Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = FullWaver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2752 KB  
Article
Label-Free Microdroplet Concentration Detector Based on a Quadruple Resonant Ring Metamaterial
by Wenjin Guo, Yinuo Cheng and Jian Li
Sensors 2026, 26(3), 1013; https://doi.org/10.3390/s26031013 - 4 Feb 2026
Viewed by 65
Abstract
This paper proposes and experimentally validates a label-free microdroplet concentration detector based on a quad-resonator metamaterial. The device exploits the linear relationship between the dielectric constant of a binary mixed solution and its concentration, mapping concentration information to absorption frequency shifts with a [...] Read more.
This paper proposes and experimentally validates a label-free microdroplet concentration detector based on a quad-resonator metamaterial. The device exploits the linear relationship between the dielectric constant of a binary mixed solution and its concentration, mapping concentration information to absorption frequency shifts with a sensitivity of 28.53 GHz/RIU. System modeling was performed through full-wave simulation. Experimental results demonstrate a highly linear relationship between resonance frequency shift and concentration across ethanol, water, and ethanol–water solutions. The relative deviation between simulation and measurement is less than 3%, validating the model’s reliability and the robustness of the detection principle. This detector supports rapid non-contact sample replacement without requiring chemical labeling or specialized packaging. It can be mass-produced on standard PDMS substrates, with each unit reusable for >50 cycles. With a single measurement time of <30 s, it meets high-throughput detection demands. Featuring low power consumption, high precision, and scalability, this device holds broad application prospects in point-of-care diagnostics, online process monitoring, and resource-constrained scenarios. Future work will focus on achieving simultaneous multi-component detection via multi-resonator arrays and integrating chip-level wireless readout modules to further enhance portability and system integration. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 12735 KB  
Article
Upper-Bound Electromagnetic Performance of Substrate-Free Epidermal Tattoo Antennas for UHF Applications
by Adina Bianca Barba, Alessio Mostaccio, Rasha Ahmed Hanafy Bayomi, Sunghoon Lee, Gaetano Marrocco, Takao Someya and Cecilia Occhiuzzi
Sensors 2026, 26(3), 1011; https://doi.org/10.3390/s26031011 - 4 Feb 2026
Viewed by 69
Abstract
Substrate-free epidermal antennas promise imperceptible and long-term wearable sensing, yet their electromagnetic performance is fundamentally constrained by the properties of ultrathin conductors. In this work, gold nanomesh is employed for the first time as the radiating conductor of a substrate-free epidermal tattoo antenna [...] Read more.
Substrate-free epidermal antennas promise imperceptible and long-term wearable sensing, yet their electromagnetic performance is fundamentally constrained by the properties of ultrathin conductors. In this work, gold nanomesh is employed for the first time as the radiating conductor of a substrate-free epidermal tattoo antenna operating in the UHF RFID band. Owing to its RF-thin nature, the nanomesh behavior is governed by sheet resistance rather than skin-depth effects, imposing a strict upper bound on achievable radiation efficiency. By combining surface-impedance modeling, full-wave simulations, and on-body experiments, we demonstrate that ohmic losses set a geometry-independent limit on the realized gain of on-skin antennas. An inductively coupled loop architecture is optimized to approach this bound while ensuring mechanical robustness and impedance stability. Measurements on phantoms and human subjects confirm the predicted performance limits within a few decibels, enabling reliable UHF RFID read ranges up to 30–40 cm under standard regulatory constraints. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

