Explainable AI-Driven Integration of Water–Energy–Food Nexus into Supply–Demand Networks
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data Sources
2.2. Methods
2.2.1. Quantification of ES Related to the WEF Nexus
2.2.2. Construction of the Supply–Demand Network from a WEF Nexus Perspective
- Selection of Supply–Demand Sources for the WEF Nexus
- 2.
- Resistance Surface Construction
- 3.
- Supply and Demand Corridors Construction
- 4.
- Supply potential zoning
2.2.3. Exploration of the Impact Mechanisms of Key Factors Based on Explainable AI
3. Results
3.1. Mapping WEF Nexus Supply and Demand During 1990–2020
3.2. WEF Nexus Supply and Demand Network Construction
3.2.1. Supply and Demand Sources Identification
3.2.2. Resistance Surface Construction
3.2.3. Supply and Demand Corridors Construction
3.2.4. Supply Potential Zoning
3.3. Explainable AI-Based Analysis of the Mechanism of Action of Key Impact Factors
3.3.1. Analysis of the Mechanisms of Resistance Factors in the WEF Nexus SDNs
3.3.2. Analysis of the Mechanism of the Key Factors of Supply Potential Zoning
4. Discussion
4.1. The Advantages of Explainable AI in Constructing the WEF Nexus Supply–Demand Network
4.2. Management Implications
4.3. Research Gaps and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WEF Nexus | Water–Energy–Food Nexus |
EAI | explainable artificial intelligence |
WY | Water Yield |
FP | Food Production |
CS | Carbon Storage |
SC | Soil Conservation |
SHAP | SHapley Additive exPlanations |
DEM | Digital Elevation Model |
EVA | Annual average evapotranspiration |
FVC | Fractional Vegetation Cover |
MAP | Mean Annual Precipitation |
TEM | Average annual temperature |
CRO | Cropland distribution |
HFP | Human Footprint |
NIL | Night Light Index |
GDP | Gross Domestic Product |
POP | Population Density |
DH | Distance from highway |
DR | Distribution of Building Sites |
DBS | Distribution of Building Sites |
SDNs | Supply–Demand Networks |
References
- Gu, W.; Wang, F.; Siebert, S.; Kummu, M.; Wang, X.; Hong, C.; Zhou, F.; Zhu, Q.; Liu, Y.; Qin, Y. The asymmetric impacts of international agricultural trade on water use scarcity, inequality and inequity. Nat. Water 2024, 2, 324–336. [Google Scholar] [CrossRef]
- Geng, J.B.; Ji, Q. Multi-perspective analysis of China’s energy supply security. Energy 2014, 64, 541–550. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.P.; Su, K.C.; Zhou, Y.J.; Li, X.X.; Lin, A.W. Understanding the impact of cultivated land-use changes on China’s grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization. J. Clean. Prod. 2024, 436, 140647. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Li, X.; Zhang, L.Y.; Wei, X.D. Dynamics and causes of cropland Non-Agriculturalization in typical regions of China: An explanation Based on interpretable Machine learning. Ecol. Indic. 2024, 166, 112348. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F.; Fang, L.P.; Ji, J.; Fang, Z. Urban ecosystem services supply-demand assessment from the perspective of the water-energy-food nexus. Sustain. Cities Soc. 2023, 90, 104401. [Google Scholar] [CrossRef]
- Dang, H.; Li, J.; Zhou, Z.X. Revealing the supply-demand relationship of urban cultural ecosystem services: The combination of open-source spatial model and topic model. Appl. Geogr. 2024, 167, 103288. [Google Scholar] [CrossRef]
- Kuang, Y.Z.; Guo, X.Y.; Hu, J.R.; Li, S.; Zhang, R.J.; Gao, Q.; Yang, X.; Chen, Q.; Sun, W.L. Occurrence and risks of antibiotics in an urban river in northeastern Tibetan Plateau. Sci. Rep. 2020, 10, 20054. [Google Scholar] [CrossRef]
- Li, L.; Yan, M.X.; Hong, Y.X.; Feng, W.J.; Xie, D.; Pagani-Nunez, E. Protecting China’s major urban bird diversity hotspots. AMBIO 2024, 53, 339–350. [Google Scholar] [CrossRef]
