Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (809)

Search Parameters:
Keywords = Flex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5391 KiB  
Article
Application of Computer Simulation to Evaluate Performance Parameters of the Selective Soldering Process
by Maciej Dominik and Marek Kęsek
Appl. Sci. 2025, 15(15), 8649; https://doi.org/10.3390/app15158649 (registering DOI) - 5 Aug 2025
Abstract
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an [...] Read more.
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an engineering internship. Using FlexSim 24.2 software, the real production process was replicated, including input/output queues, manual insertion (MI) stations, soldering machines, and quality control points. Special emphasis was placed on implementing dynamic process logic via ProcessFlow, enabling detailed modeling of token flow and system behavior. Through experimentation, various configurations were tested to optimize process time and the number of soldering pallets in circulation. The results revealed that reducing pallets from 12 to 8 maintains process continuity while offering cost savings without impacting performance. An intuitive operator panel was also developed, allowing users to adjust parameters and monitor outcomes in real time. The project demonstrates that simulation not only supports operational decision-making and resource planning but also enhances interdisciplinary communication by visually conveying complex workflows. Ultimately, the study confirms that simulation modeling is a powerful and adaptable approach to production optimization, contributing to long-term strategic improvements and innovation in technologically advanced manufacturing environments. Full article
(This article belongs to the Special Issue Integration of Digital Simulation Models in Smart Manufacturing)
Show Figures

Figure 1

10 pages, 784 KiB  
Article
Effect of Malnutrition on Femoral Cartilage Thickness in Pediatric Patients
by Şükrü Güngör, Raikan Büyükavcı, Fatma İlknur Varol, Emre Gök and Semra Aktürk
Children 2025, 12(8), 1021; https://doi.org/10.3390/children12081021 - 2 Aug 2025
Viewed by 122
Abstract
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. [...] Read more.
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. Methods: In this cross-sectional observational study, 83 children with primary malnutrition and 62 age- and sex-matched healthy controls were included. Patients with primary malnutrition were classified as mild, moderate and severe. Femoral cartilage thickness measurements of all children were taken by ultrasound from the femoral lateral condyle, femoral medial condyle and intercondylar area for both knees with the patient in a supine position with the knees flexed 90 degrees. Results: The right lateral, right medial, left lateral, and left medial femoral cartilages were significantly thicker in patients with malnutrition compared to those without malnutrition (p = 0.002, 0.004, <0.001, and 0.001, respectively). A significant negative correlation was found between age, weight Z-score, and height Z-score and triceps skinfold thickness. Conclusions: Distal femoral cartilage thickness is significantly greater in children with primary malnutrition. This demonstrates the effect of nutritional factors on cartilage tissue and suggests that children with chronic malnutrition are at risk for both knee joint problems and short stature later in life. Full article
(This article belongs to the Section Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

13 pages, 1454 KiB  
Article
Lower Limb Inter-Joint Coordination and End-Point Control During Gait in Adolescents with Early Treated Unilateral Developmental Dysplasia of the Hip
by Chu-Fen Chang, Tung-Wu Lu, Chia-Han Hu, Kuan-Wen Wu, Chien-Chung Kuo and Ting-Ming Wang
Bioengineering 2025, 12(8), 836; https://doi.org/10.3390/bioengineering12080836 (registering DOI) - 31 Jul 2025
Viewed by 212
Abstract
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This [...] Read more.
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This study investigated lower limb inter-joint coordination and swing foot control during level walking in adolescents with early-treated unilateral DDH. Methods: Eleven female adolescents treated early for DDH using Pemberton osteotomy were compared with 11 age-matched healthy controls. The joint angles and angular velocities of the hip, knee, and ankle were measured, and the corresponding phase angles and continuous relative phase (CRP) for hip–knee and knee–ankle coordination were obtained. The variability of inter-joint coordination was quantified using the deviation phase values obtained as the time-averaged standard deviations of the CRP curves over multiple trials. Results: The DDH group exhibited a flexed posture with increased variability in knee–ankle coordination of the affected limb throughout the gait cycle compared to the control group. In contrast, the unaffected limb compensated for the kinematic alterations of the affected limb with reduced peak angular velocities but increased knee–ankle CRP over double-limb support and trajectory variability over the swing phase. Conclusions: The identified changes in inter-joint coordination in adolescents with early treated DDH provide a plausible explanation for the previously reported increased GRF loading rates in the unaffected limb, a risk factor of premature OA. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

