Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = Food–Energy–Water (FEW) Nexus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 6077 KB  
Article
Sustainable Land Management by Agrivoltaics in Colombia’s Post-Conflict Regions: An Integrated Approach from the Water–Energy–Food Nexus
by Sebastian Caceres-Garcia, Pablo Rodriguez-Casas and Javier Rosero-Garcia
World 2025, 6(4), 149; https://doi.org/10.3390/world6040149 - 7 Nov 2025
Viewed by 380
Abstract
Agrivoltaic (AV) systems are increasingly recognized as a strategy to enhance sustainable land management, yet their application in post-conflict settings remains underexplored. This study addresses this gap by evaluating AV deployment in two Colombian municipalities located in PDET/ZOMAC regions, using an integrated framework [...] Read more.
Agrivoltaic (AV) systems are increasingly recognized as a strategy to enhance sustainable land management, yet their application in post-conflict settings remains underexplored. This study addresses this gap by evaluating AV deployment in two Colombian municipalities located in PDET/ZOMAC regions, using an integrated framework that expands the conventional Water–Energy–Food (WEF) nexus into the Water–Energy–Food–Soil–Climate–Communities (WEFSCC) nexus. The research combined GIS-based site characterization, crop yield and water balance modeling (contrasting traditional irrigation with hydroponics), and photovoltaic performance simulations for 30 kW systems, under conservative and moderate scenarios. Economic analyses included Net Present Value (NPV), Internal Rate of Return (IRR), and Free Cash Flow (FCL), with sensitivity tests for crop prices, yields, tariffs, and costs. Results indicate that AV can reduce crop irrigation demand by up to 40%, while generating 17 MWh/month of electricity per site. Cabrera exhibited higher profitability than Pisba, explained by yield differences and site-specific energy outputs. Comparative analysis confirmed consistency with experiences in Africa and Europe, while emphasizing local socio-environmental benefits. Conclusions highlight AV systems as resilient tools for sustainable land management in Colombia’s post-conflict regions, with actionable implications for land-use regulation, fiscal incentives, and international cooperation programs targeting rural development. Full article
(This article belongs to the Special Issue Green Economy and Sustainable Economic Development)
Show Figures

Figure 1

25 pages, 1582 KB  
Review
A Review on Climate Change Impacts on Freshwater Systems and Ecosystem Resilience
by Dewasis Dahal, Nishan Bhattarai, Abinash Silwal, Sujan Shrestha, Binisha Shrestha, Bishal Poudel and Ajay Kalra
Water 2025, 17(21), 3052; https://doi.org/10.3390/w17213052 - 24 Oct 2025
Viewed by 1650
Abstract
Climate change is fundamentally transforming global water systems, affecting the availability, quality, and ecological dynamics of water resources. This review synthesizes current scientific understanding of climate change impacts on hydrological systems, with a focus on freshwater ecosystems, and regional water availability. Rising global [...] Read more.
Climate change is fundamentally transforming global water systems, affecting the availability, quality, and ecological dynamics of water resources. This review synthesizes current scientific understanding of climate change impacts on hydrological systems, with a focus on freshwater ecosystems, and regional water availability. Rising global temperatures are disrupting thermal regimes in rivers, lakes, and ponds; intensifying the frequency and severity of extreme weather events; and altering precipitation and snowmelt patterns. These changes place mounting stress on aquatic ecosystems, threaten water security, and challenge conventional water management practices. The paper also identifies key vulnerabilities across diverse geographic regions and evaluates adaptation strategies such as integrated water resource management (IWRM), the water, energy and food (WEF) nexus, ecosystem-based approaches (EbA), the role of advanced technology and infrastructure enhancements. By adopting these strategies, stakeholders can strengthen the resilience of water systems and safeguard critical resources for both ecosystems and human well-being. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