- Grekousis, G.; Feng, Z.X.; Marakakis, I.; Lu, Y.; Wang, R.Y. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach. Health Place 2022, 74, 102744. [Google Scholar] [CrossRef]
- Honjo, K.; Gomi, K.; Kanamori, Y.; Takahashi, K.; Matsuhashi, K. Long-term projections of economic growth in the 47 prefectures of Japan: An application of Japan shared socioeconomic pathways. Heliyon 2021, 7, e06412. [Google Scholar] [CrossRef]
- Jia, Q.Q.; Jiao, L.M.; Lian, X.H.; Wang, W.L. Linking supply-demand balance of ecosystem services to identify ecological security patterns in urban agglomerations. Sustain. Cities Soc. 2023, 92, 104497. [Google Scholar] [CrossRef]
- Chen, K.; Liu, X.; Zhang, X.; Ding, L. Spatiotemporal distribution and evolution pattern of Chinese Go League clubs in 20 years of professionalism. Front. Sports Act. Living 2023, 5, 1061751. [Google Scholar] [CrossRef]
- He, M.; Li, W.C.; Sun, D.M.; Ma, K.J.; Zhao, Z.Q.; Li, B.X.; Li, L. Epitome of China’s Unnatural Deaths A Historically Retrospective Study of Forensic Autopsy Cases in Shanghai Public Security Bureau From 1990 to 1999. Am. J. Forensic Med. Pathol. 2014, 35, 218–221. [Google Scholar] [CrossRef]
- Tang, J.T.; Xu, L.Y.; Yu, H.B.; Jiang, H.Z.S.; He, D.J.; Li, T.S.; Xiao, W.C.; Zheng, X.Y.; Liu, K.Y.; Li, Y.Q.; et al. A dataset of multi-level street-block divisions of 985 cities worldwide. Sci. Data 2025, 12, 456. [Google Scholar] [CrossRef]
- Wyatt, K.H.; Griffin, R.; Guerry, A.D.; Ruckelshaus, M.; Fogarty, M.; Arkema, K.K. Habitat risk assessment for regional ocean planning in the US Northeast and Mid-Atlantic. PLoS ONE 2017, 12, e0188776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Song, T.; Zheng, J.H.; Mei, Y.Z.; Cheng, J.H.; Wang, R.Y. Evolution and drivers of green total factor productivity network structure in the Yangtze River economic belt from the perspective of urban agglomerations. Environ. Sustain. Indic. 2025, 26, 100644. [Google Scholar] [CrossRef]
- Martinez-Hernandez, E.; Leach, M.; Yang, A.D. Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. Appl. Energy 2017, 206, 1009–1021. [Google Scholar] [CrossRef]
- Liu, L.F.; Wang, J.L.; Li, J.; He, S.L.; Lan, Y.C.; Liu, F. Evaluation of Ecosystem Service Capacity Using the Integrated Ecosystem Services Index at Optimal Scale in Central Yunnan, China. Ecol. Evol. 2025, 15, e71222. [Google Scholar] [CrossRef]
- Naidoo, D.; Nhamo, L.; Mpandeli, S.; Sobratee, N.; Senzanje, A.; Liphadzi, S.; Slotow, R.; Jacobson, M.; Modi, A.T.; Mabhaudhi, T. Operationalising the water-energy-food nexus through the theory of change. Renew. Sustain. Energy Rev. 2021, 149, 111416. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F. Evaluating supply-demand matching of ecosystem services considering water-energy-food nexus and synergies/trade-offs in the Hangzhou of China. Environ. Sci. Pollut. Res. 2023, 30, 54568–54585. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F.; Fang, L.P.; Ji, J. Identifying and optimizing ecological security patterns from the perspective of the water-energy-food nexus. J. Hydrol. 2024, 632, 130912. [Google Scholar] [CrossRef]
- Tan, Z.W.; Li, H.; Song, Q.R.; Wang, Z.C.; Cao, Y.Q. Synergistic optimization and interaction evaluation of water-energy-food-ecology nexus under uncertainty from the perspective of urban agglomeration. Sustain. Cities Soc. 2025, 124, 106291. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Ding, T.; Yan, X.; Gong, W. Supply-demand security assessment of water-energy-food systems: A perspective on intra-city coupling and inter-city linkages of ecosystem services. Sustain. Cities Soc. 2024, 117, 105964. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Lyu, X.; Dang, D.; Cao, W.; Du, Y. Unraveling the complex interconnections between food-energy-water nexus sustainability and the supply-demand of related ecosystem services. J. Environ. Manag. 2024, 370, 122532. [Google Scholar] [CrossRef]