7 pages, 2626 KiB  
Proceeding Paper
SpaFLEX: Field Campaign for Calibration and Validation of FLEX-S3 Mission Products
by Pedro J. Gómez-Giráldez, David Aragonés, Marcos Jiménez, Mª Pilar Cendrero-Mateo, Shari Van Wittenberghe, Juan José Peón, Adrián Moncholí-Estornell and Ricardo Díaz-Delgado
Eng. Proc. 2025, 94(1), 13; https://doi.org/10.3390/engproc2025094013 - 31 Jul 2025
Viewed by 92
Abstract
The FLEX-S3 mission by ESA will deliver key Level 2 products such as sun-induced chlorophyll fluorescence (SIF) and vegetation-reflected radiance. To validate these, the SpaFLEX project, funded by the Spanish Ministry of Science and Innovation, is developing a robust calibration and validation strategy [...] Read more.
The FLEX-S3 mission by ESA will deliver key Level 2 products such as sun-induced chlorophyll fluorescence (SIF) and vegetation-reflected radiance. To validate these, the SpaFLEX project, funded by the Spanish Ministry of Science and Innovation, is developing a robust calibration and validation strategy in Spain. This includes test site setup, instrument characterization, and sampling protocols. A field campaign was conducted in two Holm Oak forests in Teruel, analyzing Sentinel-2 spatial heterogeneity and collecting ground, UAV, and airborne data. The results support scaling procedures to match the 300 m pixel resolution of FLEX-S3, ensuring product accuracy and compliance with ESA standards. Full article
Show Figures

Figure 1

18 pages, 1941 KiB  
Article
Design of Virtual Sensors for a Pyramidal Weathervaning Floating Wind Turbine
by Hector del Pozo Gonzalez, Magnus Daniel Kallinger, Tolga Yalcin, José Ignacio Rapha and Jose Luis Domínguez-García
J. Mar. Sci. Eng. 2025, 13(8), 1411; https://doi.org/10.3390/jmse13081411 - 24 Jul 2025
Viewed by 192
Abstract
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with [...] Read more.
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with monitoring submerged components, virtual sensors are investigated as an alternative to physical instrumentation. The main objective is to design a virtual sensor of mooring hawser loads using a reduced set of input features from GPS, anemometer, and inertial measurement unit (IMU) data. A virtual sensor is also proposed to estimate the bending moment at the joint of the pyramid masts. The FOWT is modeled in OrcaFlex, and a range of load cases is simulated for training and testing. Under defined sensor sampling conditions, both supervised and physics-informed machine learning algorithms are evaluated. The models are tested under aligned and misaligned environmental conditions, as well as across operating regimes below- and above-rated conditions. Results show that mooring tensions can be estimated with high accuracy, while bending moment predictions also perform well, though with lower precision. These findings support the use of virtual sensing to reduce instrumentation requirements in critical areas of the floating wind platform. Full article
Show Figures

Figure 1

24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 301
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

18 pages, 5002 KiB  
Article
Differential Metabolomic Signatures in Boar Sperm with Varying Liquid Preservation Capacities at 17 °C
by Serge L. Kameni, Notsile H. Dlamini and Jean M. Feugang
Animals 2025, 15(15), 2163; https://doi.org/10.3390/ani15152163 - 22 Jul 2025
Viewed by 443
Abstract
In the swine industry, artificial insemination (AI) primarily uses chill-stored semen, making sperm preservation crucial for reproductive success. However, sperm quality declines at varying rates during chilled storage at 17 °C, distinguishing high-survival semen from low-survival semen. This study investigates the metabolomic profiles [...] Read more.
In the swine industry, artificial insemination (AI) primarily uses chill-stored semen, making sperm preservation crucial for reproductive success. However, sperm quality declines at varying rates during chilled storage at 17 °C, distinguishing high-survival semen from low-survival semen. This study investigates the metabolomic profiles of boar sperm with different abilities to survive liquid storage. We analyzed sperm motility, kinematics, and morphology in freshly extended (Day 0) and 7-day stored AI semen doses. The AI semen doses were classified as high-motile (HM) or low-motile (LM) based on sperm motility after 7 days of storage (Day 7). Metabolomic data were collected in positive (ESI+) and negative (ESI−) ion modes using a Vanquish Flex UPLC coupled with a Q Extractive Plus. We consistently detected 442 metabolites (251 in ESI+, 167 in ESI−, and 24 in both) across samples and storage durations. In freshly extended and 7-day stored AI doses, we identified 42 and 56 differentially expressed metabolites (DEMs), respectively. A clustering analysis showed significant changes in DEMs between the HM and LM samples. These DEMs were mainly enriched in amino acid metabolism, the pentose phosphate pathway, glycerolipid metabolism, glyoxylate and dicarboxylate metabolism, terpenoid backbone biosynthesis, etc. In summary, this study highlights the metabolomic differences between semen doses with varying abilities to survive liquid storage. Glyceric acid and lysoPC(20:3) emerged as potential markers for sperm preservation. Full article
(This article belongs to the Special Issue Current Status and Advances in Semen Preservation—Second Edition)
Show Figures

