Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = Fucus vesiculosus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4420 KB  
Article
Fucoidan Extracted from Fucus vesiculosus Ameliorates Colitis-Associated Neuroinflammation and Anxiety-like Behavior in Adult C57BL/6 Mice
by Xiaoyu Song, Na Li, Xiujie Li, Bo Yuan, Xuan Zhang, Sheng Li, Xiaojing Yang, Bing Qi, Shixuan Yin, Chunxue Li, Yangting Huang, Ben Zhang, Yanjie Guo, Jie Zhao and Xuefei Wu
Mar. Drugs 2026, 24(1), 42; https://doi.org/10.3390/md24010042 - 14 Jan 2026
Viewed by 77
Abstract
Fucoidan, a complex sulfated polysaccharide derived from marine brown seaweeds, exhibits broad biological activities, including anticoagulant, antitumor, antiviral, anti-inflammatory and lipid-lowering effects. Fucoidan confers neuroprotection in animal models of a broad spectrum of brain disorders such as Parkinson’s disease (PD) and depression. However, [...] Read more.
Fucoidan, a complex sulfated polysaccharide derived from marine brown seaweeds, exhibits broad biological activities, including anticoagulant, antitumor, antiviral, anti-inflammatory and lipid-lowering effects. Fucoidan confers neuroprotection in animal models of a broad spectrum of brain disorders such as Parkinson’s disease (PD) and depression. However, the effect of fucoidan on gut-derived neuroinflammation and associated behavioral changes has been scarcely investigated. In comparison to fucoidan from other brown seaweeds, that from Fucus vesiculosus exhibited a better neuroprotective effect in vivo and more potent radical scavenging activity in vitro. Fucoidan from Laminaria japonica ameliorates behavioral disorders related to acute ulcerative colitis (UC) in aged mice. It is of interest to assess the effects of fucoidan administration on intestinal and brain inflammation in the acute colitis mouse model. Fucoidan treatment ameliorated DSS-induced intestinal pathology, reduced the inflammatory mediator expression in the gut and brain, and activated intestinal macrophages and cortical microglia in the UC mice. It also protected the intestinal mucosal barrier and blood–brain barrier as well as prevented neuronal damage, while alleviating anxiety-like behavior in UC mice. These results suggest fucoidan supplementation may help prevent brain disorders, such as depression and PD, potentially involving gut–brain axis-related mechanisms, as fucoidan suppresses gut-derived neuroinflammation. Full article
Show Figures

Graphical abstract

16 pages, 1582 KB  
Article
Natural Antifouling Potential of Fucus vesiculosus and Arthrospira platensis
by Ezra E. Cable, Travis Ford, Sara Lahoff, Preeti Sharma and Victoria V. Volkis
Appl. Sci. 2026, 16(2), 642; https://doi.org/10.3390/app16020642 - 8 Jan 2026
Viewed by 145
Abstract
Biofouling is the accumulation of marine organisms on submerged surfaces and has negatively impacted several industries while aiding in the spread of invasive species. Traditional antifouling paints, such as tributyltin and copper-based paints, have proven toxic to marine environments, necessitating the use of [...] Read more.
Biofouling is the accumulation of marine organisms on submerged surfaces and has negatively impacted several industries while aiding in the spread of invasive species. Traditional antifouling paints, such as tributyltin and copper-based paints, have proven toxic to marine environments, necessitating the use of novel, less toxic alternatives. Previous research has shown that antifouling paints made from essential oil-rich superfruits and medicinal herbs have been effective in preventing precipitation accumulation, including bacterial and mineral accumulation. This study examined the antifouling potential of spirulina and fucus, two algae rich in antioxidants and essential oils. Extracts were analyzed for antioxidant and essential oil content before being subjected to a three-week-long antifouling test. A post-test surface analysis was then performed, and the precipitation count per mm of slide was calculated, followed by a comparison with previous extracts from superfruits and medicinal herbs. After testing, fucus has a minimum bacterial count of 41.4 ± 2.0 per mm in freshwater and 14.0 ± 0.7 per mm in saltwater. Spirulina had a minimum precipitation count of 13.9 ± 2.8 per mm for freshwater and 6.6 ± 1.3 per mm for saltwater. As such, spirulina performed better than fucus, superfruits, and medicinal herbs in both saltwater and freshwater, except for when compared to results from ginger extracts in saltwater. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