- Yin, D.Y.; Yu, H.C.; Shi, Y.Y.; Zhao, M.Y.; Zhang, J.; Li, X.S. Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus. J. Clean. Prod. 2023, 384, 135469. [Google Scholar] [CrossRef]
- Fan, C.H.; Lin, C.Y.; Hu, M.C. Empirical Framework for a Relative Sustainability Evaluation of Urbanization on the Water-Energy-Food Nexus Using Simultaneous Equation Analysis. Int. J. Environ. Res. Public Health 2019, 16, 901. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wei, M.; Zhou, R.; Jin, H.; Chen, Y.S.; Hong, C.J.; Duan, W.T.; Li, Q.Y. Identifying priority restoration areas based on ecological security pattern: Implications for ecological restoration planning. Ecol. Indic. 2025, 174, 113486. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Ma, X.; Zhang, F.; Ji, Q.; Zhang, J. Ecological Security Pattern based on XGBoost-MCR model: A case study of the Three Gorges Reservoir Region. J. Clean. Prod. 2024, 470, 143252. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Yan, X.; Yi, S.; Wang, C.; Lei, C. Integrating CVOR and circuit theory models to construct and reconstruct ecological networks: A case study from the Tacheng-Emin Basin, China. Ecol. Indic. 2024, 165, 112170. [Google Scholar] [CrossRef]
- Huang, H.; Fu, D.L.; Ding, G.C.; Yan, C.; Xie, X.C.; Gao, Y.L.; Liu, Q.Y. Construction and optimization of Green Infrastructure Network in mountainous cities: A case study of Fuzhou, China. Sci. Rep. 2024, 14, 11936. [Google Scholar] [CrossRef] [PubMed]
- Muhirwa, F.; Li, L.; Laspidou, C. Global ecosystem sustainability indexing and patterns in the success of SDGs of water, energy and food security. J. Clean. Prod. 2025, 516, 145830. [Google Scholar] [CrossRef]
- Mouillot, D.; Velez, L.; Albouy, C.; Casajus, N.; Claudet, J.; Delbar, V.; Devillers, R.; Letessier, T.B.; Loiseau, N.; Manel, S.; et al. The socioeconomic and environmental niche of protected areas reveals global conservation gaps and opportunities. Nat. Commun. 2024, 15, 9007. [Google Scholar] [CrossRef]
- Tang, H.; Peng, J.; Jiang, H.; Lin, Y.F.; Xu, D.M. Trade-off between comprehensive and specific ecosystem characteristics conservation in ecological security pattern construction. Glob. Ecol. Conserv. 2024, 49, e02776. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.X.; Yuan, H.J.; Zhou, S.Q.; Wang, Y.K.; Ikram, R.M.A.; Li, J.J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Zhang, C.C.; Zhou, Y.Y.; Lu, F.; Liu, J.W.; Zhang, J.Y.; Yin, Z.Y.; Ji, M.Y.; Li, B.Q. Assessing the performance and interpretability of the CNN-LSTM-Attention model for daily streamflow forecasting in typical basins of the eastern Qinghai-Tibet Plateau. Sci. Rep. 2025, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, Y.; Ma, W.J.; Li, M.Y.; Zhao, Y.H.; Wang, W.T.; Jia, Y.F.; Fan, J.H.; Kong, L.F.; Hou, K.; et al. Identifying the determinants of natural, anthropogenic factors and precursors on PM1 pollution in urban agglomerations in China: Insights from optimal parameter-based geographic detector and robust geographic weighted regression models. Environ. Res. 2025, 279, 121817. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.Y.; Wang, W.J.; Fei, L.; Wang, L.; Xing, S.F.; Cong, Y. Impacts of climate change and land Use/Cover change on ecological security networks in Changbai Mountains, Northeast China. Ecol. Indic. 2024, 169, 112849. [Google Scholar] [CrossRef]