Figure 1

20 pages, 35728 KiB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 214
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

9 pages, 1551 KiB  
Proceeding Paper
Tensile Testing of Polymer Material Specimens Obtained by Fused Deposition Modeling
by Miglena Paneva, Peter Panev and Veselin Tsonev
Eng. Proc. 2025, 100(1), 50; https://doi.org/10.3390/engproc2025100050 - 18 Jul 2025
Viewed by 204
Abstract
In this work, a comparative analysis of polymer test specimens from different types of filaments, manufactured using FDM technology, was performed. A tensile strength test was executed on test specimens after 3D additive printing, made from different groups of materials—PLA, PLA Wood, PETG, [...] Read more.
In this work, a comparative analysis of polymer test specimens from different types of filaments, manufactured using FDM technology, was performed. A tensile strength test was executed on test specimens after 3D additive printing, made from different groups of materials—PLA, PLA Wood, PETG, PC, PA6, ASA, CPE HG100 and FilaFlex SEBS. Test specimens from the same materials were subjected to accelerated aging, after which they were tested again for tensile strength. The results of all tests were analyzed and compared. Full article
Show Figures

Figure 1

17 pages, 1937 KiB  
Article
Detection of Protein Carbonylation in Gingival Biopsies from Periodontitis Patients with or Without Diabetes Mellitus—A Pilot Study
by Alexandra Efthymiou, Pinelopi Anastasiadou, Eleftherios Anagnostou, George Koliakos, Sotirios Kalfas and Ioannis Vouros
Dent. J. 2025, 13(7), 328; https://doi.org/10.3390/dj13070328 - 18 Jul 2025
Viewed by 842
Abstract
Background: Protein carbonylation is an irreversible post-translational modification that is considered indicative of oxidative damage. Objective: The purpose of the study was to examine by an immunohistochemical method for the first time the extent and localization of protein carbonylation in biopsies of gingiva [...] Read more.
Background: Protein carbonylation is an irreversible post-translational modification that is considered indicative of oxidative damage. Objective: The purpose of the study was to examine by an immunohistochemical method for the first time the extent and localization of protein carbonylation in biopsies of gingiva from periodontitis patients with or without diabetes mellitus (DM). Methods: These were processed for immunohistochemical staining of the carbonylated proteins, using the ENVISIOM FLEX Mini Kit, high pH, and anti-dinitrophenyl (DNP) antibody, a marker of oxidative damage to a given protein. The extent of protein carbonylation was semi-quantitatively estimated and evaluated by calculation of the Allred score (percentage of stained cells × intensity of staining). Results: The biopsies from periodontitis patients with diabetes mellitus (DM) exhibited higher staining scores as per the percentage of positively stained cells than the biopsies from patients with only periodontitis (means of 49.2 and 16.7, respectively), the difference being statistically significant (p = 0.036). The same trend was observed in the case of the combination of the above with the intensity of staining (score parameter) as well (means of 59.6 and 20.8, p = 0.036, respectively). Conclusions: An immunohistochemical method with the novelty of utilization for the first time of the anti-dinitrophenyl (DNP) antibody in gingival tissues was introduced and showed efficacy in detecting protein carbonylation indicative of oxidative stress and its impact in the pathogenesis of these two prevalent diseases of periodontitis and diabetes mellitus. Full article
(This article belongs to the Section Oral Hygiene, Periodontology and Peri-implant Diseases)
Show Figures

