.; Figiel, A.; Masztalerz, K.; Klemens, M.; Szumny, A. Effect of drying methods on chemical and sensory properties of Cannabis sativa Leaves. Molecules 2023, 28, 8089. [Google Scholar] [CrossRef]
- Spear, M.J.; Dimitriou, A.; Marriott, R. Chemical composition of Larch Oleoresin before and during thermal modification. Forests 2024, 15, 904. [Google Scholar] [CrossRef]
- Degenhardt, A.; Liebig, M.; Kohlenberg, B.; Hartmann, B.; Brennecke, S.; Schäfer, U.; Schrader, D.; Kindel, G.; Trautzsch, S.; Krammer, G.E. Studies on stability of citrus flavors and insights into degradation pathways of key aroma compounds. In Flavour Science; Academic Press: Cambridge, MA, USA, 2014; pp. 237–240. [Google Scholar] [CrossRef]
- Zhao, R.; Xiao, H.; Liu, C.; Wang, H.; Wu, Y.; Ben, A.; Wang, Y. Dynamic changes in volatile and non-volatile flavor compounds in lemon flavedo during freeze-drying and hot-air drying. LWT-Food Sci. Technol. 2023, 175, 114510. [Google Scholar] [CrossRef]
- Lalel, H.J.D.; Singh, Z.; Tan, S.C. Glycosidically-bound aroma volatile compounds in the skin and pulp of “Kensington Pride” mango fruit at different stages of maturity. Postharvest Biol. Technol. 2003, 29, 205–218. [Google Scholar] [CrossRef]
- Sun, P.; Xu, B.; Wang, Y.; Lin, X.; Chen, C.; Zhu, J.; Jia, H.; Wang, X.; Shen, J.; Feng, T. Characterization of volatile constituents and odorous compounds in peach (Prunus persica L) fruits of different varieties by gas chromatography–ion mobility spectrometry, gas chromatography–mass spectrometry, and relative odor activity value. Front. Nutr. 2022, 9, 965796. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Manríquez, D.; Luengwilai, K.; González-Agüero, M. Aroma volatiles: Biosynthesis and mechanisms of modulation during fruit ripening. Adv. Bot. Res. 2009, 50, 1–37. [Google Scholar] [CrossRef]
- Asikin, Y.; Nakaza, Y.; Oe, M.; Kaneda, H.; Maeda, G.; Takara, K.; Wada, K. Volatile component composition, retronasal aroma release profile, and sensory characteristics of non-centrifugal cane sugar obtained at different evaporation temperatures. Appl. Sci. 2024, 14, 11617. [Google Scholar] [CrossRef]
- Schöpf, A.; Oellig, C. Formation of furan and furan derivatives in carotenoid-containing model systems and in vegetable puree. ACS Food Sci. Technol. 2024, 4, 668–678. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Caffrey, A.; Ebeler, S.E. The occurrence of glycosylated aroma precursors in Vitis vinifera fruit and Humulus lupulus hop cones and their roles in wine and beer volatile aroma production. Foods 2021, 10, 935. [Google Scholar] [CrossRef] [PubMed]
- De Torres, C.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Anal. Chim. Acta 2010, 660, 177–182. [Google Scholar] [CrossRef]


| Sample | Maturity Stage | Relative Humidity (%) |