25 pages, 4707 KB  
Article
A Novel 3D Probe for Near-Field Scanning Microwave Microscopy
by Ali M. Almuhlafi and Omar M. Ramahi
Sensors 2026, 26(3), 995; https://doi.org/10.3390/s26030995 - 3 Feb 2026
Viewed by 237
Abstract
Near-field scanning microwave microscopy (NSMM) offers the ability to probe local electromagnetic properties beyond the classical Abbe diffraction limit, but achieving high resolution over practical scan areas remains challenging. In this work, we introduce a novel three-dimensional (3D) NSMM probe consisting of a [...] Read more.
Near-field scanning microwave microscopy (NSMM) offers the ability to probe local electromagnetic properties beyond the classical Abbe diffraction limit, but achieving high resolution over practical scan areas remains challenging. In this work, we introduce a novel three-dimensional (3D) NSMM probe consisting of a split-ring resonator (SRR) coupled to a microstrip line and loaded with vertically extended metallic bars. The 3D loading enhances electric-field localization in the sensing region by introducing field singularities. Full-wave numerical simulations are used to extract the field-spread function (FSF) of the probe and to quantify how probe geometry, stand-off distance, and bar dimensions control the FSF and its spatial-frequency (k-space) content. An imaging model is then developed in which the NSMM image is represented as a convolution between the object and FSF in one and two dimensions. This framework demonstrates that progressively localized FSFs, obtained through 3D loading and resonator miniaturization, systematically improve image fidelity and preserve higher spatial frequencies. The probe is fabricated using printed circuit board technology (PCB) with vertically attached metallic bars, and its performance is validated by imaging a dielectric slab containing a cylindrical air-filled void. The measured line profiles and two-dimensional images are in good agreement in general characteristics with the convolution-based model, confirming that the proposed 3D SRR-based probe operates as a spatial filter whose engineered near-field distribution governs the achievable resolution in NSMM imaging. Full article
Show Figures