26 pages, 17979 KB  
Article
Various Indices of Meteorological and Hydrological Drought in the Warta Basin in Poland
by Joanna Wicher-Dysarz, Tomasz Dysarz, Mariusz Sojka, Joanna Jaskuła, Zbigniew W. Kundzewicz and Supanon Kaiwong
Water 2025, 17(21), 3035; https://doi.org/10.3390/w17213035 - 22 Oct 2025
Viewed by 410
Abstract
The Warta River basin, Poland’s third-largest basin, is highly vulnerable to drought, which occurs in both cold and warm seasons. This study examined meteorological and hydrological droughts using daily temperature and precipitation data from 211 meteorological stations and discharge data from 15 hydrological [...] Read more.
The Warta River basin, Poland’s third-largest basin, is highly vulnerable to drought, which occurs in both cold and warm seasons. This study examined meteorological and hydrological droughts using daily temperature and precipitation data from 211 meteorological stations and discharge data from 15 hydrological gauges for 2000–2020. Four indicators were applied: SPI and SPEI for meteorological drought, and SRI and ThLM for hydrological drought. The analysis revealed prolonged droughts and a systematic decline in SRI values, especially from March to September. The longest event, a shallow drought, lasted 555 days between 2019 and 2020 at the Sławsk gauge. The period from 2018 to 2020 was particularly severe, with drought intensity increasing and affecting 70–80% of river flows, while events persisted longer than usual. Water withdrawals, especially for municipal use, further reduced river levels. The section between Uniejów and Oborniki, located downstream of one of Poland’s largest reservoirs, proved most vulnerable to hydrological drought. Overall, results indicate a deteriorating water situation in the Warta basin, with the most significant deficits in spring and summer. These trends pose serious challenges for water management and water supply security. An improved understanding of meteorological and hydrological droughts and their impact is essential for managing the water–food–environment–energy nexus, including restrictions on water use for domestic, economic, and agricultural purposes, as well as the functioning of aquatic ecosystems. Full article
(This article belongs to the Special Issue Rainfall Variability, Drought, and Land Degradation)
Show Figures

Figure 1

19 pages, 914 KB  
Article
Driving Factors of Spatial–Temporal Differences in Agricultural Energy Consumption Evolution in the Yellow River Basin: A Perspective of Water–Energy–Food–Land–Population Nexus
by Chenjun Zhang, Jiaqin Shi, Xiangyang Zhao and Erjie Pei
Water 2025, 17(20), 2971; https://doi.org/10.3390/w17202971 - 15 Oct 2025
Viewed by 458
Abstract
The Yellow River Basin (YRB) is a core region for agricultural production in China; however, its agricultural energy consumption exhibits significant spatial–temporal differences, and it is confronted with the practical demand for the coordination of low-carbon transition and food security. Investigating the driving [...] Read more.
The Yellow River Basin (YRB) is a core region for agricultural production in China; however, its agricultural energy consumption exhibits significant spatial–temporal differences, and it is confronted with the practical demand for the coordination of low-carbon transition and food security. Investigating the driving factors of agricultural energy consumption in the YRB is crucial for optimizing its agricultural energy structure, advancing low-carbon agricultural development, and offering targeted support for regional agricultural sustainability. Based on the data of YRB from 2000 to 2021, this paper employs the Logarithmic Mean Divisia Index (LMDI) method to decompose the driving factors of agricultural energy consumption in the basin by examining the interrelationships among five key factors: water, energy, food, land, and population. The results showed the following: (1) Per capita food production efficiency effect is the main factor driving the increase in agricultural energy consumption, followed by the water consumption output efficiency effect, the effective irrigation rate effect, the actual irrigation ratio effect, and the population scale effect. (2) The agricultural employment structure effect, the energy consumption output efficiency effect, the intensity of agricultural acreage effect, and the irrigation quota effect have reduced agricultural energy consumption. (3) Specifically, in Inner Mongolia, Shanxi and Henan, the largest incremental effect is the per capita food production efficiency effect. However, the primary driver in the remaining six provinces is the water consumption output efficiency effect. Regarding the reduction effect, the largest driver in Gansu, Shanxi and Shandong is the energy consumption output efficiency effect. Further, this paper analyzes the drivers of spatial differences in agricultural energy consumption in nine places. The research results can provide theoretical support and practical references for formulating targeted regional policies for the low-carbon transition of agricultural energy in the YRB. Full article
Show Figures