|---|---|---|
| Fresh Mango Peels | Green | 78.16 ± 0.63 c |
| Ripe | 75.38 ± 0.77 b | |
| Overripe | 74.25 ± 0.27 b | |
| Oven-dried Mango Peels | Green | 7.89 ± 0.14 a |
| Ripe | 8.20 ± 0.38 a | |
| Overripe | 8.06 ± 0.04 a |
| Fresh Mango Peels | Dried Mango Peels | |||||
|---|---|---|---|---|---|---|
| Volatile Compounds | Green | Ripe | Overripe | Green | Ripe | Overripe |
| α-Pinene | 0.85 ± 0.1 b | 0.97 ± 0.21 b,c | 0.61 ± 0.25 b | 0.20 ± 0.05 a | 0.20 ± 0.05 a | 0.21 ± 0.02 a |
| α-Fenchene | 0.08 ± 0.01 b,c | 0.09 ± 0.02 b,c | 0.05 ± 0.02 b | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
| Camphene | 0.02 ± 0.01 a,b | 0.02 ± 0.00 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
| Tryciclene | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | Tr | 0.01 ± 0.00 | 0.01 ± 0.00 |
| β-Pinene | 0.03 ± 0.05 b,c | 0.06 ± 0.01 b,c | 0.03 ± 0.00 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
| 2-Carene | 0.17 ± 0.05 b | 0.31 ± 0.06 c | 0.14 ± 0.03 b | 0.07 ± 0.02 a | 0.07 ± 0.01 a | Tr |
| 3-Carene | 72.36 ± 6.28 b,c | 102.37 ± 20.40 b,c | 56.67 ± 13.65 b | 22.73 ± 0.93 a | 25.58 ± 2.49 a | 26.67 ± 1.96 a |
| α-Phellandrene | 4.52 ± 0.27 b | 5.95 ± 1.25 b | 2.37 ± 1.47 a | 1.19 ± 0.39 a | 1.34 ± 0.01 a | 1.66 ± 0.17 a |
| α-Terpinene | 1.17 ± 0.11 c,d | 1.54 ± 0.31 d | 0.81 ± 0.14 c | 0.29 ± 0.08 a | 0.33 ± 0.14 a,b | 0.40 ± 0.05 b |
| Silvestrene | 0.39 ± 0.04 | 0.55 ± 0.10 d | 0.27 ± 0.02 b | 0.12 ± 0.03 a | 0.12 ± 0.03 a | 0.16 ± 0.02 a |
| δ-Limonene | 4.29 ± 0.23 c | 5.79 ± 1.14 c | 3.00 ± 0.23 b | 1.85 ± 0.59 a | 1.56 ± 0.09 a | 1.67 ± 0.17 a |
| β-Phellandrene | 1.97 ± 0.18 d | 1.77 ± 0.39 d | 1.22 ± 0.28 c | 0.47 ± 0.12 a | 0.43 ± 0.00 a | 0.55 ± 0.05 b |
| cis-β-Ocymene | 0.04 ± 0.01 b | 0.07 ± 0.01 d | 0.04 ± 0.01 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
| α-Thujene | 0.09 ± 0.03 b,c | 0.11 ± 0.02 c | 0.07 ± 0.02 b | 0.03 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
| γ-Terpinene | 0.25 ± 0.01 d | 0.30 ± 0.06 d | 0.18 ± 0.03 c | 0.07 ± 0.01 a | 0.07 ± 0.00 a | 0.10 ±0.01 b |
| trans-β-Ocymene | 0.31 ± 0.08 c | 0.33 ± 0.06 c | 0.20 ± 0.06 b | 0.05 ± 0.02 a | 0.05 ± 0.00 a | 0.07 ±0.01 a |
| m-Cymene | 0.11 ± 0.05 b | 0.24 ± 0.03 c | 0.10 ± 0.04 b | 0.08 ± 0.01 a | 0.06 ± 0.01 a | 0.07 ± 0.01 a |
| p-Cymene | 0.93 ± 0.34 b | 1.92 ± 0.30 c | 0.85 ± 0.28 b | 0.52 ± 0.09 a | 0.49 ± 0.09 a | 0.52 ±0.07 a |
| iso-Terpinolene | 1.26 ± 0.13 b,c | 1.43 ± 0.30 c | 0.98 ± 0.20 b | 0.30 ± 0.08 a | 0.33 ± 0.01 a | 0.39 ± 005 a |
| α-Terpinolene | 9.52 ± 1.36 | 10.69 ± 2.40 | 5.33 ± 0.53 | 2.15 ± 0.58 | 2.48 ± 0.09 | 2.96 ± 0.49 |
| trans-Allocymene | 0.02 ± 0.00 a | 0.05 ± 0.01 b | 0.02 ± 0.01 a | ND | ND | 0.01 ± 0.00 a |