Figure 1

35 pages, 3495 KiB  
Article
Demographic Capital and the Conditional Validity of SERVPERF: Rethinking Tourist Satisfaction Models in an Emerging Market Destination
by Reyner Pérez-Campdesuñer, Alexander Sánchez-Rodríguez, Gelmar García-Vidal, Rodobaldo Martínez-Vivar, Marcos Eduardo Valdés-Alarcón and Margarita De Miguel-Guzmán
Adm. Sci. 2025, 15(7), 272; https://doi.org/10.3390/admsci15070272 - 11 Jul 2025
Viewed by 504
Abstract
Tourist satisfaction models typically assume that service performance dimensions carry the same weight for all travelers. Drawing on Bourdieu, we reconceptualize age, gender, and region of origin as demographic capital, durable resources that mediate how visitors decode service cues. Using a SERVPERF-based survey [...] Read more.
Tourist satisfaction models typically assume that service performance dimensions carry the same weight for all travelers. Drawing on Bourdieu, we reconceptualize age, gender, and region of origin as demographic capital, durable resources that mediate how visitors decode service cues. Using a SERVPERF-based survey of 407 international travelers departing Quito (Ecuador), we test measurement invariance across six sociodemographic strata with multi-group confirmatory factor analysis. The four-factor SERVPERF core (Access, Lodging, Extra-hotel Services, Attractions) holds, yet partial metric invariance emerges: specific loadings flex with demographic capital. Gen-Z travelers penalize transport reliability and safety; female visitors reward cleanliness and empathy; and Latin American guests are the most critical of basic organization. These patterns expose a boundary condition for universalistic satisfaction models and elevate demographic capital from a descriptive tag to a structuring construct. Managerially, we translate the findings into segment-sensitive levers, visible security for youth and regional markets, gender-responsive facility upgrades, and dual eco-luxury versus digital-detox bundles for long-haul segments. By demonstrating when and how SERVPERF fractures across sociodemographic lines, this study intervenes in three theoretical conversations: (1) capital-based readings of consumption, (2) the search for boundary conditions in service-quality measurement, and (3) the shift from segmentation to capital-sensitive interpretation in emerging markets. The results position Ecuador as a critical case and provide a template for destinations facing similar performance–perception mismatches in the Global South. Full article
(This article belongs to the Special Issue Tourism and Hospitality Marketing: Trends and Best Practices)
Show Figures

Figure 1

12 pages, 600 KiB  
Article
Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
by Sunao Tanaka, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser and Hideki Furuya
Diagnostics 2025, 15(14), 1749; https://doi.org/10.3390/diagnostics15141749 - 10 Jul 2025
Viewed by 421
Abstract
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, [...] Read more.
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, TX, USA) to simultaneously measure 10 protein analytes in urine [angiogenin, apolipoprotein E, carbonic anhydrase IX (CA9), interleukin-8, matrix metalloproteinase-9 and -10, alpha-1 anti-trypsin, plasminogen activator inhibitor-1, syndecan-1, and vascular endothelial growth factor]. Methods: In a pilot study (N = 36 subjects; 18 with BC), Oncuria performed essentially identically across three different common analyzers (the laser/flow-based FlexMap 3D and 200 systems, and the LED/image-based MagPix system; Luminex). The current study compared Oncuria performance across instrumentation platforms using a larger study population (N = 181 subjects; 51 with BC). Results: All three analyzers assessed all 10 analytes in identical samples with excellent concordance. The percent coefficient of variation (%CV) in protein concentrations across systems was ≤2.3% for 9/10 analytes, with only CA9 having %CVs > 2.3%. In pairwise correlation plot comparisons between instruments for all 10 biomarkers, R2 values were 0.999 for 15/30 comparisons and R2 ≥ 0.995 for 27/30 comparisons; CA9 showed the greatest variability (R2 = 0.948–0.970). Standard curve slopes were statistically indistinguishable for all 10 biomarkers across analyzers. Conclusions: The Oncuria BC assay generates comprehensive urinary protein signatures useful for assisting BC diagnosis, predicting treatment response, and tracking disease progression and recurrence. The equivalent performance of the multiplex BC assay using three popular analyzers rationalizes test adoption by CLIA (Clinical Laboratory Improvement Amendments) clinical and research laboratories. Full article
(This article belongs to the Special Issue Diagnostic Markers of Genitourinary Tumors)
Show Figures

Figure 1

27 pages, 9584 KiB  
Article
Dynamic Response of a Floating Dual Vertical-Axis Tidal Turbine System with Taut and Catenary Mooring Under Extreme Environmental Conditions in Non-Operating Mode
by Yunjun Lee, Jinsoon Park and Woo Chul Chung
J. Mar. Sci. Eng. 2025, 13(7), 1315; https://doi.org/10.3390/jmse13071315 - 8 Jul 2025
Viewed by 241
Abstract
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the [...] Read more.
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the vertical turbines are lifted for structural protection. Using time-domain simulations via OrcaFlex 11.4, the floating platform’s motion and mooring line effective tensions are evaluated under high waves, strong wind, and current loads. The results reveal that sway and heave motions are significantly influenced by wave excitation, with the catenary system exhibiting larger responses due to mooring system features, while the taut system experiences higher mooring effective tension but shows more restrained motion. Notably, in the roll direction, both systems exhibit peak frequencies unrelated to the wave spectrum, attributed instead to resonance with the system’s natural frequencies—0.12438 Hz for taut and 0.07332 Hz for catenary. Additionally, the failure scenario of ML02 (Mooring Line 02) and the application of dynamic power cables to the floating platform are analyzed. The results demonstrate that under non-operational and extreme load conditions, mooring system type plays a main role in determining platform stability and structural safety. This comparative analysis offers valuable insights for selecting and designing mooring configurations optimized for reliability in extreme environmental conditions. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