875 KB  
Proceeding Paper
Marine Macroalgae Extracts: Assessment of Their Potential Application in Health and Wellness
by Ana Marta Miranda, Catarina P. Reis and Rita Pacheco
Chem. Proc. 2025, 18(1), 129; https://doi.org/10.3390/ecsoc-29-26679 - 11 Nov 2025
Viewed by 63
Abstract
Algae are sustainable sources of bioactive compounds widely used in health and wellness applications, though supporting evidence is limited. This study characterized and compared aqueous extracts and purified fractions from Fucus vesiculosus, Gracilaria sp., and Ulva sp. Total Phenolic Content (TPC) by [...] Read more.
Algae are sustainable sources of bioactive compounds widely used in health and wellness applications, though supporting evidence is limited. This study characterized and compared aqueous extracts and purified fractions from Fucus vesiculosus, Gracilaria sp., and Ulva sp. Total Phenolic Content (TPC) by the Folin–Ciocalteu method, antioxidant activity by the DPPH method, and the HPLC-DAD chromatographic profiles of extracts and fractions were compared. Fucus vesiculosus and Gracilaria sp. exhibited the highest TPC and antioxidant activity. Fractions without mucilage showed an enrichment in TPC and chromatographic profiles, particularly the polysaccharide-free extract of Gracilaria sp., highlighting its promising applications and the need for future studies. Full article
Show Figures

Figure 1

19 pages, 2740 KB  
Article
Vaterite/Fucoidan Hybrid Microparticles: Fabrication, Loading of Lactoferrin, Structural Characteristics and Functional Properties
by Daniil V. Mosievich, Nadezhda G. Balabushevich, Pavel I. Mishin, Lyubov Y. Filatova, Marina A. Murina, Olga V. Pobeguts, Maria A. Galyamina, Ekaterina A. Obraztsova, Daria V. Grigorieva, Irina V. Gorudko, Alexey V. Sokolov, Ekaterina V. Shmeleva, Oleg M. Panasenko and Elena V. Mikhalchik
Mar. Drugs 2025, 23(11), 428; https://doi.org/10.3390/md23110428 - 5 Nov 2025
Viewed by 748
Abstract
Fucoidan is of considerable interest for the development of drug carriers. The inclusion of fucoidan allows calcium carbonate microparticles in the form of vaterite to acquire new properties, enabling their use in the immobilization of protein preparations. In this work, we investigated the [...] Read more.
Fucoidan is of considerable interest for the development of drug carriers. The inclusion of fucoidan allows calcium carbonate microparticles in the form of vaterite to acquire new properties, enabling their use in the immobilization of protein preparations. In this work, we investigated the properties of hybrid vaterite microparticles with fucoidan from Fucus vesiculosus obtained by co-precipitation and loaded with recombinant human lactoferrin from goats. The hybrid microparticles had a smaller diameter (3–4 µm), larger surface area (35–36 m2g−1), smaller pore size (5–10 nm average), and more negative ζ-potential (−(11–13) mV) than the control vaterite microparticles. The incorporation of lactoferrin into the microparticles by co-precipitation in complex with fucoidan was greater than when the protein was adsorbed onto the hybrid microparticles. Microparticles with fucoidan and lactoferrin were stable in acidic environments, released both components over a prolonged period at pH 7.4, and possessed mucoadhesive properties and anticoagulant activity. The antibacterial properties of hybrid microparticles with fucoidan and lactoferrin against Bacillus subtilis were characterized. Microparticles of vaterite with fucoidan can serve as a platform for the microfabrication of effective means of delivering therapeutic proteins. Full article
Show Figures