| o-Cymenene | 0.03 ± 0.00 a | 0.11 ± 0.02 b | 0.06 ± 0.00 a | 0.10 ± 0.02 b | 0.08 ± 0.02 b | 0.08 ± 0.01 b |
| p-Cymenene | 0.32 ± 0.03 b | 0.91 ± 0.10 c | 0.46 ± 0.13 b | 0.23 ± 0.01 a | 0.21 ± 0.04 a | 0.22 ± 0.02 a |
| Σ Hydrocarbonated monoterpenes | 98.75 ± 7.37 b | 135.60 ± 27.19 c | 73.49 ± 13.40 b | 30.49 ± 7.99 a | 33.49 ± 2.30 a | 35.82 ± 2.78 a |
| Linalool | 0.01 ± 0.00 a | 0.09 ± 0.02 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
| Eucarvone | Tr | Tr | Tr | Tr | Tr | Tr |
| Citral | Tr | Tr | Tr | 0.04 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
| Σ Oxigenated monoterpenes | 0.01 ± 0.00 a | 0.09 ± 0.02 d | 0.01 ± 0.00 a | 0.06 ± 0.00 b, c | 0.03 ± 0.00 b | 0.04 ± 0.01 b |
| Fresh Mango Peels | Dried Mango Peels | |||||
|---|---|---|---|---|---|---|
| Volatile Compounds | Green | Ripe | Overripe | Green | Ripe | Overripe |
| α-Cubebene | 0.10 ± 0.01 b | 0.19 ± 0.00 c | 0.21 ± 0.04 c | Tr | 0.03 ± 0.00 a | 0.04 ± 0.00 a |
| α-Copaene | 2.13 ± 0.31 c | 2.97 ± 0.52 d | 1.84 ± 0.02 c | 0.58 ± 0.21 a | 0.49 ± 0.16 a | 0.83 ± 0.14 b |
| α-Gurjunene | 0.14 ±0.05 a | 2.35 ± 0.04 d | 1.50 ± 0.06 c | 0.88 ± 0.06 b | 1.56 ± 0.36 c | 0.77 ± 0.09 b |
| β-Gurjunene | 0.12 ± 0.02 c | 0.14 ± 0.02 c | 0.07 ±0.01 b | 0.03 ± 0.01 a | 0.06 ± 0.00 b | 0.03 ± 0.00 a |
| α-Guaiaene | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.00 ± 0.02 | 0.01 ± 0.00 | 0.01 ± 0.00 |
| β-Caryophyllene | 0.05 ± 0.01 b | 0.25 ± 0.06 d | 0.14 ± 0.01 c | 0.02 ± 0.00 a | 0.05 ± 0.01 b | 0.05 ± 0.01 b |
| trans-β-Caryophyllene | 4.78 ± 1.68 b | 10.24 ±2.08 d | 5.12 ± 0.65 c | 2.31 ± 0.79 a | 4.28 ± 1.50 b | 2.30 ± 0.34 a |
| Aromadendrene | 0.16 ± 0.03 b | 0.59 ± 0.00 c | 0.20 ± 0.02 b | 0.08 ± 0.02 a | 0.12 ± 0.05 a,b | 0.12 ± 0.02 a,b |
| Alloaromadendrene | 0.05 ± 0.02 b | 0.68 ± 0.03 c | 0.05 ± 0.00 b | 0.02 ± 0.01 a | 0.05 ± 0.00 b | 0.02 ± 0.00 a |
| iso-Caryophyllene | 0.16 ± 0.04 c | 0.06 ± 0.00 b | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
| γ-Gurjunene | 0.12 ± 0.02 b | 0.34 ± 0.02 c | 0.11 ± 0.04 b | 0.06 ± 0.01 a | 0.12 ± 0.04 b | 0.05 ± 0.01 a |
| α-Humulene | 4.39 ± 0.33 c | 8.47 ± 0.35 d | 3.75 ± 0.62 b,c | 1.39 ± 0.43 a | 2.47 ± 0.85 a,b | 1.35 ± 0.22 a |
| γ-Selinene | 0.18 ± 0.06 b | 0.46 ± 0.10 d | 0.24 ± 0.05 c | 0.13 ± 0.04 a,b | 0.22 ± 0.08 c | 0.10 ± 0.01 a |
| α-Muurolene | 0.08 ± 0.01 a | 0.82 ± 0.04 d | 0.75 ± 0.04 d | 0.05 ± 0.01 a | 0.32 ± 0.05 c | 0.17 ± 0.02 b |
| γ-Muurolene | 0.35 ± 0.09 b | 0.79 ± 0.01 d | 0.68 ± 0.05 c | 0.05 ± 0.01 a | 0.08 ± 0.02 a | 0.07 ± 0.01 a |
| Viridiflorene | 0.34 ± 0.06 b | 0.72 ± 0.04 d | 0.37 ± 0.02 b | 0.11 ± 0.03 a | 0.34 ± 0.06 b | 0.14 ± 0.02 a |
| Valencene (isomer i) | 0.15 ± 0.00 b | 0.58 ± 0.08 d | 0.43 ± 0.02 c | 0.06 ± 0.01 a | 0.18 ± 0.05 b | 0.08 ± 0.01 a |
