Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,097)

Search Parameters:
Keywords = G1-S transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2713 KiB  
Article
EpiInfer: A Non-Markovian Method and System to Forecast Infection Rates in Epidemics
by Jovan Kascelan, Ruoxi Yang and Dennis Shasha
Algorithms 2025, 18(7), 450; https://doi.org/10.3390/a18070450 - 21 Jul 2025
Abstract
Consider an evolving epidemic in which each person is either (S) susceptible and healthy; (E) exposed, contagious but asymptomatic; (I) infected, symptomatic, and quarantined; or (R) recovered, healthy, and susceptible. The inference problem, given (i) who is showing symptoms (I) and who is [...] Read more.
Consider an evolving epidemic in which each person is either (S) susceptible and healthy; (E) exposed, contagious but asymptomatic; (I) infected, symptomatic, and quarantined; or (R) recovered, healthy, and susceptible. The inference problem, given (i) who is showing symptoms (I) and who is not (S, E, R) and (ii) the distribution of meetings among people each day, is to predict the number of infected people (state I) in future days (e.g., 1 through 20 days out into the future) for the purpose of planning resources (e.g., needles, medicine, staffing) and policy responses (e.g., masking). Each prediction horizon has different uses. For example, staffing may require forecasts of only a few days, while logistics (i.e., which supplies to order) may require a two- or three-week horizon. Our algorithm and system EpiInfer is a non-Markovian approach to forecasting infection rates. It is non-Markovian because it looks at infection rates over the past several days in order to make predictions about the future. In addition, it makes use of the following information: (i) the distribution of the number of meetings per person and (ii) the transition probabilities between states and uses those estimates to forecast future infection rates. In both simulated and real data, EpiInfer performs better than the standard (in epidemiology) differential equation approaches as well as general-purpose neural network approaches. Compared to ARIMA, EpiInfer is better starting with 6-day forecasts, while ARIMA is better for shorter forecast horizons. In fact, our operational recommendation would be to use ARIMA (1,1,1) for short predictions (5 days or less) and then EpiInfer thereafter. Doing so would reduce relative Root Mean Squared Error (RMSE) over any state of the art method by up to a factor of 4. Predictions of this accuracy could be useful for people, supply, and policy planning. Full article
Show Figures

Figure 1

12 pages, 216 KiB  
Article
Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.)
by Xunzhong Zhang, Mike Goatley, Maude Focke, Graham Sherman, Berit Smith, Taylor Motsinger, Catherine Roué and Jay Goos
Horticulturae 2025, 11(7), 853; https://doi.org/10.3390/horticulturae11070853 - 19 Jul 2025
Viewed by 40
Abstract
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences a summer stress-induced quality decline in the U.S. transition zone and other regions with similar climates. The objective of this study [...] Read more.
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences a summer stress-induced quality decline in the U.S. transition zone and other regions with similar climates. The objective of this study was to determine the effects of five amino acid biostimulants on creeping bentgrass drought and heat stress tolerance. The five biostimulants, including Superbia, Amino Pro V, Siapton, Benvireo, and Surety, at the rate of 0.22 g of N m−2, were applied biweekly to foliage, and the treatments were arranged in a randomized block design with four replications and were subjected to 56 days of heat and drought stress in growth chamber conditions. The amino acid biostimulants Superbia and Amino Pro V improved the turf quality, photochemical efficiency (PE), normalized difference vegetation index (NDVI), chlorophyll content, antioxidant enzyme superoxide dismutase activity, root growth, and viability and suppressed leaf H2O2 levels when compared to a control. Among the treatments, Superbia and Amino Pro V exhibited greater beneficial effects on turf quality and physiological fitness. The results of this study suggest that foliar application of amino acid biostimulants may improve the summer stress tolerance of cool-season turfgrass species in the U.S. transition zone and other regions with similar climates. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
16 pages, 4479 KiB  
Article
Photophysical Properties of 1,3-Diphenylisobenzofuran as a Sensitizer and Its Reaction with O2
by Ștefan Stan, João P. Prates Ramalho, Alexandru Holca and Vasile Chiș
Molecules 2025, 30(14), 3021; https://doi.org/10.3390/molecules30143021 - 18 Jul 2025
Viewed by 144
Abstract
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and [...] Read more.
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and DMF. UV-Vis and fluorescence measurements across a wide concentration range show well-resolved S0 → S1 electronic transition of a π → π* nature with small red shifts in polar aprotic solvents. Fluorescence lifetimes increase slightly with solvent polarity, showing stabilization of the excited state. The 2D PES and Boltzmann populations analysis indicate two co-existing conformers (Cs and C2), with Cs being slightly more stable at room temperature. TD-DFT calculations have been performed using several density functionals and the 6-311+G(2d,p) basis set to calculate absorption/emission wavelengths, oscillator strengths, transition dipole moments, and radiative lifetimes. Overall, cam-B3LYP and ωB97X-D provided the best agreement with experiments for the photophysical data across all solvents. The photophysical behavior of DPBF upon interaction with 1O2 can be explained by a small-barrier, two-step reaction pathway that goes through a zwitterionic intermediate, resulting in the formation of 2,5-endoperoxide. This work explains the photophysical properties and reactivity of DPBF, therefore providing a solid basis for future studies involving singlet oxygen. Full article
Show Figures

