Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (255)

Search Parameters:
Keywords = Fe3Al intermetallic alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4295 KB  
Article
Ti-Fe-Based Alloys Modified with Al and Cr for Next-Generation Biomedical Implants
by Katia Itzel Rodríguez-Escobedo, Wilian Jesús Pech-Rodríguez, Zaira Itzel Bedolla-Valdez, Carlos Adrián Calles-Arriaga, José Guadalupe Miranda-Hernández and Enrique Rocha-Rangel
Eng 2025, 6(10), 273; https://doi.org/10.3390/eng6100273 (registering DOI) - 11 Oct 2025
Abstract
Titanium and, in particular, its alloys are widely used in biomedical applications due to their favorable combination of mechanical properties, such as high strength, low density, low elastic modulus, and excellent biocompatibility. In this study, novel titanium-based alloys were developed using powder metallurgy [...] Read more.
Titanium and, in particular, its alloys are widely used in biomedical applications due to their favorable combination of mechanical properties, such as high strength, low density, low elastic modulus, and excellent biocompatibility. In this study, novel titanium-based alloys were developed using powder metallurgy techniques. The chemical composition of the studied alloys was 93%Ti-7%Fe, 90%Ti-7%Fe-3%Al, and 88%Ti-7%Fe-5%Cr. The metallic powders were processed in a planetary mill, uniaxially compacted, and subsequently sintered at 1300 °C during 2 h under an inert atmosphere. The primary objective was to evaluate the corrosion behavior of these alloys in simulated body fluid solutions, as well as to determine some of the properties, such as the relative density, microhardness, and elastic modulus. The resulting microstructures were homogeneous, with micrometer-scale grain sizes and the formation of intermetallic precipitates generated during sintering. Mechanical tests revealed that the Ti-Fe-Cr alloy exhibited the highest microhardness and Young’s modulus values, followed by Ti-Fe and Ti-Fe-Al. These results confirm a strong correlation between hardness and stiffness, showing that Cr enhances mechanical and elastic properties, while Al reduces them. Corrosion tests demonstrated that the alloys possess high resistance and stability in physiological environments, with a low current density, minimal mass loss, and strong performance even under prolonged exposure to acidic conditions. Full article
(This article belongs to the Section Materials Engineering)
11 pages, 1301 KB  
Article
Artificial Neural Network Approach for Hardness Prediction in High-Entropy Alloys
by Makachi Nchekwube, A. K. Maurya, Dukhyun Chung, Seongmin Chang and Youngsang Na
Materials 2025, 18(20), 4655; https://doi.org/10.3390/ma18204655 - 10 Oct 2025
Abstract
High-entropy alloys (HEAs) are highly concentrated, multicomponent alloys that have received significant attention due to their superior properties compared to conventional alloys. The mechanical properties and hardness are interrelated, and it is widely known that the hardness of HEAs depends on the principal [...] Read more.
High-entropy alloys (HEAs) are highly concentrated, multicomponent alloys that have received significant attention due to their superior properties compared to conventional alloys. The mechanical properties and hardness are interrelated, and it is widely known that the hardness of HEAs depends on the principal alloying elements and their composition. Therefore, the desired hardness prediction to develop new HEAs is more interesting. However, the relationship of these compositions with the HEA hardness is very complex and nonlinear. In this study, we develop an artificial neural network (ANN) model using experimental data sets (535). The compositional elements—Al, Co, Cr, Cu, Mn, Ni, Fe, W, Mo, and Ti—are considered input parameters, and hardness is considered as an output parameter. The developed model shows excellent correlation coefficients (Adj R2) of 99.84% and 99.3% for training and testing data sets, respectively. We developed a user-friendly graphical interface for the model. The developed model was used to understand the effect of alloying elements on hardness. It was identified that the Al, Cr, and Mn were found to significantly enhance hardness by promoting the formation and stabilization of BCC and B2 phases, which are inherently harder due to limited active slip systems. In contrast, elements such as Co, Cu, Fe, and Ni led to a reduction in hardness, primarily due to their role in stabilizing the ductile FCC phase. The addition of W markedly increased the hardness by inducing severe lattice distortion and promoting the formation of hard intermetallic compounds. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Figure 1