| Valencene (isomer ii) | 0.10 ± 0.02 b | 0.64 ± 0.04 d | 0.27 ± 0.04 c | 0.04 ± 0.01 a | 0.12 ± 0.03 b | 0.05 ± 0.01 a |
| β-Selinene | 3.55 ± 0.08 b | 10.59 ± 1.20 d | 3.50 ± 0.23 b | 1.06 ± 0.29 a | 3.82 ± 1.05 b | 1.35 ± 0.20 a |
| α-Selinene | 0.49 ± 0.12 a | 1.55 ± 0.22 d | 0.78 ± 0.02 b | 0.39 ± 0.10 a | 0.75 ± 0.16 b | 0.29 ± 0.04 a |
| δ-cadinene | 0.23 ± 0.02 b | 2.09 ± 0.51 c | 1.80 ± 0.02 c | 0.16 ± 0.03 a | 0.27 ± 0.03 b | 0.23 ± 0.04 b |
| γ-Cadinene | 0.26 ± 0.06 c | 1.66 ± 0.09 e | 0.41 ± 0.07 d | Tr | 0.06 ± 0.02 b | 0.03 ± 0.00 a |
| δ-Muurolene | 0.27 ± 0.03 b,c | 0.30 ± 0.05 c | 0.23 ± 0.02 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
| Calamene (Isomer I) | 0.01 ± 0.00 a | 0.31 ± 0.08 c | 0.16 ± 0.03 b | 0.04 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.00 a |
| Calamene (Isomer II) | 0.04 ± 0.00 a | 0.25 ± 0.01 d | 0.18 ± 0.02 c | 0.02 ± 0.01 a | 0.06 ± 0.02 b | 0.03 ± 0.00 a |
| Σ Sesquiterpenes | 18.25 ± 1.12 b | 47.10 ± 3.83 d | 22.84 ± 1.15 c | 7.50 ± 1.92 a | 15.51 ± 4.17 b | 8.15 ± 1.16 a |
| Fresh Mango Peels | Dried Mango Peels | |||||
|---|---|---|---|---|---|---|
| Volatile Compounds | Green | Ripe | Overripe | Green | Ripe | Overripe |
| (Z)-3-Hexen-1-ol | 0.04 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.00 a | Tr | Tr | Tr |
| 2-Ethyl, 1-Hexanol | Tr | Tr | 0.05 ± 0.01 b | 0.04 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
| 1-Octanol | 0.02 ± 0.01 a,b | 0.03 ± 0.00 b | 0.02 ± 0.01 a,b | 0.01 ± 0.00 a | 0.02 ± 0.01 a,b | 0.01 ± 0.00 a |
| Σ Alcohols | 0.06 ± 0.00 b | 0.05 ± 0.00 a | 0.09 ± 0.01 c | 0.05 ± 0.01 a | 0.05 ± 0.00 a | 0.04 ± 0.00 a |
| Pentanal | 0.02 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 |
| Hexanal | 0.04 ± 0.01 a | 0.13 ±0.01 c | 0.07 ± 0.01 b | 0.06 ± 0.01 b | 0.03 ± 0.00 a | 0.04 ± 0.00 a |
| Heptanal | Tr | 0.05 ± 0.00 a,b | 0.05 ± 0.00 a,b | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.04 ± 0.00 a |
| 2-Hexenal | 0.12 ± 0.03 c | 0.16 ± 0.02 c | 0.11 ± 0.03 c | 0.06 ± 0.00 b | 0.03 ± 0.00 a | 0.04 ± 0.01 a |
| Octanal | 0.03 ± 0.01 a | 0.06 ± 0.01 b | 0.04 ± 0.01 a,b | 0.03 ± 0.00 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a |
| 2-Heptenal | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | ND | ND |
| Nonanal | 0.07 ± 0.01 b | 0.10 ± 0.00 c | 0.07 ± 0.00 b | 0.05 ± 0.01 a | 0.03 ± 0.00 a | 0.04 ± 0.00 a |
| 2-Octenal-(E) | 0.02 ± 0.00 a | 0.05 ± 0.02 a,b | 0.04 ± 0.00 a,b | 0.03 ± 0.00 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a |
| (2E, 4E)-Hepta-2,4-dienal | ND | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 |
| Decanal | 0.07 ± 0.01 a | 0.13 ± 0.03 b | 0.07 ± 0.02 a | 0.10 ± 0.02 a,b | 0.07 ± 0.01 a | 0.09 ± 0.00 a |
| Benzaldehyde | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | Tr |