Figure 1

12 pages, 2229 KB  
Article
A Synthetic Method of Wide-Angle Scanning Sparse Arrays Based on a Hybrid PSO-GA Algorithm
by Qiqiang Li, Pengyi Wang and Cheng Zhu
Electronics 2026, 15(3), 604; https://doi.org/10.3390/electronics15030604 - 29 Jan 2026
Viewed by 137
Abstract
To address the issue of traditional Particle Swarm Optimization (PSO) being prone to local optima and insufficient global search capability in sparse phased array optimization, a hybrid optimization algorithm integrating PSO with a Genetic Algorithm (GA) is proposed. Within the PSO framework, the [...] Read more.
To address the issue of traditional Particle Swarm Optimization (PSO) being prone to local optima and insufficient global search capability in sparse phased array optimization, a hybrid optimization algorithm integrating PSO with a Genetic Algorithm (GA) is proposed. Within the PSO framework, the proposed algorithm incorporates the adaptive crossover and mutation operations of the GA to enhance population diversity. It combines an adaptive weighting factor and a constriction factor to balance global exploration and local exploitation capabilities. Furthermore, a density-weighted method is employed to generate a high-quality initial population, thereby accelerating convergence. The proposed algorithm is applied to an 8 × 8 planar sparse array. On the E-plane (φ = 0°) and H-plane (φ = 90°), simulation results indicate that the achieved normalized maximum sidelobe level is −23.14 dB, which is significantly superior to those obtained by standalone PSO and GA. Based on these simulation results, microstrip patch antennas are introduced for array constitution and analysis. Full-wave electromagnetic simulation proves that the proposed sparse array has the ability of wide-angle scanning and low sidelobe. Our work demonstrates that the PSO-GA hybrid algorithm effectively enhances search capability and convergence performance, providing a reliable solution for sparse array design. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 5099 KB  
Article
A 2-GHz Low-Noise Amplifier Using Fully Distributed Microstrip Matching Networks
by Mehmet Onur Kok and Sahin Gullu
Electronics 2026, 15(3), 588; https://doi.org/10.3390/electronics15030588 - 29 Jan 2026
Viewed by 183
Abstract
This work describes the design and experimental testing of a low-noise amplifier (LNA) fabricated on a printed circuit board (PCB) and operating near 2 GHz. The amplifier uses a discrete bipolar junction transistor (BJT) together with fully distributed microstrip matching networks without relying [...] Read more.
This work describes the design and experimental testing of a low-noise amplifier (LNA) fabricated on a printed circuit board (PCB) and operating near 2 GHz. The amplifier uses a discrete bipolar junction transistor (BJT) together with fully distributed microstrip matching networks without relying on lumped matching components. The main design goal is to obtain stable operation with low noise figure and moderate gain over a wide frequency range while keeping the circuit tolerant to layout parasitics and fabrication variations. Circuit-level simulations are performed using AWR Microwave Office and are followed by full-wave electromagnetic simulations in Sonnet Software to account for layout-dependent effects. A prototype is fabricated on a 60-mil Rogers RO4003C substrate and characterized through S-parameter, noise-figure, and linearity measurements. Measured results show a gain of approximately 13.84 ± 1 dB over the 1.75–2.25 GHz frequency range, with a minimum noise figure of 1.615 dB at 2 GHz. Stable operation is maintained across the entire band, and the measured 1 dB gain compression point is approximately 0.5 dBm. The results demonstrate that a fully distributed microstrip matching approach provides a practical and reproducible PCB-based LNA solution for sub-6-GHz receiver front-end applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 4040 KB  
Article
Broadband Sub-Micron Moth-Eye Anti-Reflection Coatings on Silicon for Wafer-Level CMOS–SOI–MEMS Thermal Infrared Sensors
by Moshe Avraham and Yael Nemirovsky
Micromachines 2026, 17(2), 170; https://doi.org/10.3390/mi17020170 - 28 Jan 2026
Viewed by 204
Abstract
Silicon windows in wafer-level packaged LWIR sensors suffer ~30% Fresnel reflection per interface, limiting optical throughput and detector sensitivity. We present an end-to-end design, fabrication, and validation framework for CMOS-compatible moth-eye anti-reflection coatings patterned directly on silicon wafers. Our approach integrates the effective [...] Read more.
Silicon windows in wafer-level packaged LWIR sensors suffer ~30% Fresnel reflection per interface, limiting optical throughput and detector sensitivity. We present an end-to-end design, fabrication, and validation framework for CMOS-compatible moth-eye anti-reflection coatings patterned directly on silicon wafers. Our approach integrates the effective medium theory, a transfer matrix analysis, full-wave FDTD simulations, and experimental Fourier-transform infrared (FTIR) measurements to optimize subwavelength pillar arrays for broadband (8–14 μm) and angle-tolerant performance. Fabricated structures demonstrate a 46.7% responsivity boost in CMOS–SOI–MEMS thermal sensors compared to bare silicon windows, while simulations predict up to 85.1% transmission and 57.1% responsivity enhancement for double-sided patterning. These results establish moth-eye metasurfaces as a scalable, CMOS-compatible solution for next-generation wafer-level processing and packaging infrared sensing platforms, transforming optical improvements into measurable electrical performance gains. The contribution of this work is the end-to-end framework for designing moth-eye wafer level processing and packaging for “real-life” CMOS-compatible infrared sensors manufacturing. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

15 pages, 4576 KB  
Article
Design of a Compact UHF Wilkinson Power Divider Using a Combined T-Shaped–CCMRC Resonator for Harmonic Suppression
by Saeed Roshani, Salah I. Yahya, Golshan Mohamadpour and Sobhan Roshani
Micromachines 2026, 17(2), 158; https://doi.org/10.3390/mi17020158 - 26 Jan 2026
Viewed by 344
Abstract
This paper proposes a compact UHF microstrip divider with wideband harmonic suppression. A combined resonator, formed by a T-shaped resonator and a pair of coupled compact microstrip resonant cells (CCMRCs), is embedded into each divider branch to replace the conventional quarter-wavelength transmission lines. [...] Read more.
This paper proposes a compact UHF microstrip divider with wideband harmonic suppression. A combined resonator, formed by a T-shaped resonator and a pair of coupled compact microstrip resonant cells (CCMRCs), is embedded into each divider branch to replace the conventional quarter-wavelength transmission lines. The divider is designed on an FR4 substrate (εr = 4.4, thickness = 60 mil) for a center frequency of 570 MHz. Full-wave electromagnetic simulations indicate equal power division at 570 MHz with return loss better than 39 dB and output-port isolation higher than 47 dB. Moreover, a wide stopband from 1.5 GHz to 3.5 GHz is obtained, yielding strong attenuation for the third-to-sixth harmonics. The proposed layout occupies 19.6 mm × 21.6 mm, which is about 76% smaller than a conventional 570 MHz divider (42.7 mm × 41 mm). The proposed design is suitable for modern wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advancements in Microwave and Optoelectronics Devices)
Show Figures