Figure 1

36 pages, 7377 KB  
Article
Ecological Comprehensive Efficiency and Driving Mechanisms of China’s Water–Energy–Food System and Climate Change System Based on the Carbon Nexus: Insights from the Integration of Network DEA and the Geographic Detector
by Fang-Rong Ren, Fang-Yi Sun, Xiao-Yan Liu and Hui-Lin Liu
Land 2025, 14(10), 2042; https://doi.org/10.3390/land14102042 - 13 Oct 2025
Viewed by 367
Abstract
As a major energy producer and consumer, China has witnessed rapid growth in carbon emissions, which are closely linked to changes in regional climate and the environment. Water, energy, and food (W-E-F) are the three most critical components of human production and daily [...] Read more.
As a major energy producer and consumer, China has witnessed rapid growth in carbon emissions, which are closely linked to changes in regional climate and the environment. Water, energy, and food (W-E-F) are the three most critical components of human production and daily life, and achieving the coordinated development of these three resources and connecting them with climate change through the carbon emissions generated during their utilization processes has become a key issue for realizing regional ecological sustainable development. This study constructs a dynamic two-stage network slack-based measure-data envelopment analysis (SBM-DEA) model, which integrates the water–energy–food (W-E-F) system with the climate change process to evaluate China’s comprehensive ecological efficiency from 2011 to 2022, and adopts the Dagum Gini coefficient decomposition, kernel density estimation, hierarchical clustering, and geographical detector model to analyze provincial panel data, thereby assessing efficiency patterns, regional differences, and driving mechanisms. The novelty and contributions of this study can be summarized in three aspects. First, it establishes a unified framework that incorporates the W-E-F nexus and climate change into a dynamic network SBM-DEA model, enabling a more systematic assessment of ecological efficiency. Second, it uncovers that interregional overlap effects and policy-driven factors are the dominant sources of spatial and temporal disparities in ecological efficiency. Third, it further quantifies the interactive effects among key driving factors using Geodetector, thus offering practical insights for regional coordination and policy design. The results show that China’s national ecological efficiency is at a medium level. Southern China has consistently maintained a leading position, while provinces in northwest and southwest China have remained relatively backward; the efficiency of the water–energy–food integration stage is relatively high, whereas the efficiency of the climate change stage is medium and exhibits significant temporal fluctuations. Interregional differences are the main source of efficiency gaps; ecological quality, environmental protection efforts, and population size are identified as the primary driving factors, and their interaction effects have intensified spatial heterogeneity. In addition, sub-indicator analysis reveals that the efficiency related to total wastewater, air pollutant emissions, and agricultural pollution shows good synergy, while the efficiency associated with sudden environmental change events is highly volatile and has weak correlations with other undesirable outputs. These findings deepen the understanding of the water–energy–food-climate system and provide policy implications for strengthening ecological governance and regional coordination. Full article
Show Figures

Figure 1

17 pages, 5561 KB  
Article
Swimming Pools in Water Scarce Regions: A Real or Exaggerated Water Problem? Case Studies from Southern Greece
by G.-Fivos Sargentis, Emma Palamarczuk and Theano Iliopoulou
Water 2025, 17(20), 2934; https://doi.org/10.3390/w17202934 - 11 Oct 2025
Cited by 1 | Viewed by 827
Abstract
Swimming pools, symbols of luxury in tourism-driven Greece, raise concerns about water consumption in water-scarce regions. This study assesses their hydrological impact in two regions of Southern Greece, West Mani (Peloponnese) and Naxos Island (Cyclades), within the water–energy–food nexus framework, evaluating the resulting [...] Read more.
Swimming pools, symbols of luxury in tourism-driven Greece, raise concerns about water consumption in water-scarce regions. This study assesses their hydrological impact in two regions of Southern Greece, West Mani (Peloponnese) and Naxos Island (Cyclades), within the water–energy–food nexus framework, evaluating the resulting trade-offs. Using satellite imagery, we identified 354 pools in West Mani (11,738 m2) and 556 in Naxos (26,825 m2). Two operational scenarios were evaluated: complete seasonal emptying and refilling (Scenario 1) and one-third annual water renewal (Scenario 2). Annual water use ranged from 39,000 to 51,000 m3 in West Mani and 98,000 to 124,000 m3 in Naxos—equivalent to the needs of 625–2769 and 1549–6790 people in West Mani and Naxos, respectively. In Naxos, this volume could alternatively irrigate 27–40 hectares of potatoes, producing food for 700–1500 people. Energy requirements, particularly where desalination is used, further increase the burden, with Naxos pools requiring 384–846 MWh annually. Although swimming pools are highly visible water consumers, their overall contribution to water scarcity is modest compared to household and agricultural uses. Their visibility, however, amplifies public concern. Rainwater harvesting, requiring collection areas 10–24 times larger than pool surface areas, especially in residential and hotel settings, could make pools largely self-sufficient. Integrating such measures into water management and tourism policy can help balance luxury amenities with resource conservation in water-scarce Mediterranean regions. Full article
Show Figures