- Li, K.; Liu, Z.; Shi, S.; Di, K.; Gong, W.; Li, H. The driving effect of polycentric city network on the coordinated development of regional economy in Bohai Rim region of China. Heliyon 2024, 10, e40173. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Wang, P.; Liu, X.; Chen, J.D.; Song, M.L. Analysis of regional carbon allocation and carbon trading based on net primary productivity in China. China Econ. Rev. 2020, 60, 101401. [Google Scholar] [CrossRef]
- Yan, S.W.; Chen, H.; Quan, Q.; Liu, J. Evolution and coupled matching of ecosystem service supply and demand at different spatial scales in the Shandong Peninsula urban agglomeration, China. Ecol. Indic. 2023, 155, 111052. [Google Scholar] [CrossRef]
- Hou, X.; Li, J.; Li, H.; Du, S.; Liu, S.; Jiao, S.; Niu, F.; Tu, J.; Zong, Y.; Wang, X.; et al. Microplastics distribution, ecological risk and outflows of rivers in the Bohai Rim region of China- A flux model considering small and medium-sized rivers. Sci. Total Environ. 2024, 953, 176035. [Google Scholar] [CrossRef]
- Bao, C.; He, D.M. Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2019, 16, 3834. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Li, Z.; Chen, Y.; Zhang, Q.; Ye, T. Identification of priority conservation areas in Beijing-Tianjin-Hebei using multi-scenario trade-offs based on different spatial scales and their drivers. Ecol. Indic. 2024, 166, 112508. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Hong, J.K.; Xiao, C.L.; Li, Z.M. Unfolding the synergy and interaction of water-land-food nexus for sustainable resource management: A supernetwork analysis. Sci. Total Environ. 2021, 784, 147085. [Google Scholar]
- Ying, W.J.; Li, C.F.; Yang, L.; Hua, L.J.; Zhang, H.; Wang, R.Z.; Wang, J.Y. Global potential of continuous sorption-based atmospheric water harvesting. iScience 2025, 28, 112160. [Google Scholar] [CrossRef] [PubMed]
- Chaiya, C. Empowering climate resilience: A people-centered exploration of Thailand’s greenhouse gas emissions trading and sustainable environmental development through climate risk management in community forests. Heliyon 2025, 11, e41844. [Google Scholar] [CrossRef]
- Deng, H.M.; Wang, C.; Cai, W.J.; Liu, Y.; Zhang, L.X. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci. Total Environ. 2020, 720, 137635. [Google Scholar] [CrossRef]
- Chang, Y.W.; Wang, Y.P.; Yuan, L.; Yao, X.Y.; Zhang, R.H.; Liu, X.; Fan, Z.F.; Guo, J.Y. Spatial scale effects on the trade-offs and synergies of ecosystem services in China’s Huaihe river basin. Sci. Rep. 2025, 15, 22301. [Google Scholar] [CrossRef]
- Yang, J.J.; Chen, Z.; Zhang, W.F.; Meng, G.T.; Cao, M.; Li, J.H.; Xu, C.L.; Wu, R.D.; Leng, H.T.; Wen, Q.Z.; et al. Relationships among multiple ecosystem services in mountainous regions: A case study of the Gaoligong Mountains. J. Environ. Manag. 2025, 387, 125765. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, K.B.; Wang, J.; Liu, C.H.; Shangguan, Z.P. Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Sci. Rep. 2021, 11, 9692. [Google Scholar] [CrossRef]
- Huang, Y.; Gan, X.Y.; Niu, S.F.; Hao, D.S.; Zhou, B. Incorporating Ecosystem Service Multifunctionality and Its Response to Urbanization to Identify Coordinated Economic, Societal, and Environmental Relationships in China. Forests 2022, 13, 707. [Google Scholar] [CrossRef]
- Srivathsa, A.; Vasudev, D.; Nair, T.; Chakrabarti, S.; Chanchani, P.; DeFries, R.; Deomurari, A.; Dutta, S.; Ghose, D.; Goswami, V.R.; et al. Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being. Nat. Sustain. 2023, 6, 568–577. [Google Scholar] [CrossRef]