Figure 1

18 pages, 5275 KB  
Article
Interference Characteristics of a Primary–Secondary Integrated Distribution Switch Under Lightning Strike Conditions Based on a Field-Circuit Hybrid Full-Wave Model
by Ge Zheng, Shilei Guan, Yilin Tian, Changkai Shi, Hui Yin, Chengbo Jiang, Meng Yuan, Yijun Fu, Yiheng Chen, Shen Lai and Shaofei Wang
Energies 2026, 19(3), 623; https://doi.org/10.3390/en19030623 - 25 Jan 2026
Viewed by 204
Abstract
As distribution networks become increasingly intelligent, primary–secondary integrated distribution switches are replacing the traditional electromagnetic type. However, the high degree of integration intensifies inherent electromagnetic compatibility (EMC) challenges. This paper presents a field-circuit hybrid full-wave model to investigate switch characteristics during lightning strikes. [...] Read more.
As distribution networks become increasingly intelligent, primary–secondary integrated distribution switches are replacing the traditional electromagnetic type. However, the high degree of integration intensifies inherent electromagnetic compatibility (EMC) challenges. This paper presents a field-circuit hybrid full-wave model to investigate switch characteristics during lightning strikes. A 3D full-wave model of the switch and a distributed parameter circuit model of the connecting lines are coupled via a network parameter matrix. This approach comprehensively accounts for the impacts of transmission lines and structural components on electromagnetic disturbances. Simulation and experimental results reveal that lightning strikes induce high-frequency damped oscillatory waves, primarily caused by traveling wave reflections along overhead lines. The characteristic frequency of disturbance is inversely proportional to the transmission line length. Additionally, internal components significantly influence this frequency; specifically, a larger voltage dividing capacitance in the voltage transformer results in a lower frequency. Model validation was performed using a 20 m transmission line setup. A 75 kV standard lightning impulse was injected into Phase B. At a distance of 500 mm from the voltage transformer, the measured radiated electric field amplitude was 14.12 kV/m (deviation < 5%), and the characteristic frequency was 1.11 MHz (deviation < 20%). These findings offer vital guidance for the lightning protection and EMC design of primary–secondary integrated distribution switches. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

33 pages, 23667 KB  
Article
Full-Wave Optical Modeling of Leaf Internal Light Scattering for Early-Stage Fungal Disease Detection
by Da-Young Lee and Dong-Yeop Na
Agriculture 2026, 16(2), 286; https://doi.org/10.3390/agriculture16020286 - 22 Jan 2026
Viewed by 188
Abstract
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early [...] Read more.
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early optical marker for plant disease detection prior to visible symptom development. Conventional ray-tracing and radiative-transfer models rely on high-frequency approximations and thus fail to capture diffraction and coherent multiple-scattering effects when internal leaf structures are comparable to optical wavelengths. To overcome these limitations, we present a GPU-accelerated finite-difference time-domain (FDTD) framework for full-wave simulation of light propagation within plant leaves, using anatomically realistic dicot and monocot leaf cross-section geometries. Microscopic images acquired from publicly available sources were segmented into distinct tissue regions and assigned wavelength-dependent complex refractive indices to construct realistic electromagnetic models. The proposed FDTD framework successfully reproduced characteristic reflectance and transmittance spectra of healthy leaves across the visible and near-infrared (NIR) ranges. Quantitative agreement between the FDTD-computed spectral reflectance and transmittance and those predicted by the reference PROSPECT leaf optical model was evaluated using Lin’s concordance correlation coefficient. Higher concordance was observed for dicot leaves (Cb=0.90) than for monocot leaves (Cb=0.79), indicating a stronger agreement for anatomically complex dicot structures. Furthermore, simulations mimicking an early-stage fungal infection in a dicot leaf—modeled by the geometric introduction of melanized hyphae penetrating the cuticle and upper epidermis—revealed a pronounced reduction in visible green reflectance and a strong suppression of the NIR reflectance plateau. These trends are consistent with experimental observations reported in previous studies. Overall, this proof-of-concept study represents the first full-wave FDTD-based optical modeling of internal light scattering in plant leaves. The proposed framework enables direct electromagnetic analysis of pre- and post-penetration light-scattering dynamics during early fungal infection and establishes a foundation for exploiting leaf-scale light scattering as a next-generation, pre-symptomatic diagnostic indicator for plant fungal diseases. Full article
(This article belongs to the Special Issue Exploring Sustainable Strategies That Control Fungal Plant Diseases)
Show Figures