Figure 1

18 pages, 2167 KB  
Article
Turning Organic Waste into Energy and Food: Household-Scale Water–Energy–Food Systems
by Seneshaw Tsegaye, Terence Wise, Gabriel Alford, Peter R. Michael, Mewcha Amha Gebremedhin, Ankit Kumar Singh, Thomas H. Culhane, Osman Karatum and Thomas M. Missimer
Sustainability 2025, 17(19), 8942; https://doi.org/10.3390/su17198942 - 9 Oct 2025
Viewed by 832
Abstract
Population growth drives increasing energy demands, agricultural production, and organic waste generation. The organic waste contributes to greenhouse gas emissions and increasing landfill burdens, highlighting the need for novel closed-loop technologies that integrate water, energy, and food resources. Within the context of the [...] Read more.
Population growth drives increasing energy demands, agricultural production, and organic waste generation. The organic waste contributes to greenhouse gas emissions and increasing landfill burdens, highlighting the need for novel closed-loop technologies that integrate water, energy, and food resources. Within the context of the Water–energy–food Nexus (WEF), wastewater can be recycled for food production and food waste can be converted into clean energy, both contributing to environmental impact reduction and resource sustainability. A novel household-scale, closed-loop WEF system was designed, installed and operated to manage organic waste while retrieving water for irrigation, nutrients for plant growth, and biogas for energy generation. The system included a biodigester for energy production, a sand filter system to regulate nutrient levels in the effluent, and a hydroponic setup for growing food crops using the nutrient-rich effluent. These components are operated with a daily batch feeder coupled with automated sensors to monitor effluent flow from the biodigester, sand filter system, and the feeder to the hydroponic system. This novel system was operated continuously for two months using typical household waste composition. Controlled experimental tests were conducted weekly to measure the nutrient content of the effluent at four locations and to analyze the composition of biogas. Gas chromatography was used to analyze biogas composition, while test strips and In-Situ Aqua Troll Multi-Parameter Water Quality Sonde were employed for water quality measurements during the experimental study. Experimental results showed that the system consistently produced biogas with 76.7% (±5.2%) methane, while effluent analysis confirmed its potential as a nutrient source with average concentrations of phosphate (20 mg/L), nitrate (26 mg/L), and nitrite (5 mg/L). These nutrient values indicate suitability for hydroponic crop growth and reduced reliance on synthetic fertilizers. This novel system represents a significant step toward integrating waste management, energy production, and food cultivation at the source, in this case, the household. Full article
Show Figures

Figure 1

25 pages, 4999 KB  
Review
Water and Waste Water Treatment Research in Mexico and Its Occurrence in Relation to Sustainable Development Goal 6
by Liliana Reynoso-Cuevas, Adriana Robledo-Peralta, Naghelli Ortega-Avila and Norma A. Rodríguez-Muñoz
Earth 2025, 6(4), 114; https://doi.org/10.3390/earth6040114 - 25 Sep 2025
Viewed by 1744
Abstract
In Mexico, 95% of the population has access to drinking water sources, but only about 65% of domestic waste water is treated to safe levels. This study analyzes forty years of Mexican scientific production on water and waste water treatment through a bibliometric [...] Read more.
In Mexico, 95% of the population has access to drinking water sources, but only about 65% of domestic waste water is treated to safe levels. This study analyzes forty years of Mexican scientific production on water and waste water treatment through a bibliometric and conceptual approach, evaluating its contribution Sustainable Development Goal (SDG) 6. The analysis identified three major research clusters: (1) biological processes for water treatment, (2) development and optimization of physical–chemical processes, and (3) water quality and management. These themes reflect the evolution of biological approaches for identifying and removing organic contaminants, the application of advanced techniques for improving water quality, and the promotion of sustainable water use. The study also highlights the growing attention to emerging contaminants, nanotechnology, integrated water resource management, and persistent challenges in sanitation. With respect to SDG 6, Mexican research has mainly focused on targets 6.1 (universal and equitable access to drinking water), 6.3 (water quality), and 6.5 (water resources management), while targets 6.2 (sanitation), 6.a (international cooperation), and 6.b (community participation) remain underrepresented compared with the international benchmarks, where the research trend is on water management, resources, and the water–food–energy nexus. Finally, the findings also show synergies with SDGs 11 (sustainable cities and communities), 9 (industry, innovation, and infrastructure), and 3 (good health and well-being), although gaps persist in addressing equitable access to water and society participation. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