Figure 1

16 pages, 3619 KiB  
Article
Crebanine Induces Cell Death and Alters the Mitotic Process in Renal Cell Carcinoma In Vitro
by Hung-Jen Shih, Hsuan-Chih Hsu, Chien-Te Liu, Ya-Chuan Chang, Chia-Ying Yu and Wen-Wei Sung
Int. J. Mol. Sci. 2025, 26(14), 6896; https://doi.org/10.3390/ijms26146896 - 18 Jul 2025
Viewed by 164
Abstract
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, [...] Read more.
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, a thorough investigation of the role of crebanine in RCC has not been conducted thus far. For this study, we evaluated tumor cell viability, clonogenicity, cell-cycle distributions, morphological changes, and cell mortality with the aim of exploring the antitumor effects of crebanine in RCC. Furthermore, we compared gene and protein expressions using RNA sequencing analysis and Western blotting. The findings indicated that crebanine significantly inhibited RCC colonies and caused G1-phase cell-cycle arrest with sub-G1-phase accumulation, thus leading to suppressed cell proliferation and cell death. In addition, Hoechst 33342 staining was used to observe apoptotic cells, which revealed chromatin condensation and a reduction in the nuclear volume associated with apoptosis. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that differentially expressed genes are involved in the initiation of DNA replication, centrosome duplication, chromosome congression, and mitotic processes in the cell cycle along with signaling pathways, such as I-kappaB kinase/NF-kappaB signaling, Hippo signaling, and intrinsic apoptotic pathways. Consistent with GO and KEGG analyses, increased levels of cleaved caspase-3, cleaved caspase-7, and cleaved PARP, and decreased levels of cIAP1, BCL2, survivin, and claspin were observed. Finally, the expressions of G1/S phase transition cyclin D1, cyclin E/CDK2, and cyclin A2/CDK2 complexes were downregulated. Overall, these findings supported the potential of crebanine as an adjuvant therapy in RCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 182
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

14 pages, 5463 KiB  
Article
First-Principles Study of Topological Nodal Line Semimetal I229-Ge48 via Cluster Assembly
by Liwei Liu, Xin Wang, Nan Wang, Yaru Chen, Shumin Wang, Caizhi Hua, Tielei Song, Zhifeng Liu and Xin Cui
Nanomaterials 2025, 15(14), 1109; https://doi.org/10.3390/nano15141109 - 17 Jul 2025
Viewed by 184
Abstract
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed [...] Read more.
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed via bottom-up cluster assembly that exhibits a unique porous spherical Fermi surface and strain-tunable topological robustness. First-principles calculations reveal that I229-Ge48 is a topological nodal line semimetal with exceptional mechanical anisotropy (Young’s modulus ratio: 2.27) and ductility (B/G = 2.21, ν = 0.30). Remarkably, the topological property persists under spin-orbit coupling (SOC) and tensile strain, while compressive strain induces a semiconductor transition (bandgap: 0.29 eV). Furthermore, I229-Ge48 demonstrates strong visible-light absorption (105 cm−1) and a strong strain-modulated infrared response, surpassing conventional Ge allotropes. These findings establish I229-Ge48 as a multifunctional platform for strain-engineered nanoelectronics and optoelectronic devices. Full article
Show Figures