Figure 1

15 pages, 3475 KB  
Article
Geometry-Dependent Photonic Nanojet Formation and Arrays Coupling
by Zehua Sun, Shaobo Ge, Lujun Shen, Junyan Li, Shibo Xu, Jin Zhang, Yingxue Xi and Weiguo Liu
Nanomaterials 2026, 16(2), 136; https://doi.org/10.3390/nano16020136 - 20 Jan 2026
Viewed by 284
Abstract
This work systematically investigates photonic nanojet (PNJ) planar arrays formed by periodic arrangements of dielectric microstructures with four geometric configurations: cylinders, cones, truncated pyramids, and pyramids, focusing on the effects of geometry, array arrangement, and array sparsity on PNJ formation and coupling behavior. [...] Read more.
This work systematically investigates photonic nanojet (PNJ) planar arrays formed by periodic arrangements of dielectric microstructures with four geometric configurations: cylinders, cones, truncated pyramids, and pyramids, focusing on the effects of geometry, array arrangement, and array sparsity on PNJ formation and coupling behavior. Full-wave finite-difference time-domain simulations were performed to analyze optical field distributions under different array conditions. The results indicate that under approximately infinite array conditions, different geometries exhibit markedly different coupling responses. Cylindrical and truncated pyramid structures are more susceptible to inter-element scattering, leading to pronounced multistage focusing, whereas pyramid and cone structures maintain higher spatial stability due to dominant localized tip-focusing mechanisms. For the central elements, the maximum PNJ intensity is about 16.4 a.u. for cylindrical structures and 33.5 a.u. for truncated pyramid structures, while significantly higher intensities of approximately 47.5 a.u. and 93 a.u. are achieved for pyramid and cone structures, respectively. In contrast, the FWHM remains nearly constant for all geometries under different array conditions, indicating that lateral focusing is primarily governed by geometry rather than array arrangement. By tuning the array spacing, the inter-element coupling strength can be continuously weakened, and different geometries require distinct sparsity levels to reach the weak-coupling limit. These results establish the dominant role of geometric configuration in PNJ planar arrays and provide guidance for their predictable design. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