18 pages, 359 KiB  
Article
On the Decision-Theoretic Foundations and the Asymptotic Bayes Risk of the Region of Practical Equivalence for Testing Interval Hypotheses
by Riko Kelter
Stats 2025, 8(3), 56; https://doi.org/10.3390/stats8030056 - 8 Jul 2025
Viewed by 155
Abstract
Testing interval hypotheses is of huge relevance in the biomedical and cognitive sciences; for example, in clinical trials. Frequentist approaches include the proposal of equivalence tests, which have been used to study if there is a predetermined meaningful treatment effect. In the Bayesian [...] Read more.
Testing interval hypotheses is of huge relevance in the biomedical and cognitive sciences; for example, in clinical trials. Frequentist approaches include the proposal of equivalence tests, which have been used to study if there is a predetermined meaningful treatment effect. In the Bayesian paradigm, two popular approaches exist: The first is the region of practical equivalence (ROPE), which has become increasingly popular in the cognitive sciences. The second is the Bayes factor for interval null hypotheses, which was proposed by Morey et al. One advantage of the ROPE procedure is that, in contrast to the Bayes factor, it is quite robust to the prior specification. However, while the ROPE is conceptually appealing, it lacks a clear decision-theoretic foundation like the Bayes factor. In this paper, a decision-theoretic justification for the ROPE procedure is derived for the first time, which shows that the Bayes risk of a decision rule based on the highest-posterior density interval (HPD) and the ROPE is asymptotically minimized for increasing sample size. To show this, a specific loss function is introduced. This result provides an important decision-theoretic justification for testing the interval hypothesis in the Bayesian approach based on the ROPE and HPD, in particular, when sample size is large. Full article
(This article belongs to the Section Bayesian Methods)
Show Figures

Figure 1

13 pages, 3493 KiB  
Article
In Vivo Validation of a Metacarpophalangeal Joint Orthotic Using Wearable Inertial Sensors in Horses
by Eleonora Pagliara, Federica Cantatore, Livio Penazzi, Barbara Riccio and Andrea Bertuglia
Animals 2025, 15(13), 1965; https://doi.org/10.3390/ani15131965 - 4 Jul 2025
Viewed by 1098
Abstract
Orthotics are often used to support the metacarpophalangeal joint (MCPj) in horses recovering from soft tissue injury; however, their effect on the MCPj biomechanics remain largely underexplored. The MCPj moves primarily in the sagittal plane, flexing during the swing phase and extending during [...] Read more.
Orthotics are often used to support the metacarpophalangeal joint (MCPj) in horses recovering from soft tissue injury; however, their effect on the MCPj biomechanics remain largely underexplored. The MCPj moves primarily in the sagittal plane, flexing during the swing phase and extending during the stance phase. The suspensory ligament and flexor tendons act as biological springs resisting MCPj extension. Injuries to these structures are common and, although early mobilization promotes their healing, controlled loading may be beneficial during rehabilitation. This study aims to evaluate the efficacy of a semirigid orthotic in limiting the MCPj extension and the MCPj range of motion, and its influence on the MCPj kinematics. Twelve healthy horses were equipped with portable inertial sensors on the distal limb. The MCPj extension and the MCPj range of motion were assessed during walking and trotting without the orthotic (S0) and with the orthotic using two different support settings (S1 and S4). Data were evaluated for normality and homoscedasticity. A Student t-test was used to compare the MCPj angle pattern of the two forelimbs of each horse at the baseline. Data were analysed using one-way ANOVA to compare the mean values across conditions, followed by paired t-tests for post-hoc comparison (significance set at p < 0.05). The results showed significant reductions in both the MCPj extension and the MCPj range of motion, with the greatest restriction occurring at the highest support setting. These results suggest that the semirigid orthotic limits the MCPj movement in the sagittal plane and consequently the load on the suspensory ligament and flexor tendons. Therefore, this orthotic device is an effective tool during rehabilitation for forelimb tendon and ligament injuries. Full article
Show Figures

Figure 1

Back to TopTop