Graphical abstract

22 pages, 9751 KB  
Article
Metabolomic Insights into the Phytochemical Profiles and Seasonal Shifts of Fucus serratus and F. vesiculosus Harvested in Danish Coastal Waters (Aarhus Bay)—An Untargeted High-Resolution Mass-Spectrometry Approach
by Mihai Victor Curtasu, Jørgen Ulrik Graudal Levinsen, Annette Bruhn, Mette Olaf Nielsen and Natalja P. Nørskov
Mar. Drugs 2025, 23(11), 417; https://doi.org/10.3390/md23110417 - 26 Oct 2025
Cited by 1 | Viewed by 1217
Abstract
This study investigated the year-round metabolomic variation in Fucus serratus (FS) and F. vesiculosus (FV) collected monthly from Danish coastal water around Aarhus Bay. Untargeted high-resolution liquid chromatography–mass spectrometry profiling (LC-HRMS), combined with multivariate data analysis and temporal clustering analysis, revealed that species [...] Read more.
This study investigated the year-round metabolomic variation in Fucus serratus (FS) and F. vesiculosus (FV) collected monthly from Danish coastal water around Aarhus Bay. Untargeted high-resolution liquid chromatography–mass spectrometry profiling (LC-HRMS), combined with multivariate data analysis and temporal clustering analysis, revealed that species identity was the primary driver of metabolic separation, followed by seasonal variation. FS showed higher levels of hydrolyzable tannins, flavonoid derivatives, aromatic amino acids, and glutamine-rich peptides, whereas FV was enriched in complex phlorotannins, tricarboxylic acid cycle intermediates, and carnitine derivatives. Temporal analysis identified recurring seasonal patterns across both species, including spring increases in amino acids, purine metabolites, and osmolytes; mid-summer peaks in mannitol and sulfated derivatives; and late-autumn elevations in phenolic compounds and betaine-type osmolytes. Despite apparent interspecific differences, several metabolite groups exhibited similar seasonal dynamics, suggesting shared physiological strategies associated with growth activation in spring, metabolic adjustment during summer to possible increased grazing pressure, and nutrient reallocation prior to winter. These findings provide a comprehensive, high-resolution view of seasonal metabolomic patterns in Fucus spp., offering new insights into their biochemical ecology and supporting the targeted utilization of these species for applications requiring specific metabolite profiles. Finally, this study contributes to the creation or expansion of metabolomic libraries for HRMS specific to Fucus seaweeds. Full article
(This article belongs to the Special Issue Omics Approaches in Marine Compound Discovery)
Show Figures

Figure 1

13 pages, 563 KB  
Article
Role of Ascophyllum nodosum and Fucus vesiculosus in Improving the Stress Resistance of Lactiplantibacillus plantarum
by Sara Frazzini, Matteo Dell’Anno and Luciana Rossi
Mar. Drugs 2025, 23(10), 373; https://doi.org/10.3390/md23100373 - 25 Sep 2025
Cited by 1 | Viewed by 774
Abstract
The survival and efficacy of probiotic bacteria depend on their ability to grow under optimal conditions and withstand environmental stresses, and marine macroalgae are emerging as promising prebiotic sources that may enhance their viability. In this study the effect of Ascophyllum nodosum and [...] Read more.
The survival and efficacy of probiotic bacteria depend on their ability to grow under optimal conditions and withstand environmental stresses, and marine macroalgae are emerging as promising prebiotic sources that may enhance their viability. In this study the effect of Ascophyllum nodosum and Fucus vesiculosus supplementation (0.5% w/v) on Lactiplantibacillus plantarum was evaluated by assessing growth performance and stress resistance under different conditions, including temperatures (15, 25, 30, 37, 42 °C), pH levels (2.5, 3.5, 4.5, 6.5, 8.5), and enzymatic challenges (pepsin, trypsin, bile). Both algal supplements promoted faster initial growth between 25 and 42 °C, particularly at 37 °C, by reducing the lag phase and increasing the growth rate. Under acidic stress, survival exceeded 80% after 3 h, with significant improvements at pH 2.5 and 3.5 in the presence of seaweeds, while enzymatic assays demonstrated enhanced tolerance against pepsin, trypsin, and bile salts. Overall, supplementation with brown algal biomass provided modest but consistent benefits to L. plantarum growth and stress resistance, supporting the use of whole macroalgae as functional additives in probiotic formulations for both human and animal nutrition. Full article
Show Figures