Figure 1

19 pages, 1703 KiB  
Article
Designing and Developing a Population/Literature-Based Westernized Diet Index (WDI) and Its Relevance for Cardiometabolic Health
by Miguel Cifuentes, Zahra Hejazi, Farhad Vahid and Torsten Bohn
Nutrients 2025, 17(14), 2314; https://doi.org/10.3390/nu17142314 - 14 Jul 2025
Viewed by 274
Abstract
Background/Objectives: Recent research indicates a global transition from healthy and balanced diets to unhealthy Westernized dietary patterns (WDPs). This transition is linked to increased rates of non-communicable diseases (NCDs), e.g., obesity, type 2 diabetes, and cardiovascular diseases, often preceded by metabolic syndrome [...] Read more.
Background/Objectives: Recent research indicates a global transition from healthy and balanced diets to unhealthy Westernized dietary patterns (WDPs). This transition is linked to increased rates of non-communicable diseases (NCDs), e.g., obesity, type 2 diabetes, and cardiovascular diseases, often preceded by metabolic syndrome (MetS). Therefore, the objective of this study was to develop a diet quality index, termed Westernized Diet Index (WDI), to assess adherence to WDPs and its association with main cardiometabolic health issues, for which MetS and its components were chosen as representatives of NCDs. Methods: The development of the WDI was driven by a semi-systematic and comprehensive examination of the literature (n = 491 articles) that evaluated the influence of WDP components on health outcomes. The scoring algorithm involved multiple steps, assigning scores based on study design, sample size, and the direction of food effects on health outcomes. Results: The final developed index encompassed 30 food groups/items. It was revealed that soft drinks, processed foods, red meat, sodium, and hydrogenated fats had the most detrimental effects on health, significantly influencing the index’s coefficients. In contrast, dietary fiber, plant-based metabolites, vitamins, minerals, nuts/seeds, and fish had the most substantial beneficial impacts. Conclusions: The WDI aligns with the existing literature on the importance of specific food items and with other validated diet quality indices, e.g., the Dietary Inflammatory Index (DII) and Alternate Healthy Eating Index (AHEI). Thus, the WDI can provide evidence for clinicians and researchers in formulating evidence-based dietary guidelines as well as strategies for the prevention and treatment of diet-related health issues. However, further validation is proposed to verify the WDI’s capability across different contexts. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

28 pages, 4142 KiB  
Article
Evaluating and Predicting Green Technology Innovation Efficiency in the Yangtze River Economic Belt: Based on the Joint SBM Model and GM(1,N|λ,γ) Model
by Jie Wang, Pingping Xiong, Shanshan Wang, Ziheng Yuan and Jiawei Shangguan
Sustainability 2025, 17(13), 6229; https://doi.org/10.3390/su17136229 - 7 Jul 2025
Viewed by 378
Abstract
Green technology innovation (GTI) is pivotal for driving energy transition and low-carbon development in manufacturing. This study evaluates the spatiotemporal efficiency and predicts trends of GTI in China’s Yangtze River Economic Belt (YREB, 2010–2022) using a combined “input-desirable output-undesirable output” framework. Combining the [...] Read more.
Green technology innovation (GTI) is pivotal for driving energy transition and low-carbon development in manufacturing. This study evaluates the spatiotemporal efficiency and predicts trends of GTI in China’s Yangtze River Economic Belt (YREB, 2010–2022) using a combined “input-desirable output-undesirable output” framework. Combining the SBM and super-efficiency SBM models, we evaluate regional GTI efficiency (2010–2022) and reveal its spatiotemporal patterns. An improved GM(1,N|λ,γ) model with a new information adjustment parameter (λ) and nonlinear parameter (γ) is applied for prediction. Key findings include: (1) The GTI efficiency remains generally low during the study period (provincial average: 0.7049–1.4526), showing an “east-high, west-low” spatial heterogeneity. Temporally, provincial efficiency peaked in 2016, with intensified fluctuations around 2020 due to policy iterations and external shocks. (2) Regional efficiency displays a stepwise decline pattern from downstream to middle-upstream areas. Middle-upstream regions face efficiency constraints from insufficient inputs and undesirable output redundancy, yet exhibit significant optimization potential. (3) Parameter analysis highlights that downstream provinces (γ ≈ 1) exhibit mature green adoption, while mid-upstream regions (e.g., Hubei) face severe technological lock-in and reliance on traditional energy. Additionally, middle and downstream provinces (e.g., Sichuan, Anhui) with low λ values show rapid policy responsiveness, but face efficiency volatility from frequent shifts. (4) The improved GM(1,N|λ,γ) model shows markedly enhanced prediction accuracy compared to traditional grey models, effectively addressing the “poor-information, grey-characteristic” data trend extraction challenges in GTI research. Based on these findings, targeted policy recommendations are proposed to advance GTI development. Full article
Show Figures