18 pages, 9599 KB  
Article
Design and Development of Crossflow Turbine for Off-Grid Electrification
by Asfafaw H. Tesfay, Sirak A. Weldemariam and Kalekiristos G. Gebrelibanos
Energies 2025, 18(19), 5108; https://doi.org/10.3390/en18195108 - 25 Sep 2025
Cited by 1 | Viewed by 524
Abstract
Investing in large-scale hydropower is on the rise in Ethiopia in accordance with the country’s climate-resilient green economy strategy. Rural electrification is a top priority on the development agenda of the country, with very limited off-grid interventions. Although small-scale hydropower can bring various [...] Read more.
Investing in large-scale hydropower is on the rise in Ethiopia in accordance with the country’s climate-resilient green economy strategy. Rural electrification is a top priority on the development agenda of the country, with very limited off-grid interventions. Although small-scale hydropower can bring various social and economic benefits compared to other off-grid solutions, it is hardly localized in the country. The motivation for this research is to break this technological bottleneck by synergizing and strengthening the local capacity. Accordingly, this paper presents the full-scale crossflow turbine design and development process of a power plant constructed to give electricity access to about 450 households in a rural village called Amentila. Based on a site survey and the resource potential, the power plant was designed for a 125 kW peak at 0.3 m3/s of discharge with a 53 m head. The crossflow was selected based on the head, discharge, and simplicity of development with the available local capacities. The detailed design of the turbine and its auxiliary components was developed and simulated using SolidWorks and CFD ANSYS CFX. The power plant has a run-of-river design, targeting provision of power during peak hours. This study demonstrates an off-grid engineering solution with applied research on the water–energy–food–environment nexus. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

17 pages, 1530 KB  
Article
Aromatic and Medicinal Plant (AMP) Valorization via a Farmer-Centric Approach for the Sustainable Development of Climate-Challenged Areas Affected by Rural Exodus (Southeastern Tunisia)
by Taoufik Gammoudi, Houda Besser, Amel Chaieb, Fethi Abdelli, Afef Mahjoubi and Fernando Nardi
Sustainability 2025, 17(18), 8494; https://doi.org/10.3390/su17188494 - 22 Sep 2025
Viewed by 777
Abstract
The valorization of local plant cover, particularly through the integration of indigenous knowledge, is central to Tunisia’s economic development strategies. These approaches focus on diversifying agriculture by enhancing local natural and cultural heritage to strengthen community resilience amid environmental and socio-economic changes and [...] Read more.
The valorization of local plant cover, particularly through the integration of indigenous knowledge, is central to Tunisia’s economic development strategies. These approaches focus on diversifying agriculture by enhancing local natural and cultural heritage to strengthen community resilience amid environmental and socio-economic changes and to address rural exodus. This study examines the feasibility of AMP-based micro-projects in Matmata (southeastern Tunisia) by applying the Water–Energy–Food–Ecosystem (WEFE) nexus and participatory methods involving local stakeholders. Field surveys, literature reviews, and statistical analyses reveal growing youth interest in AMP ventures, driven by rising pharmaceutical and cosmetic demand. Economic viability is confirmed by internal rate of return (IRR) values of 32%, 28%, and 43%, all well above the 10% profitability threshold. Profitability index (PI) values indicate efficient investments, yielding returns of 2.64, 2.13, and 5.31 dinars per dinar invested. The initiatives also deliver socio-cultural and environmental benefits through WEFE-based resource management. Beyond profitability, the study identifies gaps and opportunities to enhance AMP biodiversity, resource management, and sustainable diversification in southern Tunisia. Further efforts are required to increase market value and ensure equitable benefit distribution. Government policies should focus on raising WEFE awareness, building capacity, and investing in climate-smart agriculture, especially in vulnerable, migration-prone regions, supported by reforms in financing, taxation, and spatial planning. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