Figure 1

13 pages, 3612 KB  
Article
Spatial and Temporal Distribution of Large (1–5 mm) Microplastics on the Strandline of a Macrotidal Sandy Beach (Polzeath, Southwest England) and Their Association with Beach-Cast Seaweed
by Catherine Beale and Andrew Turner
Micro 2025, 5(3), 43; https://doi.org/10.3390/micro5030043 - 19 Sep 2025
Viewed by 809
Abstract
Microplastics (MPs) are ubiquitous and persistent contaminants of the marine environment, but a clear understanding of their cycling, fate, and impacts in coastal zones is lacking. In this study, large MPs (1–5 mm) were sampled spatially and temporally from the strandline of a [...] Read more.
Microplastics (MPs) are ubiquitous and persistent contaminants of the marine environment, but a clear understanding of their cycling, fate, and impacts in coastal zones is lacking. In this study, large MPs (1–5 mm) were sampled spatially and temporally from the strandline of a macrotidal, sandy beach (Polzeath) in southwest England. MPs encompassing a diversity of sources were categorised by morphology (foams, nurdles, biobeads, fragments, fibres, films) and quantified by number and mass, with a selection analysed for polymer type. A total of about 17,600 particles of around 350 g in mass were retrieved from 30 samples over a period of five months, with an abundance ranging from 35 and 2048 per m2. The space- and time-integrated average mass of MPs on the beach strandline was about 2 kg and was dominated (>90%) by fragments, nurdles, and biobeads of polyethylene or polypropylene construction. Nurdles, biobeads, fragments, and, to a lesser extent, fibres were correlated with strandline seaweed abundance, which itself was correlated with previous storm activity. Relationships with seaweed abundance were also supported by visible associations of these MP morphologies with macroalgal deposits through entanglement and adhesion. These observations, coupled with a lack of MPs below the sand’s surface (50 cm depth), suggest that the majority of MPs are transported from an offshore stock with floating organic debris, resulting in a transitory strandline repository and a habitat enriched with small plastics. Full article
Show Figures

Figure 1

26 pages, 3575 KB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Viewed by 2703
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

17 pages, 1701 KB  
Article
Novel Synbiotic Yogurt Formulation Supplemented with Fucoidan from Phaeophyceae Algae to Promote Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG
by Neus Ricós-Muñoz, Sergi Maicas, Miguel Tortajada-Girbés and Maria Consuelo Pina-Pérez
Foods 2025, 14(15), 2589; https://doi.org/10.3390/foods14152589 - 24 Jul 2025
Viewed by 1556
Abstract
Allergy is recognized as a public health problem with pandemic consequences and is estimated to affect more than 50% of Europeans in 2025. Prebiotic and probiotic food implementation has recently emerged as an alternative strategy to promote immunomodulatory beneficial effects in allergic patients. [...] Read more.
Allergy is recognized as a public health problem with pandemic consequences and is estimated to affect more than 50% of Europeans in 2025. Prebiotic and probiotic food implementation has recently emerged as an alternative strategy to promote immunomodulatory beneficial effects in allergic patients. Among prebiotics, Phaeophyceae algae represent a niche of research with enormous possibilities. The present study aims to evaluate the in vitro prebiotic potential of fucoidan from Fucus vesiculosus, Macrocystis pyrifera, and Undaria pinnatifida algae, to promote the growth of Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG as probiotic bacteria added to the formulation of a novel yogurt. Concentrations of fucoidan of 100 and 2000 µg/mL were added to reference growth media and kinetic growth curves for both microorganisms were fitted to the Gompertz equation. Optimized prebiotic conditions for fucoidan were selected to validate in vitro results by means of the formulation of a novel fermented prebiotic yogurt. Conventional yogurts (including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus) were formulated with the different fucoidans, and production batches were prepared for L. rhamnosus and L. reuteri. Increased L. reuteri and L. rhamnosus populations in 1.7–2.2 log10 cycles just after 48 h of in vitro exposure were detected in fucoidan supplemented yogurt. M. pyrifera and U. pinnatifida fucoidans were the most effective ones (500 µg/mL) promoting probiotic growth in new formulated yogurts (during the complete shelf life of products, 28 days). Diet supplementation with fucoidan can be proposed as a strategy to modulate beneficial microbiota against allergy. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