- Tang, H.; Peng, J.; Jiang, H.; Lin, Y.F.; Dong, J.Q.; Liu, M.L.; Meersmans, J. Spatial analysis enables priority selection in conservation practices for landscapes that need ecological security. J. Environ. Manag. 2023, 345, 118888. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Zhu, J.J.; Lyu, X.; Sun, Y.Y.; Tan, C.D.; Zhang, B.; Tarolli, P.; Yang, Q.C. An integrative conservation and management strategy based on biological and cultural diversity assessment: A case study of Miaoling mountainous region, China. Ecol. Indic. 2025, 171, 113187. [Google Scholar] [CrossRef]
- Qiao, B.; Yang, H.; Cao, X.; Zhou, B.; Wang, N.A. Driving mechanisms and threshold identification of landscape ecological risk: A nonlinear perspective from the Qilian Mountains, China. Ecol. Indic. 2025, 173, 113342. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Liu, R.; Gao, Y.H.; Yang, Q.Y.; Chen, J.L. Spatiotemporal variation characteristics of ecosystem health and its driving mechanism in the mountains of southwest China. J. Clean. Prod. 2022, 345, 131138. [Google Scholar] [CrossRef]
- An, Q.; Yuan, X.; Zhang, X.; Yang, Y.; Chen, J.; An, J. Spatio-temporal interaction and constraint effects between ecosystem services and human activity intensity in Shaanxi Province, China. Ecol. Indic. 2024, 160, 111937. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, K.N.; Luo, L.; Zhang, S.H.; Chen, J.Y. Promoting ecological conservation through multi-objective ecological early warning and network regulation in the Karst Plateau, China. J. Environ. Manag. 2025, 385, 125635. [Google Scholar] [CrossRef]
- Jiang, J.W.; Cai, J.W.; Peng, R.; Li, P.H.; Chen, W.R.; Xia, Y.N.; Deng, J.S.; Zhang, Q.Y.; Yu, Z.L. Establishment and optimization of urban ecological network based on ecological regulation services aiming at stability and connectivity. Ecol. Indic. 2024, 165, 112217. [Google Scholar] [CrossRef]
- Zhou, G.; Huan, Y.; Wang, L.; Lan, Y.; Liang, T.; Shi, B.; Zhang, Q. Linking ecosystem services and circuit theory to identify priority conservation and restoration areas from an ecological network perspective. Sci. Total Environ. 2023, 873, 162261. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhou, Y.; Liu, J.Y. Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China. Int. J. Environ. Res. Public Health 2022, 19, 9582. [Google Scholar] [CrossRef]
- Shen, J.S.; Li, S.C.; Liu, L.B.; Liang, Z.; Wang, Y.Y.; Wang, H.; Wu, S.Y. Uncovering the relationships between ecosystem services and social- ecological drivers at different spatial scales in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 290, 125193. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Jin, H.; Li, Y. Ecological management zoning based on the causation between ecological risk and ecosystem services in the Gaoligong Mountain. Ecol. Indic. 2024, 167, 112673. [Google Scholar] [CrossRef]
- Li, J.; Pan, N.H.; Yao, Y.; Li, G.; Cheng, Z.Y.; Lu, Y.H.; Liu, S.N.; Liu, W.M. Coupled zoning and spatial heterogeneity of human activities and natural endowments based on self-organizing map and random forest: A case study of the agro-pastoral ecotone in Gansu, China. Ecol. Inform. 2024, 82, 102686. [Google Scholar] [CrossRef]
- Huang, C.Y.; Liu, K.; Ma, T.Y.; Xue, H.; Wang, P.F.; Li, L. Analysis of the impact mechanisms and driving factors of urban spatial morphology on urban heat islands. Sci Rep 2025, 15, 18589. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.B.; Liu, X.S.; Jin, Y.H.; Gao, X.; Chen, Y.L. Identification and attribution analysis of integrated ecological zones based on the XGBoost-SHAP model: A case study of Chengdu, China. Ecol. Indic. 2025, 177, 113787. [Google Scholar] [CrossRef]
- Yang, T.W.; Chandio, A.A.; Zhang, A.P.; Liu, Y. Do Farm Subsidies Effectively Increase Grain Production? Evidence from Major Grain-Producing Regions of China. Foods 2023, 12, 1435. [Google Scholar] [CrossRef]