Graphical abstract

16 pages, 380 KiB  
Systematic Review
The Value of Interventions Aimed at Improving the Patient Experience: Systematic Review of Economic Impacts and Provider Well-Being Outcomes
by Tiago S. Jesus, Dongwook Lee, Brocha Z. Stern, Manrui Zhang, Jan Struhar, Allen W. Heinemann, Anne Deutsch and Neil Jordan
Healthcare 2025, 13(13), 1622; https://doi.org/10.3390/healthcare13131622 - 7 Jul 2025
Viewed by 343
Abstract
Background: Although improving the patient experience with care is being framed as part of value-based care, the economic and provider well-being impact of interventions for improving the patient experience has not been established. We aimed to synthesize the contemporary (2015–2024) empirical literature on [...] Read more.
Background: Although improving the patient experience with care is being framed as part of value-based care, the economic and provider well-being impact of interventions for improving the patient experience has not been established. We aimed to synthesize the contemporary (2015–2024) empirical literature on the economic (e.g., costs, revenue) and other value-based impacts (e.g., provider well-being) of patient-experience improvement interventions. Methods: Systematic review using six databases of scientific literature (PubMed, EconLit, CINAHL, PsycINFO, DOAJ, and Scopus) supplemented by journal-specific and snowball searches following a registered study protocol (PROSPERO: CRD42022358337). Two independent reviewers performed eligibility decisions and quality appraisals of the study methods and economic assessments, when applicable; the latter was conducted using the Joanna Briggs Institute’s checklist for economic evaluations. Results: Out of 1317 unique references, nine were included. Four studies assessed the effectiveness of patient experience improvement interventions (e.g., provider communication training, discharge or transitional support) coupled with economic evaluations; these found statistically significant positive outcomes for both patient experience and economic dimensions—including reduced costs, improved revenue, or additional costs offset by increased revenue. Three additional studies on provider communication training also found statistically significant positive impacts on provider well-being (i.e., reduced burnout) and patient experience improvements. Conclusion: These findings shed light on the overall synergistic value of and business case for investments into developing patient experience improvement programs or activities. However, there is room for strengthening this body of knowledge in scope, volume, and method quality, including the need to study the impact on patient experience, provider well-being, health outcomes, and costs (i.e., the quadruple aim) in tandem. Full article
(This article belongs to the Special Issue Patient Experience and the Quality of Health Care)
Show Figures

Figure 1

37 pages, 888 KiB  
Review
A Review of the Effects of Nanomaterials on the Properties of Concrete
by Qi Yang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Buildings 2025, 15(13), 2363; https://doi.org/10.3390/buildings15132363 - 5 Jul 2025
Viewed by 418
Abstract
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on [...] Read more.
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on concrete performance. It provides a detailed explanation of the characteristics of three common nanomaterials: nano-silica, nano-calcium carbonate, and carbon nanotubes. This study analyzes how these materials improve the microstructure, accelerate hydration reactions, and enhance interfacial transition zones, thereby enhancing the mechanical properties, durability, and workability of concrete. For conventional engineering projects, nano-calcium carbonate is the preferred choice owing to its low cost and its capacity to improve workability and early-age strength. For high-strength and durable structures, nano-silica is selected due to its high specific surface area (ranging from 100 to 800 m2/g) and its superior compactness and impermeability. In the context of intelligent buildings, carbon nanotubes are the most suitable option because of their exceptional thermal conductivity and electrical conductivity (with axial thermal conductivity reaching 2000–6000 W/m*K and electrical conductivity ranging from 103 to 106 S/cm). However, it should be noted that carbon nanotubes are the most expensive among the three materials. Additionally, this study discusses the issues and challenges currently faced by the application of nanomaterials in concrete and looks ahead to future research directions, aiming to provide a reference for further research and engineering applications of nanomaterials in the field of concrete. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Building Materials)
Show Figures