24 pages, 11825 KB  
Article
Explainable AI-Driven Integration of Water–Energy–Food Nexus into Supply–Demand Networks
by Lei Cao, Haonan Zhang, Xueliang Yang, Chaoyu Zhang, Chengbin Xi, Yunlu Zhang and Zhaowu Yu
Land 2025, 14(9), 1920; https://doi.org/10.3390/land14091920 - 20 Sep 2025
Viewed by 643
Abstract
The supply–demand network facilitates regional sustainable development by optimizing resource flows and allocation within the Water–Energy–Food system. However, few studies have constructed such networks from a Water–Energy–Food Nexus (WEF Nexus) supply–demand perspective, and the key driving factors influencing network formation, along with their [...] Read more.
The supply–demand network facilitates regional sustainable development by optimizing resource flows and allocation within the Water–Energy–Food system. However, few studies have constructed such networks from a Water–Energy–Food Nexus (WEF Nexus) supply–demand perspective, and the key driving factors influencing network formation, along with their underlying mechanisms, remain poorly understood. To bridge this gap, we propose a new framework for constructing WEF Nexus supply–demand networks via explainable artificial intelligence (EAI). Taking the Bohai Rim urban agglomeration as an example, we identified the key factors affecting the long-term supply and demand of the WEF Nexus and their mechanisms using the XGBoost-SHAP model. By quantifying the magnitude and direction of these factors’ influences, we constructed supply–demand networks and further developed optimization strategies that consider complex factor interactions and distinct thresholds. Key findings include: (1) Identification of 114 stable supply sources and 128 chronic deficit sources, forming 472 high-efficiency and 296 standard supply–demand corridors, with 6 major supply potential zones delineated. (2) Precipitation, vegetation coverage, human activity intensity, cropland distribution, and temperature emerged as primary determinants in descending order of importance. (3) Synergistic analysis revealed significant negative interactions between human activity and precipitation/vegetation, but positive correlation with temperature, with distinct nonlinear thresholds across zones. Based on these findings, we proposed a differentiated optimization strategy. Our study constructs a supply–demand network from the perspective of the WEF Nexus and highlights the importance of threshold effects and interactions among key factors in the construction and optimization of the network. The research results are also applicable to other urban agglomerations facing similar challenges. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

21 pages, 1689 KB  
Review
Reconsidering the Soil–Water–Crops–Energy (SWCE) Nexus Under Climate Complexity—A Critical Review
by Nektarios N. Kourgialas
Agriculture 2025, 15(17), 1891; https://doi.org/10.3390/agriculture15171891 - 5 Sep 2025
Viewed by 660
Abstract
Nowadays, sustainable agriculture is emerging as a critical framework within which food production, environmental protection and resilience to climate change must go hand in hand. At the core of this framework are the linkages between soil, water, crops, and energy (SWCE). As pressures [...] Read more.
Nowadays, sustainable agriculture is emerging as a critical framework within which food production, environmental protection and resilience to climate change must go hand in hand. At the core of this framework are the linkages between soil, water, crops, and energy (SWCE). As pressures from climate change, population growth and agricultural land degradation intensify, environmental management strategies are called upon to become more interdisciplinary, targeted and cost-effective. This review article synthesizes recent scientific findings shaping the contemporary understanding of hydro-environmental agriculture and critically examines the conceptual foundation of the SWCE nexus under climate complexity. In addition to reviewing methodological approaches, it highlights both successful global practice examples—such as integrated solar-powered irrigation and conservation-oriented soil–water management systems—and failed or problematic implementations where institutional fragmentation, unsustainable groundwater use, or energy trade-offs undermined outcomes. By analyzing these contrasting experiences, the article identifies key limiting factors and enabling conditions for scaling up nexus-based solutions. Finally, it provides recommendations for future research, integration, and policy-making, emphasizing the importance of adaptive governance, participatory approaches, and cross-sectoral collaboration to enhance the sustainability and resilience of agriculture. Full article
Show Figures