- Qi, R.; Li, J.; Lin, Z.; Li, Z.; Li, Y.; Yang, X.; Zhang, J.; Zhao, B. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Y.; Huang, Z.D.; Ashraf, A.; Ali, M.; Fang, Z.; Lu, X. Identifying ecological security patterns to prioritize conservation and restoration:A case study in Xishuangbanna tropical region, China. J. Clean. Prod. 2024, 444, 141222. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.X.; Feng, Q.; Gui, J.; Zhang, B.J. Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Xia, C.H.; Ma, D.H.; Wang, W.; Guo, X.D. Research on identification and zoning control of territorial spatial risk pattern based on deep learning: A case study of Shenzhen, China. J. Clean. Prod. 2024, 481, 144132. [Google Scholar] [CrossRef]
- Yuan, L.G.; Geng, M.M.; Li, F.; Xie, Y.H.; Tian, T.; Chen, Q. Spatiotemporal characteristics and drivers of ecosystem service interactions in the Dongting Lake Basin. Sci. Total Environ. 2024, 926, 172012. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.Y.; Zhang, F.T.; Ding, Y.K.; Chen, J.; Yang, P.R.; Peng, G.C. Exploring the Dynamic Local and Tele-Coupling Coordination Mechanism of the Ecosystem Services Supply-Demand and Its Driving Forces: Taking China’s Yangtze River Economic Belt as an Example. Land Degrad. Dev. 2025, 36, 3178–3193. [Google Scholar] [CrossRef]
- Jiang, W.; Shu, Z.G.; Lv, Y.H.; Su, X.K.; Wu, X.; Wang, C.; Wang, K.; Sun, S.Q.; Liu, G.H. Quantifying impacts of climate and land use changes on ecosystem services from statistic perspective. Ecol. Indic. 2025, 172, 113285. [Google Scholar] [CrossRef]
- Wu, B.W.; Zhang, Y.Y.; Wang, Y.; He, Y.M.; Wang, J.W.; Wu, Y.F.; Lin, X.B.; Wu, S.D. Mitigation of urban heat island in China (2000–2020) through vegetation-induced cooling. Sustain. Cities Soc. 2024, 112, 105599. [Google Scholar] [CrossRef]
- Cao, X.; Wang, H.; Zhang, B.; Liu, J.; Yang, J. Sustainable management of land use patterns and water allocation for coordinated multidimensional development. J. Clean. Prod. 2024, 457, 142412. [Google Scholar] [CrossRef]
- Hong, W.; Ma, T.; Guo, R.; Yang, X.; Li, X.; Sun, M.; Chen, Y.; Zhong, Y. Carbon emission characteristics of urban trip based on multi-layer network modeling. Appl. Geogr. 2023, 159, 103091. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, Z.Y.; Li, Z.Y.; Su, J.; Tang, L.N.; Wu, M.D.; Wang, Y.J. A framework for the construction of effective landscape ecological network with integrating hydrological connectivity: A case study in Dongjiang River Basin, China. J. Environ. Manag. 2025, 376, 124509. [Google Scholar] [CrossRef]
- Zhao, Z.-T.; Cheng, H.-M.; Wang, S.; Liu, H.-Y.; Song, Z.-M.; Zhou, J.-H.; Pang, J.-W.; Bai, S.-W.; Yang, S.-S.; Ding, J.; et al. SCC-UEFAS, an urban-ecological-feature based assessment system for sponge city construction. Environ. Sci. Ecotechnol. 2022, 12, 100188. [Google Scholar] [CrossRef]
- An, S.; Song, Y.; Fu, Q.; Qi, R.; Wu, Z.; Ge, F.; Lu, X.; An, W.; Han, W. Reclaimed water use improved polluted water’s self-purification capacity--Evidenced by water quality factors and bacterial community structure. J. Clean. Prod. 2023, 386, 135736. [Google Scholar] [CrossRef]
- Wang, J.W.; Dai, H.N.; Feng, H.X.; Guo, M.; Zylianov, V.; Feng, Z.K.; Cui, J.P. Carbon emission of urban vehicles based on carbon emission factor correlation analysis. Sci. Rep. 2025, 15, 2037. [Google Scholar] [CrossRef]
- Faiz-ul Islam, S.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shao, C.F.; Wang, X.J.; Hao, C.X. Transformation Path of Ecological Product Value and Efficiency Evaluation: The Case of the Qilihai Wetland in Tianjin. Int. J. Environ. Res. Public Health 2022, 19, 14575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Liu, G.; Zhang, J.; Fang, Z. Factors driving water yield ecosystem services in the Yellow River Economic Belt, China: Spatial heterogeneity and spatial spillover perspectives. J. Environ. Manag. 2022, 317, 115477. [Google Scholar] [CrossRef] [PubMed]