16 pages, 3857 KB  
Article
Growth Behavior of Multi-Element Compound Layers During Reactive Diffusion Between Solid CoCrFeMnNi Alloy and Liquid Al
by Longtu Yang, Yufeng Yang, Zeqiang Yao, Shichao Liu and Yong Dong
Materials 2025, 18(17), 4158; https://doi.org/10.3390/ma18174158 - 4 Sep 2025
Viewed by 636
Abstract
In the present study, the diffusion couple of solid CoCrFeMnNi HEA and liquid pure Al was prepared. The microstructure evolution and relevant interdiffusion behavior of CoCrFeMnNi HEA/Al solid–liquid diffusion couple processed by different parameters were characterized and investigated. Results demonstrated that the interfacial [...] Read more.
In the present study, the diffusion couple of solid CoCrFeMnNi HEA and liquid pure Al was prepared. The microstructure evolution and relevant interdiffusion behavior of CoCrFeMnNi HEA/Al solid–liquid diffusion couple processed by different parameters were characterized and investigated. Results demonstrated that the interfacial compounds in the order of Al(Co, Cr, Fe, Mn, Ni), Al13(Co, Cr, Fe, Mn, Ni)4 and Al4(Co, Cr, Fe, Mn, Ni) were determined in the interdiffusion area along the direction from CoCrFeMnNi HEA to Al, and the precipitated Al4(Cr, Mn) and Al9(Co, Fe, Ni) phases were formed in the center of Al couple. In addition, the diffusion mechanism and activation energy of growth for each diffusion layer were revealed and determined. More importantly, the growth mechanism of each diffusion layer was also investigated and uncovered in detail. Meanwhile, the activation energy of each intermetallic layer was obtained by the Arrhenius equation and the linear regression method. It is anticipated that this present study would provide a fundamental understanding and theoretical basis for the high-entropy alloy CoCrFeMnNi HEA, potentially applied as the cast mold material for cast aluminum alloy. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

22 pages, 11364 KB  
Article
Effect of Laser Scanning Speed on Microstructure and Properties of Laser Cladding NiAlNbTiV High-Entropy Coatings
by Huan Yan, Shuangli Lu, Lei Li, Wen Huang and Chen Liang
Materials 2025, 18(17), 4076; https://doi.org/10.3390/ma18174076 - 31 Aug 2025
Viewed by 490
Abstract
High-entropy alloys (HEAs) exhibit superior properties for extreme environments, yet the effects of laser scanning speed on the microstructure and performance of laser-clad NiAlNbTiV HEA coatings remain unclear. This study systematically investigates NiAlNbTiV coatings on 316 stainless steel fabricated at scanning speeds of [...] Read more.
High-entropy alloys (HEAs) exhibit superior properties for extreme environments, yet the effects of laser scanning speed on the microstructure and performance of laser-clad NiAlNbTiV HEA coatings remain unclear. This study systematically investigates NiAlNbTiV coatings on 316 stainless steel fabricated at scanning speeds of 800–1100 mm/min via laser cladding. Characterizations via XRD, SEM/EDS, microhardness testing, high-temperature wear testing, and electrochemical measurements reveal that increasing scanning speed enhances the cooling rate, promoting γ-(Ni, Fe) solid solution formation, intensifying TiV peaks, and reducing Fe-Nb intermetallics. Higher speeds refine grains and needle-like crystal distributions but introduce point defects and cracks at 1100 mm/min. Microhardness decreases from 606.2 HV (800 mm/min) to 522.4 HV (1100 mm/min). The 800 mm/min coating shows optimal wear resistance (wear volume: 0.0117 mm3) due to dense eutectic hard phases, while higher speeds degrade wear performance via increased defects. Corrosion resistance follows a non-linear trend, with the 900 mm/min coating achieving the lowest corrosion current density (1.656 μA·cm−2) due to fine grains and minimal defects. This work provides parametric optimization guidance for laser-clad HEA coatings in extreme-condition engineering applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 8974 KB  
Article
Fabrication, Microstructure, and High-Temperature Mechanical Properties of a Novel Al-Si-Mg Based Composite Reinforced with Cu-Mn Binary Phase and Submicron Dispersoid
by Kyu-Sik Kim, Abdul Wahid Shah, Jin-Pyung Kim, Si-Young Sung, Kee-Ahn Lee and Min-Su Jeon
Metals 2025, 15(9), 958; https://doi.org/10.3390/met15090958 - 28 Aug 2025
Viewed by 539
Abstract
This study reported the development of a novel Al-Si-Mg-based composite reinforced by micron-sized Cu-Mn binary solid solution phases and submicron-sized α-Al(Mn,Fe)Si dispersoids. The Cu-Mn binary solid solution phases were added to the melt in the form of an Al-3%CuMn master alloy, whereas α-Al(Mn,Fe)Si [...] Read more.
This study reported the development of a novel Al-Si-Mg-based composite reinforced by micron-sized Cu-Mn binary solid solution phases and submicron-sized α-Al(Mn,Fe)Si dispersoids. The Cu-Mn binary solid solution phases were added to the melt in the form of an Al-3%CuMn master alloy, whereas α-Al(Mn,Fe)Si dispersoids were obtained via heat treatment. The microstructure analysis confirmed the presence of micron-sized Cu-Mn binary, eutectic Mg2Si, and Al15(FeMn)3Si2 intermetallic phases, submicron-sized α-Al(Mn,Fe)Si dispersoids, and nano-sized precipitates in the Al-based composite. At room temperature, tensile results represented a yield strength of 287 MPa and a tensile strength of 306 MPa, with an elongation of 17%. Moreover, the Al-based composite maintained a yield strength of 277 MPa up to 250 °C, with a slight increase in elongation. The composite also exhibited excellent high-temperature high-cycle fatigue properties and showed a high-cycle fatigue limit of 140 MPa at 130 °C, which is ~2.3 times higher than that of the commercial A319 alloy. A fractography study revealed that the secondary particles hindered the movement of dislocations, thus delaying crack initiation under cyclic loading at high temperatures. Additionally, Cu-Mn binary solid solutions and Al15(FeMn)3Si2 phases were found to be effective in reducing the crack propagation rate by hindering the movement of the propagated crack. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Graphical abstract