28 pages, 6461 KB  
Article
Geostationary Orbital Targets Imaging Based on Ground-Based Multiple-Input Multiple-Output Radar
by Lei Qiu, Fusheng Wang, Yize Fan, Bakun Zhu, Hongfeng Pang, Wei Qu and Jiawei Huang
Remote Sens. 2026, 18(2), 297; https://doi.org/10.3390/rs18020297 - 16 Jan 2026
Viewed by 160
Abstract
Compared with the Earth’s surface, geostationary orbital (GEO) targets are relatively static, which makes it difficult to obtain two-dimensional radar images when the radar is ground-based without movement. This paper proposes an imaging method for GEO targets based on ground-based Multiple-Input Multiple-Output (MIMO) [...] Read more.
Compared with the Earth’s surface, geostationary orbital (GEO) targets are relatively static, which makes it difficult to obtain two-dimensional radar images when the radar is ground-based without movement. This paper proposes an imaging method for GEO targets based on ground-based Multiple-Input Multiple-Output (MIMO) radar. It combines multiple ground-based radars distributed across the Earth’s surface to image GEO targets. When the virtual aperture of the MIMO radar is planar, three-dimensional imaging results can be obtained. First, the ground-based MIMO radar imaging scenario for GEO targets is introduced, and an analysis of the azimuth resolution is performed. Subsequently, a Three-Dimensional Target-Oriented (TDTO) coordinate system is established. The back-projection (BP) algorithm is then employed to reconstruct the target image. Finally, simulations are conducted and analyzed, including cases of a single-point target, multiple scatterers of a satellite model, and full-wave radar echo simulation using CST. The results show that when the center frequency is 35 GHz, and the baseline length is 1500 km, azimuth resolution of the imaging is better than 0.1 m. Full article
Show Figures

Figure 1

22 pages, 2181 KB  
Article
Design and Manufacturability-Aware Optimization of a 30 GHz Gap Waveguide Bandpass Filter Using Resonant Posts
by Antero Ccasani-Davalos, Erwin J. Sacoto-Cabrera, L. Walter Utrilla Mego, Julio Cesar Herrera-Levano, Roger Jesus Coaquira-Castillo, Yesenia Concha-Ramos and Edison Moreno-Cardenas
Electronics 2026, 15(2), 382; https://doi.org/10.3390/electronics15020382 - 15 Jan 2026
Viewed by 283
Abstract
This paper presents the design and optimization, based on electromagnetic simulation, of a fifth-order bandpass filter centered at 30 GHz, implemented using Gap Waveguide (GWG) technology and pole-type cylindrical resonators, intended for applications in 5G communication systems and high-frequency satellite links. Unlike conventional [...] Read more.
This paper presents the design and optimization, based on electromagnetic simulation, of a fifth-order bandpass filter centered at 30 GHz, implemented using Gap Waveguide (GWG) technology and pole-type cylindrical resonators, intended for applications in 5G communication systems and high-frequency satellite links. Unlike conventional Chebyshev designs reported in the literature, this study proposes an integrated methodology that combines theoretical synthesis, full-wave electromagnetic modeling, and multivariable optimization, while accounting for manufacturing constraints. The developed method encompasses the electromagnetic characterization of individual resonators, the extraction of cavity–cavity coupling parameters, and the complete implementation of the filter using full-wave electromagnetic simulations. A distinctive aspect of the proposed approach is the explicit incorporation of practical manufacturing effects, such as rounded corners induced by machining processes, alongside analytical and numerical geometric compensation procedures that preserve the device’s electrical response. Furthermore, a combination of gradient-based optimization algorithms and evolutionary strategies is employed to align the electromagnetic response with the target theoretical behavior. The results obtained through electromagnetic simulation indicate that the designed filter achieves return losses exceeding 20 dB and a fractional bandwidth of 4.95%, consistent with the reference Chebyshev response. Finally, the potential extension of the proposed approach to higher frequency bands is discussed conceptually, laying the groundwork for future work that includes experimental validation. Full article
Show Figures