- Duolaiti, X.; Kasimu, A.; Reheman, R.; Aizizi, Y.; Wei, B. Assessment of Water Yield and Water Purification Services in the Arid Zone of Northwest China: The Case of the Ebinur Lake Basin. Land 2023, 12, 533. [Google Scholar] [CrossRef]
- Xia, P.; Chen, B.; Gong, B.; Liu, Z.; He, C.; Wang, Y. The supply and demand of water purification service in an urbanizing basin on the Tibetan Plateau. Landsc. Ecol. 2022, 37, 1937–1955. [Google Scholar] [CrossRef]
- An, Z.; Sun, C.; Hao, S. Exploration of ecological compensation standard: Based on ecosystem service flow path. Appl. Geogr. 2025, 178, 103588. [Google Scholar] [CrossRef]
- Lu, Z.; Li, W.; Yue, R. Investigation of the long-term supply-demand relationships of ecosystem services at multiple scales under SSP-RCP scenarios to promote ecological sustainability in China’s largest city cluster. Sustain. Cities Soc. 2024, 104, 105295. [Google Scholar] [CrossRef]
- Su, R.; Duan, C.; Chen, B. The shift in the spatiotemporal relationship between supply and demand of ecosystem services and its drivers in China. J. Environ. Manag. 2024, 365, 121698. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Zhang, F.; Teng, Y.; Wang, C.; Chu, X.; Kumi, M.A. The tradeoffs between food supply and demand from the perspective of ecosystem service flows: A case study in the Pearl River Delta, China. J. Environ. Manag. 2022, 301, 113814. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Yang, M.; Zhang, J.; Wang, J.; Huang, J. Assessment of supply-demand relationships considering the interregional flow of ecosystem services. Environ. Sci. Pollut. Res. Int. 2024, 31, 27710–27729. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Kumilamba, G.; Yu, L. Optimizing green space configuration for mitigating land surface temperature: A case study of karst mountainous cities. Sustain. Cities Soc. 2025, 125, 106345. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.; Li, S.; Li, F.; Wang, X.; Wei, X. Identifying the Most Critical Predictors of Workplace Violence Experienced by Junior Nurses: An Interpretable Machine Learning Perspective. J. Nurs. Manag. 2025, 2025, 40223873. [Google Scholar] [CrossRef]
Categories | Factors | Abbreviation |
---|---|---|
Geographic drivers | Digital Elevation Model | DEM |
Fractional Vegetation Cover | FVC | |
Climatic drivers | Mean Annual Precipitation | MAP |
Annual average evapotranspiration | EVA | |
Average annual temperature | TEM | |
Socio-economic drivers | Human Footprint | HFP |
Cropland distribution | CRO | |
Soil moisture | SM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Zhang, H.; Yang, X.; Zhang, C.; Xi, C.; Zhang, Y.; Yu, Z. Explainable AI-Driven Integration of Water–Energy–Food Nexus into Supply–Demand Networks. Land 2025, 14, 1920. https://doi.org/10.3390/land14091920
Cao L, Zhang H, Yang X, Zhang C, Xi C, Zhang Y, Yu Z. Explainable AI-Driven Integration of Water–Energy–Food Nexus into Supply–Demand Networks. Land. 2025; 14(9):1920. https://doi.org/10.3390/land14091920
Chicago/Turabian StyleCao, Lei, Haonan Zhang, Xueliang Yang, Chaoyu Zhang, Chengbin Xi, Yunlu Zhang, and Zhaowu Yu. 2025. "Explainable AI-Driven Integration of Water–Energy–Food Nexus into Supply–Demand Networks" Land 14, no. 9: 1920. https://doi.org/10.3390/land14091920
APA StyleCao, L., Zhang, H., Yang, X., Zhang, C., Xi, C., Zhang, Y., & Yu, Z. (2025). Explainable AI-Driven Integration of Water–Energy–Food Nexus into Supply–Demand Networks. Land, 14(9), 1920. https://doi.org/10.3390/land14091920