20 pages, 1579 KB  
Article
Functional Evaluation of Fucus vesiculosus Extract: Bioactivity Retention After In Vitro Digestion and Anti-Inflammatory Effects on Murine Peritoneal Macrophages
by Sara Frazzini, Nicoletta Rizzi, Anna Paola Fifi, Eleonora Fusi, Salvatore Roberto Pilu and Luciana Rossi
Appl. Sci. 2025, 15(14), 7911; https://doi.org/10.3390/app15147911 - 16 Jul 2025
Viewed by 2068
Abstract
Background: Nowadays, to improve animal production sustainably, the zootechnical sector is exploring novel, functional ingredients, such as seaweed. This study investigated the functional properties of Fucus vesiculosus and their persistence after simulated digestion. Methods: F. vesiculosus was nutritionally characterized (AOAC methods) and digested [...] Read more.
Background: Nowadays, to improve animal production sustainably, the zootechnical sector is exploring novel, functional ingredients, such as seaweed. This study investigated the functional properties of Fucus vesiculosus and their persistence after simulated digestion. Methods: F. vesiculosus was nutritionally characterized (AOAC methods) and digested in vitro through the INFOGEST protocol. The polyphenol, flavonoid, and phlorotannin contents of the samples were analyzed through colorimetric assays. The antioxidant properties were evaluated using ABTS assay and the growth inhibition capacity against Escherichia coli using the microdilution method. The cytotoxic activity and anti-inflammatory properties were evaluated on mouse peritoneal macrophages using crystal violet assay and the gene expression of IL-1β, IL-6, TNF-α, and iNOS. Results: F. vesiculosus demonstrated high levels of dietary fiber (47.36%) and protein (13.99%). Significant levels of polyphenols (6428.98 µg TAE/g), flavonoids (5171.31 µg CE/g), and phlorotannins (2.10 mg PGE/g) were detected. These bioactive compounds allowed for strong antioxidant activity (85.96% ABTS+ scavenging) and E. coli growth inhibition (17%). Simulated digestion minimally impacted the content of bioactive compounds and their associated functional properties. F. vesiculosus exhibited a protective effect against oxidative stress in macrophages, downregulating pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Conclusions: These findings support the potential of F. vesiculosus as a functional feed ingredient for livestock, maintaining its beneficial properties even after digestion. Full article
Show Figures

Figure 1

3 pages, 2243 KB  
Correction
Correction: Wang et al. Anti-Metabolic Syndrome Effects of Fucoidan from Fucus vesiculosus via Reactive Oxygen Species-Mediated Regulation of JNK, Akt, and AMPK Signaling. Molecules 2019, 24, 3319
by Xueliang Wang, Xindi Shan, Yunlou Dun, Chao Cai, Jiejie Hao, Guoyun Li, Kaiyun Cui and Guangli Yu
Molecules 2025, 30(12), 2574; https://doi.org/10.3390/molecules30122574 - 13 Jun 2025
Viewed by 510
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

19 pages, 2858 KB  
Article
Comparative Evaluation of Dynamic Maceration and Ultrasonic Assisted Extraction of Fucoidan from Four Arctic Brown Algae on Its Antioxidant and Anticancer Properties
by Ekaterina D. Obluchinskaya, Olga N. Pozharitskaya, Irina M. Lapina, Anna A. Kulminskaya, Elena V. Zhurishkina and Alexander N. Shikov
Mar. Drugs 2025, 23(6), 230; https://doi.org/10.3390/md23060230 - 28 May 2025
Cited by 9 | Viewed by 2743
Abstract
The technology of fucoidan extraction significantly affects its properties. This study aimed to evaluate the impact of dynamic maceration (DM) and ultrasound-assisted extraction (UAE) on the antioxidant and anticancer properties of fucoidan from Arctic brown algae. Fucus vesiculosus (Fv), Fucus serratus (Fs), Fucus [...] Read more.
The technology of fucoidan extraction significantly affects its properties. This study aimed to evaluate the impact of dynamic maceration (DM) and ultrasound-assisted extraction (UAE) on the antioxidant and anticancer properties of fucoidan from Arctic brown algae. Fucus vesiculosus (Fv), Fucus serratus (Fs), Fucus distichus (Fd), and Ascophyllum nodosum (An) were collected from the Barents Sea. The average yield of fucoidan and uronic acid was higher (by 43.2% and 22.0%, respectively) after UAE, while phlorotannin content decreased by 53.7% compared with DM. The fucose level for all algae increased after UAE, while the molecular weight of fucoidans was lower. The highest antioxidant activity was noted for the fucoidan from An and Fv, which were obtained by DM and can be associated with the high concentrations of phlorotannins. The treatment of HeLa G-63 cells with all studied fucoidans for 48 h increased concentration-dependently the number of dead cells. The most promising were Fv and Fs fucoidans with high phlorotannins, low sulfates, and uronic acid extracted by DM. The co-administration of paclitaxel and fucoidan caused cell cycle arrest in the G2/M phase. The calculated for the first time combinatory effect showed that the simultaneous use of paclitaxel and fucoidan exposure leads to a synergistic interaction. Our results support the rationality of fucoidan use in complex chemotherapy to improve survival, quality of life and immunity in patients with cervical carcinoma. Full article
(This article belongs to the Special Issue The Extraction and Application of Functional Components in Algae)
Show Figures