Figure 1

16 pages, 4110 KB  
Article
Design of a Dual Path Mixed Coupling Wireless Power Transfer Coupler for Improving Transmit Arrays in UAV Charging
by GwanTae Kim and SangWook Park
Appl. Sci. 2026, 16(2), 827; https://doi.org/10.3390/app16020827 - 13 Jan 2026
Viewed by 182
Abstract
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at [...] Read more.
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at 6.78 MHz without additional lumped matching networks. A four-port equivalent model is developed by classifying the mutual networks into three coupling types and representing them with a transmission-matrix formulation fitted to three-dimensional full-wave simulations. The model is used to identify the main coupling paths and to evaluate the effect of rotation and lateral/diagonal misalignment on power-transfer characteristics. Simulation results at a transfer distance of 70 mm show a maximum transmission coefficient of about 0.82 at 6.78 MHz and high robustness against rotation. When switch-based port selection is applied on the transmit side, blind spots associated with pose variations that cause an abrupt drop in transmission characteristics are significantly reduced, demonstrating that the DPMPT coupler with switch control provides an effective structural basis for enhancing alignment tolerance in mixed coupling wireless power transfer systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 7616 KB  
Article
Topology Design of Reconfigurable Intelligent Metasurfaces Based on Equivalent Circuit Model
by Juntao Xu, Chenyu Zhu, Yan Pan, Han Zhang, Chao Wu and Hongqiang Li
Micromachines 2026, 17(1), 41; https://doi.org/10.3390/mi17010041 - 29 Dec 2025
Viewed by 389
Abstract
Previous studies on reconfigurable intelligent metasurface (RIS) design have primarily relied on full-wave electromagnetic simulation software, which often incurs high computational costs and lacks clear design direction. The design of multi-bit RIS remains challenging and there is currently no suitable systematic method for [...] Read more.
Previous studies on reconfigurable intelligent metasurface (RIS) design have primarily relied on full-wave electromagnetic simulation software, which often incurs high computational costs and lacks clear design direction. The design of multi-bit RIS remains challenging and there is currently no suitable systematic method for selecting the corresponding tuning devices. To overcome these limitations, this article proposes a novel equivalent circuit-based approach to RIS design. In contrast to the conventional approach, where the equivalent circuit model is derived from post-design evaluation of the scattering properties of RIS, our work is entirely driven by the equivalent circuit model from the outset to accomplish the unit cell design. A complete workflow as well as details of each constituent step are presented for the topology design of RIS based on equivalent circuit topology. Building on this circuit topology, a 3-bit reflective phase reconfigurable unit cell is developed based on a tunable band-stop filter circuit. We conducted adjustable phase verification experiments and beam deflection experiments. The consistency between the experimental results and circuit theory demonstrates the feasibility and practicality of the equivalent circuit method of RIS design. This circuit-to-structure methodology provides a physically interpretable and systematic framework for designing RIS with arbitrary electromagnetic responses, offering new insights into RIS design. Full article
Show Figures

Figure 1

17 pages, 3068 KB  
Article
Magnetoresponsive Fiber-Reinforced Periodic Impedance-Gradient Absorber: Design and Microwave Absorption Performance
by Yuan Liang, Wei Chen, Shude Gu, Xu Ding and Yuping Duan
Nanomaterials 2026, 16(1), 42; https://doi.org/10.3390/nano16010042 - 29 Dec 2025
Viewed by 438
Abstract
In recent years, achieving ultra-wideband electromagnetic absorption has emerged as a critical challenge in confronting advanced broadband electromagnetic detection technologies. This capability is essential for effectively countering sophisticated radar systems. In this study, we present a novel multilayer metamaterial absorber that integrates an [...] Read more.
In recent years, achieving ultra-wideband electromagnetic absorption has emerged as a critical challenge in confronting advanced broadband electromagnetic detection technologies. This capability is essential for effectively countering sophisticated radar systems. In this study, we present a novel multilayer metamaterial absorber that integrates an FR4 transmission layer, a periodic gradient dielectric structure designed for resonant impedance matching, and a magnetic skin layer for enhanced energy dissipation. By employing asymptotic gradients in both structure and composition, this design achieves dual-gradient electromagnetic parameter modulation, enabling efficient absorption across the X, Ku, and K bands (8.6–26.4 GHz) with a total thickness of 3.5 mm (effective thickness: 2 mm) and a density that is one-third that of conventional magnetic metamaterials. The proposed absorber demonstrates polarization insensitivity, stability across wide incident angles (up to 60°), and an absorption efficiency of 94%, as confirmed by full-wave simulations and experimental validation. Moreover, the fiber-reinforced hierarchical structure addresses the traditional trade-off between broadband absorption performance and mechanical load-bearing capacity. Full article
Show Figures

Graphical abstract

Back to TopTop