Figure 1

19 pages, 26419 KiB  
Article
Pulse–Glide Behavior in Emerging Mixed Traffic Flow Under Sensor Accuracy Variations: An Energy-Safety Perspective
by Mengyuan Huang, Jinjun Sun, Honggang Li and Qiqi Miao
Sensors 2025, 25(13), 4189; https://doi.org/10.3390/s25134189 - 5 Jul 2025
Viewed by 295
Abstract
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received [...] Read more.
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received less attention regarding energy conservation, and their prominent perception capabilities clearly exhibit individual variations. In light of this, this study investigates the impacts of PnG combined with CAVs on energy conservation and safety within the emerging mixed traffic flow composed of CAVs with varying sensing accuracies. The results indicate the following: (i) compared to the traditional driving modes, the PnG can achieve a maximum fuel-saving rate of 39.53% at Fuel Consumption with Idle (FCI), reducing conflicts by approximately 30% on average; (ii) CAVs, equipped with sensors boasting a greater detection range, markedly enhance safety during vehicle operation and contribute to a more uniform distribution of individual fuel consumption; (iii) PnG modes with moderate acceleration, such as 1–2 m/s2, can achieve excellent fuel consumption while ensuring safety and may even slightly enhance the operational efficiency of the intersection. The findings could provide a theoretical reference for the transition of transportation systems toward sustainability. Full article
Show Figures

Figure 1

20 pages, 2517 KiB  
Article
Transformation of Shipbuilding into Smart and Green: A Methodology Proposal
by Zoran Kunkera, Nataša Tošanović and Neven Hadžić
Eng 2025, 6(7), 148; https://doi.org/10.3390/eng6070148 - 1 Jul 2025
Viewed by 226
Abstract
Since the beginning of the last decade, digital technological achievements have ushered the economies of developed countries into the fourth industrial revolution, transforming industries into smart ones, referred to as “Industry 4.0”, enabling them to innovate as a prerequisite for sustainable development and [...] Read more.
Since the beginning of the last decade, digital technological achievements have ushered the economies of developed countries into the fourth industrial revolution, transforming industries into smart ones, referred to as “Industry 4.0”, enabling them to innovate as a prerequisite for sustainable development and economic growth. At the same time, the European Union’s institutions are adopting strategies and programs to transform the European industry into a climate-neutral one, aiming to achieve this by 2050. The authors, participating in the introduction of Lean tools and digital technologies into one of the European shipyards using the “CULIS” (Connect Universal Lean Improvement System) methodology, recognize the high potential of its contribution to the European Commission’s guidelines for transitioning the economy to a sustainable one, and for this purpose, they present it in this paper. Namely, the methodology in question not only theoretically results in a “quick” implementation of tools and doctrines—with an approximately 36-month total duration of the process—but also encompasses as many as three transformations: Lean, digital, and green; an analysis of a methodology with such characteristics significantly adds to the originality of this study. The current stage of the observed shipyard’s “triple” transformation process already results in significant improvements—e.g., an increase in productivity by around 21% or a reduction in sales process costs by 38%. However, given its ongoing pilot phase, (further) analyses of improvements in (European) shipbuilding competitiveness and profitability that can be achieved through digital Lean management of projects’ realization process are implied. Full article
Show Figures