Graphical abstract

29 pages, 2759 KB  
Article
Exploring the Coordinated Development of Water-Land-Energy-Food System in the North China Plain: Spatio-Temporal Evolution and Influential Determinants
by Zihong Dai, Jie Wang, Wei Fu, Juanru Yang and Xiaoxi Xia
Land 2025, 14(9), 1782; https://doi.org/10.3390/land14091782 - 2 Sep 2025
Viewed by 720
Abstract
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the [...] Read more.
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the water-land-energy-food (WLEF) nexus synergies in China’s North China Plain, a vital grain base for China’s food security. We develop a city-level WLEF evaluation framework and employ a coupling coordination model to assess spatiotemporal patterns of the WLEF system from 2010 to 2022. Additionally, we diagnose critical internal and external influencing factors of the WLEF coupling system, using obstacle degree modeling and geographical detectors. The results indicate that during this period, the most critical internal factor was per capita water resource availability. The impact of the external factor—urbanization level—was characterized by fluctuation and a general upward trend, and by 2022, it had become the dominant influencing factor. Results indicated that the overall development of the WLEF system exhibited a fluctuating trend of initial increasing then decreasing during the study period, peaking at 0.426 in 2016. The coupling coordination level of the WLEF system averaged around 0.5, with the highest value (0.526) in 2016, indicating a marginally coordinated state. Regionally, a higher degree of coordination was presented in the southern regions of the North China Plain compared with the northern areas. Anhui province achieved the optimal coordination, while Beijing consistently ranked lowest. The primary difference lies in the abundant water resources in Anhui, in contrast to the water scarcity in Beijing. Internal diagnostic analysis identified per capita water availability as the primary constraint on system coordination. External factors, including urbanization rate, primary industry’s added value, regional population, and rural residents’ disposable income, exhibited growing influence on the system over time. This study provides a theoretical framework for WLEF system coordination and offers decision-making support for optimizing resource allocation and promoting sustainable development in comparable regions. Full article
(This article belongs to the Special Issue Connections Between Land Use, Land Policies, and Food Systems)
Show Figures

Figure 1

1 pages, 6640 KB  
Correction
Correction: Pérez Pérez et al. Transboundary Water–Energy–Food Nexus Management in Major Rivers of the Aral Sea Basin Through System Dynamics Modelling. Water 2025, 17, 2270
by Sara Pérez Pérez, Iván Ramos-Diez and Raquel López Fernández
Water 2025, 17(17), 2578; https://doi.org/10.3390/w17172578 - 1 Sep 2025
Viewed by 925
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

24 pages, 9685 KB  
Article
Urban Planning Policies and Architectural Design for Sustainable Food Security: A Case Study of Smart Cities in Indonesia
by Rafi Haikal, Thoriqi Firdaus, Herdis Herdiansyah and Rizqi Shafira Chairunnisa
Sustainability 2025, 17(16), 7546; https://doi.org/10.3390/su17167546 - 21 Aug 2025
Viewed by 2399
Abstract
The urgent need for sustainable food systems in Indonesia is hindered by urban planning policies that are disconnected from food security priorities. Smart city planning policies in Indonesia have been subject to numerous misconceptions compared to successful implementations in developed countries. This study [...] Read more.
The urgent need for sustainable food systems in Indonesia is hindered by urban planning policies that are disconnected from food security priorities. Smart city planning policies in Indonesia have been subject to numerous misconceptions compared to successful implementations in developed countries. This study examines the relationship between urban planning policies and architectural design in fostering sustainable food systems, employing a mixed-methods approach that combines multiple linear regression analysis with a sample of 75 smart cities, correlation analysis, and case studies from six representative cities that demonstrate best practices. Key findings reveal that food security is significantly undermined by the Gross Regional Domestic Product (GRDP), indicating distributional inequalities, high food expenditure, and a lack of clean water, while access to electricity improves resilience. Case study analysis showed that Semarang is the city with the highest readiness level (97%), followed by Makassar (91%), which employs a Holistic Benchmark approach, Jakarta (91%), which follows a Technological—fragmented approach, Samarinda (86%) and Medan (79%), which are in a Developing Transition phase, and Surabaya (66%), which utilizes a Community and Local Initiatives approach. Each city adopted a different approach, which means the national strategy for developing Smart Cities will also differ; however, they must prioritize equitable infrastructure and architectural innovation, such as urban farming integration and a water–energy–food nexus system. Smart cities extend beyond technological innovations, encompassing integrated urban planning policies and architectural practices that foster sustainable food systems through infrastructure management and environmental sustainability. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

Back to TopTop