Figure 1

18 pages, 2558 KB  
Article
Antioxidant Effect of a Fucus vesiculosus Extract on Intestinal Ischemia/Reperfusion Injury in Rats: A Biochemical and Histological Study
by Desirée Sánchez-Bonet, Carolina Padrón-Sanz, José Miguel Lloris-Cejalvo, José Miguel Lloris-Carsí and Dolores Cejalvo-Lapeña
Antioxidants 2025, 14(6), 624; https://doi.org/10.3390/antiox14060624 - 23 May 2025
Cited by 2 | Viewed by 1296
Abstract
Fucus vesiculosus is a brown seaweed known for its strong antioxidant properties, mainly attributed to its high polyphenolic content. This study aimed to evaluate the antioxidant protective effect of an optimised F. vesiculosus extract in an experimental model of intestinal ischemia/reperfusion (I/R) injury, [...] Read more.
Fucus vesiculosus is a brown seaweed known for its strong antioxidant properties, mainly attributed to its high polyphenolic content. This study aimed to evaluate the antioxidant protective effect of an optimised F. vesiculosus extract in an experimental model of intestinal ischemia/reperfusion (I/R) injury, considering the intestine as particularly vulnerable to this pathology. Seventy-two male Wistar albino rats were randomly divided into twelve groups: Sham, I/R groups (3 and 24 h reperfusion), I/R plus vehicle groups (three application times, 3 h reperfusion), and I/R plus F. vesiculosus extract groups (three application times, 3 and 24 h reperfusion). Intestinal injury was assessed through biochemical markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], and mieloperoxidase [MPO]), inflammatory cytokines (interleukin 1 β [IL-1β] and interleukin [IL-10]), and histological analysis. Results demonstrated that treatment with F. vesiculosus significantly reduced oxidative stress and inflammation caused by I/R injury (p < 0.05), restoring analysed parameters (MDA, SOD, CAT, IL-10) to levels comparable to the Sham group. Histological examination confirmed the preservation of intestinal mucosal integrity following F. vesiculosus administration. These findings suggest that the antioxidant extract from F. vesiculosus effectively protects against intestinal I/R injury, highlighting its potential for clinical use in preventing and managing this pathological condition, particularly in surgical contexts. Full article
Show Figures

Figure 1

21 pages, 1338 KB  
Article
Effect of Ascophyllum nodosum, Sideritis scardica and Fucus vesiculosus Extracts on Germination, Initial Growth and Antioxidant Potential of Red Russian Kale Microgreens
by Barbara Drygaś, Ewa Szpunar-Krok, Joanna Kreczko, Tomasz Piechowiak, Czesław Puchalski and Marta Jańczak-Pieniążek
Agriculture 2025, 15(9), 961; https://doi.org/10.3390/agriculture15090961 - 28 Apr 2025
Viewed by 1205
Abstract
Natural plant- and algae-based extracts used in crop cultivation offer numerous advantages, including the potential to positively affect plant growth, exhibit hormonal activity, increase stress resistance, improve crop quality as environmentally benign alternatives to synthetic agrochemicals and help combat oxidative stress. The presented [...] Read more.
Natural plant- and algae-based extracts used in crop cultivation offer numerous advantages, including the potential to positively affect plant growth, exhibit hormonal activity, increase stress resistance, improve crop quality as environmentally benign alternatives to synthetic agrochemicals and help combat oxidative stress. The presented experiments aimed to compare the effectiveness of extracts from brown algae such as Ascophyllum nodosum and Fucus vesiculosus, as well as the plant Sideritis scardica, on the germination and initial growth of red kale (Brassica napus var. Pabularia) microgreens. Microgreens treated with aqueous extracts of A. nodosum, F. vesiculosus, as well as the control group, had the highest growth, whereas the lowest growth was observed in plants treated with water–ethanol extracts at the highest tested concentration (10%). The 10% water–ethanol extracts of brown algae reduced plant biomass, while aqueous extracts increased it. Applying water extracts of algae at concentrations (10, 1, 0.1%), as well as the water extract of S. scardica (10, 1%), led to an increase in the total phenolic content in the tested experimental groups. A significant influence on increasing total flavonoid content was noted for water extracts of F. vesiculosus at concentrations ranging from 0.1% to 10%. An opposite effect was observed for the water–ethanol extracts, where the lowest TFC was found in plants grown on mats soaked with 0.1% F. vesiculosus and 1% A. nodosum. All water–ethanol extracts tended to reduce the antioxidant activity of the tested red kale microgreens. In microgreens treated with water extracts of F. vesiculosus at concentrations of 1% and 10%, an increase in antioxidant activity was observed. Examining the impact of plant and algae extracts on kale germination and growth may provide valuable information on ways to improve the quality and health-promoting properties of kale microgreens. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