Figure 1

29 pages, 10029 KiB  
Review
The Evolution of the Interaction Between Urban Rail Transit and Land Use: A CiteSpace-Based Knowledge Mapping Approach
by Haochen Yang, Nana Cui and Haishan Xia
Land 2025, 14(7), 1386; https://doi.org/10.3390/land14071386 - 1 Jul 2025
Viewed by 578
Abstract
Urban rail transit is a key enabler for optimizing urban spatial structures, and its interactive relationship with land use has long been a focus of attention. However, existing studies suffer from scattered methodologies, a lack of systematic analysis, and insufficient dynamic insights into [...] Read more.
Urban rail transit is a key enabler for optimizing urban spatial structures, and its interactive relationship with land use has long been a focus of attention. However, existing studies suffer from scattered methodologies, a lack of systematic analysis, and insufficient dynamic insights into global trends. This study comprehensively employs CiteSpace, VOSviewer, and Scimago Graphica to conduct bibliometric and knowledge map analysis on 1894 articles from the Web of Science database between 2004 and 2024, focusing on global research trends, collaboration networks, thematic evolution, and methodological advancements. Key findings include the following: (1) research on rail transit and land use has been steadily increasing, with a significant “US-China dual-core” distribution, where most studies are concentrated in the United States and China, with higher research density in Asia; (2) domestic and international research has primarily focused on themes such as the built environment, value capture, and public transportation, with a recent shift toward artificial intelligence and smart city technology applications; (3) research methods have evolved from foundational 3S technologies (GIS, GPS, RS) to spatial modeling tools (e.g., LUTI model, node-place model), and the current emergence of AI-driven analysis (e.g., machine learning, deep learning, digital twins). The study identifies three future research directions—technology integration, data governance, and institutional innovation—which provide guidance for the coordinated planning of transportation and land use in future smart city development. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
ALMA Observations of G333.6-0.2: Molecular and Ionized Gas Environment
by Aruzhan Omar, Aidana Abdirakhman, Nazgul Alimgazinova, Meiramgul Kyzgarina, Aisha Naurzbayeva, Zhomartkali Islyam, Kunduz Turekhanova, Aizat Demessinova and Arailym Manapbayeva
Galaxies 2025, 13(4), 73; https://doi.org/10.3390/galaxies13040073 - 27 Jun 2025
Viewed by 324
Abstract
We present high-angular resolution observations, conducted with the Atacama Large Millimeter/Submillimeter Array (ALMA) in Band 6, of high-excitation molecular lines of CH3CN, CH3OH, and the H29α radio recombination line, towards the G333.6-0.2 ultracompact (UC) H ii region. [...] Read more.
We present high-angular resolution observations, conducted with the Atacama Large Millimeter/Submillimeter Array (ALMA) in Band 6, of high-excitation molecular lines of CH3CN, CH3OH, and the H29α radio recombination line, towards the G333.6-0.2 ultracompact (UC) H ii region. Our observations reveal three hot molecular cores: A, B, and C, where emission is detected in ten components of the J=1413 rotational ladder of CH3CN and in the CH3OH J=51,441,3 transition. Rotational diagram analysis of CH3CN reveals excitation temperatures ranging from 380 to 430 K. First-order moment maps of CH3CN and CH3OH reveal distinct velocity gradients in all cores, suggesting rotating structures, with core A also showing evidence of expansion motions. The H29α recombination line shows a linewidth of 30.2±0.12 km s−1, dominated by dynamical and thermal broadening, indicative of large-scale motions in ionized gas. Analysis of the ionized gas properties yields an electron density of (4.8±0.4)×105 cm−3, an emission measure of (1.23±0.06)×109 pc cm−6, and a Lyman continuum photon flux consistent with an O5–O6 V (Zero-Age Main Sequence; ZAMS) star. Our results suggest that G333.6-0.2 is in an intermediate evolutionary stage between hypercompact (HC) and ultracompact (UC) H ii regions, hosting active high-mass star formation with rotating hot cores and ionized gas dynamics. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

16 pages, 4935 KiB  
Article
Interlayer-Spacing-Modification of MoS2 via Inserted PANI with Fast Kinetics for Highly Reversible Aqueous Zinc-Ion Batteries
by Shuang Fan, Yangyang Gong, Suliang Chen and Yingmeng Zhang
Micromachines 2025, 16(7), 754; https://doi.org/10.3390/mi16070754 - 26 Jun 2025
Viewed by 384
Abstract
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, [...] Read more.
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, and insufficient structural stability during cycling. These limitations are primarily attributed to their narrow interlayer spacing, strong electrostatic interactions, the large ionic hydration radius, and their high binding energy of Zn2+ ions. To address these restrictions, an in situ organic polyaniline (PANI) intercalation strategy is proposed to construct molybdenum disulfide (MoS2)-based cathodes with extended layer spacing, thereby improving the zinc storage capabilities. The intercalation of PANI effectively enhances interplanar spacing of MoS2 from 0.63 nm to 0.98 nm, significantly facilitating rapid Zn2+ diffusion. Additionally, the π-conjugated electron structure introduced by PANI effectively shields the electrostatic interaction between Zn2+ ions and the MoS2 host, thereby promoting Zn2+ diffusion kinetics. Furthermore, PANI also serves as a structural stabilizer, maintaining the integrity of the MoS2 layers during Zn-ion insertion/extraction processes. Furthermore, the conductive conjugated PANI boosts the ionic and electronic conductivity of the electrodes. As expected, the PANI–MoS2 electrodes exhibit exceptional electrochemical performance, delivering a high specific capacity of 150.1 mA h g−1 at 0.1 A g−1 and retaining 113.3 mA h g−1 at 1 A g−1, with high capacity retention of 81.2% after 500 cycles. Ex situ characterization techniques confirm the efficient and reversible intercalation/deintercalation of Zn2+ ions within the PANI–MoS2 layers. This work supplies a rational interlayer engineering strategy to optimize the electrochemical performance of MoS2-based electrodes. By addressing the structural and kinetic limitations of TMDs, this approach offers new insights into the development of high-performance AZIBs for energy storage applications. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

Back to TopTop