| 2-Nonenal | 0.02 ± 0.01 a | 0.03 ± 0.00 a,b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
| Σ Aldehydes | 0.40 ± 0.04 c | 0.77 ± 0.11 d | 0.50 ± 0.02 c | 0.45 ± 0.06 c | 0.27 ± 0.02 a | 0.34 ± 0.00 b |
| 1-Octen-3-one | 6.98 ± 0.69 b | 9.67 ± 0.03 c | Tr | 13.01 ± 3.99 c | 4.13 ± 0.24 a | 4.19 ± 0.39 a |
| 4-Nonanone | 11.64 ± 1.42 a | 8.88 ± 0.54 b | 6.04 ± 0.58 b | 8.13 ± 2.58 a | 4.97 ± 1.00 b | 4.73 ± 0.48 a |
| 5-Hepten-2-one, 6-methyl | 24.79 ± 3.65 d | 10.58 ± 0.10 b | 7.75 ± 0.49 a | 19.62 ± 2.87 c,d | 12.80 ± 2.91 c | 12.55 ± 3.91 c |
| Σ Ketones | 43.42 ± 3.06 d | 29.13 ± 0.41 c | 13.79 ± 0.11 a | 40.66 ± 4.60 d | 21.89 ± 2.83 b | 21.46 ± 4.04 b |
| Hexanoic acid ethyl ester | Tr | Tr | 0.01 ± 0.00 | 0.01 ± 0.00 | Tr | Tr |
| Acetic acid, 2 ethyl hexil ester | 0.03 ± 0.00 c | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
| Butanoic acid, 3-hexenil ester | ND | 0.01 ± 0.00 a | 0.04 ± 0.01 b | ND | 0.01 ± 0.00 a | Tr |
| Σ Esters | 0.03 ± 0.00 b | 0.03 ± 0.00 b | 0.07 ± 0.01 c | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
| Fresh Mango Peels | Dried Mango Peels | |||||
|---|---|---|---|---|---|---|
| Volatile Compounds | Green | Ripe | Overripe | Green | Ripe | Overripe |
| Furan-2-pentyl | 10.28 ± 2.19 a,b | 12.64 ± 2.49 b | 14.48 ± 3.78 b,c | 8.03 ± 2.24 a | 11.73 ± 2.33 a,b | 13.73 ± 1.57 b |
| Furfural | ND | ND | ND | 3.09 ± 0.53 a | 2.31 ± 0.67 a | 14.74 ± 2.21 b |
| Σ Furanic compounds | 10.28 ± 2.19 a | 12.64 ± 2.49 a | 14.48 ± 3.78 a | 11.12 ± 2.77 a | 14.04 ± 1.80 a | 28.47 ± 2.19 b |
| β-Damascenone | ND | Tr | Tr | 18.13 ± 2.18 a | 25.21 ± 5.48 b | 18.31 ± 0.51 a |
| β-Ionone | ND | Tr | Tr | 14.15 ± 1.12 a | 33.44 ± 6.64 c | 22.62 ± 1.91 b |
| Σ C13 norisoprenoids | ND | Tr | Tr | 32.28 ± 1.76 a | 58.64 ± 4.13 c | 40.93 ± 1.52 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Oliver-Simancas, R.; Díaz-Maroto, M.C.; Fernández-Ochoa, Á.; Pérez-Coello, M.S.; Alañón, M.E. Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization. Foods 2026, 15, 215. https://doi.org/10.3390/foods15020215
Oliver-Simancas R, Díaz-Maroto MC, Fernández-Ochoa Á, Pérez-Coello MS, Alañón ME. Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization. Foods. 2026; 15(2):215. https://doi.org/10.3390/foods15020215
Chicago/Turabian StyleOliver-Simancas, Rodrigo, María Consuelo Díaz-Maroto, Álvaro Fernández-Ochoa, María Soledad Pérez-Coello, and María Elena Alañón. 2026. "Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization" Foods 15, no. 2: 215. https://doi.org/10.3390/foods15020215
APA StyleOliver-Simancas, R., Díaz-Maroto, M. C., Fernández-Ochoa, Á., Pérez-Coello, M. S., & Alañón, M. E. (2026). Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization. Foods, 15(2), 215. https://doi.org/10.3390/foods15020215