67 pages, 2138 KB  
Review
Antioxidants to Defend Healthy and Youthful Skin—Current Trends and Future Directions in Cosmetology
by Anna Budzianowska, Katarzyna Banaś, Jaromir Budzianowski and Małgorzata Kikowska
Appl. Sci. 2025, 15(5), 2571; https://doi.org/10.3390/app15052571 - 27 Feb 2025
Cited by 25 | Viewed by 16659
Abstract
Antioxidants are indispensable in protecting the skin from oxidative stress caused by environmental factors such as ultraviolet (UV) radiation, pollution, and lifestyle-related influences. This review examines the essential role of antioxidants in modern cosmetology, highlighting their dual functionality as protective agents and active [...] Read more.
Antioxidants are indispensable in protecting the skin from oxidative stress caused by environmental factors such as ultraviolet (UV) radiation, pollution, and lifestyle-related influences. This review examines the essential role of antioxidants in modern cosmetology, highlighting their dual functionality as protective agents and active components in skincare formulations. Oxidative stress, primarily driven by an imbalance between reactive oxygen species (ROS) production and the skin’s defense mechanisms, accelerates aging processes, damages cellular structures, and compromises skin integrity. Antioxidants, whether natural or synthetic, act by neutralizing ROS, reducing inflammation, and promoting cellular repair, effectively mitigating these harmful effects. This comprehensive analysis synthesizes findings from 280 studies accessed via key databases, including PubMed, Scopus, and ScienceDirect. It investigates the biochemical mechanisms of antioxidant activity, emphasizing compounds such as vitamins (C, E, A), carotenoids, polyphenols, peptides, and minerals, alongside bioactive extracts derived from algae, fungi, lichens, and plants. Carotenoids, including ꞵ-carotene, lutein, lycopene, and astaxanthin, demonstrate potent antioxidant activity, making them crucial for photoprotection and anti-aging. Phenolic compounds, such as ferulic acid, resveratrol, hesperidin, and xanthohumol, play a significant role in neutralizing oxidative stress and improving skin health. This review also highlights bioactives from algae, fungi, and lichens. Algae, particularly microalgae like Haematococcus pluvialis, known for astaxanthin production, are highlighted for their extraordinary photoprotective and anti-aging properties. Brown algae (Fucus vesiculosus) and red algae (Porphyra) provide polysaccharides and bioactive molecules that enhance hydration and barrier function. Fungi contribute a wealth of antioxidant and anti-inflammatory compounds, including polysaccharides, ꞵ-glucans, and enzymes, which support cellular repair and protect against oxidative damage. Lichens, through unique phenolic metabolites, offer potent free-radical-scavenging properties and serve as effective ingredients in formulations targeting environmental stress. Plant-derived antioxidants offer a diverse range of benefits. Plant-derived antioxidants, such as flavonoids, phenolic acids, and carotenoids, further amplify skin resilience, hydration, and repair mechanisms, aligning with the growing demand for nature-inspired solutions in cosmetics. The integration of these diverse natural sources into cosmetic formulations reflects the industry’s commitment to sustainability, innovation, and efficacy. By harnessing the synergistic potential of bioactives from algae, fungi, lichens, and plants, modern cosmetology is advancing toward multifunctional, health-conscious, and eco-friendly products. Future research directions include optimizing delivery systems for these bioactives, enhancing their stability and bioavailability, and expanding their applications to meet evolving dermatological challenges. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

Back to TopTop