16 pages, 4468 KB  
Article
Enhancing Fatigue Lifetime of Secondary AlZn10Si8Mg Alloys Through Shot Peening: Influence of Iron Content and Surface Defects
by Denisa Straková, Zuzana Šurdová, Eva Tillová, Lenka Kuchariková, Martin Mikolajčík, Denisa Závodská and Mario Guagliano
Materials 2025, 18(16), 3901; https://doi.org/10.3390/ma18163901 - 20 Aug 2025
Viewed by 2970
Abstract
The rising demand for aluminium and environmental concerns highlight the need for a circular economy using recycled alloys. This study examines the effect of shot peening on the high-cycle fatigue life of secondary AlZn10Si8Mg alloys with different iron contents: Alloy A (0.14 wt.% [...] Read more.
The rising demand for aluminium and environmental concerns highlight the need for a circular economy using recycled alloys. This study examines the effect of shot peening on the high-cycle fatigue life of secondary AlZn10Si8Mg alloys with different iron contents: Alloy A (0.14 wt.% Fe) and Alloy B (0.56 wt.% Fe). Although both alloys showed similar tensile properties, Alloy B had higher porosity and finer β-Al5FeSi intermetallics. Shot peening was applied at 100% and 1000% coverage to evaluate changes in surface roughness, porosity, residual stresses, and fatigue performance. The treatment significantly reduced surface-connected porosity via plastic deformation, enhancing fatigue life despite increased roughness. Fatigue tests showed a 21% increase in fatigue limit for Alloy A and a 6% gain for Alloy B at higher coverage. Fractographic analysis revealed that 95% of fatigue cracks initiated at surface pores. Residual stress measurements confirmed compressive stresses were limited to the near-surface layer, with minimal influence on subsurface crack propagation. Overall, shot peening proves to be an effective method for improving fatigue resistance in recycled aluminium alloys, even in alloys with elevated iron content, reinforcing their potential for structural applications under cyclic loading. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Alloys)
Show Figures

Graphical abstract

15 pages, 3120 KB  
Article
Effect of Cu and Ag Content on the Electrochemical Performance of Fe40Al Intermetallic Alloy in Artificial Saliva
by Jesus Porcayo-Calderon, Roberto Ademar Rodriguez-Diaz, Jonathan de la Vega Olivas, Cinthya Dinorah Arrieta-Gonzalez, Jose Gonzalo Gonzalez-Rodriguez, Jose Guadalupe Chacón-Nava and José Luis Reyes-Barragan
Metals 2025, 15(8), 899; https://doi.org/10.3390/met15080899 - 11 Aug 2025
Viewed by 615
Abstract
This study investigates the effect of copper (Cu) and silver (Ag) additions on the electrochemical behavior of the Fe40Al intermetallic alloy in artificial saliva, aiming to evaluate its potential for biomedical applications such as dental implants. Alloys with varying concentrations of Ag (0.5, [...] Read more.
This study investigates the effect of copper (Cu) and silver (Ag) additions on the electrochemical behavior of the Fe40Al intermetallic alloy in artificial saliva, aiming to evaluate its potential for biomedical applications such as dental implants. Alloys with varying concentrations of Ag (0.5, 1.0, and 3.0 wt%) and Cu (1.0, 3.0, and 5.0 wt%) were synthesized and exposed to a biomimetic electrolyte simulating oral conditions. Electrochemical techniques, including open circuit potential (OCP), linear polarization resistance (LPR), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS), were employed to assess corrosion performance. Results show that unmodified Fe40Al exhibits good corrosion resistance, attributed to the formation of a stable passive oxide layer. The addition of Cu, particularly at 3.0 wt%, significantly improved corrosion resistance, yielding lower corrosion current densities and higher polarization resistance and charge transfer resistance values, surpassing even 316L stainless steel in some metrics. Conversely, Ag additions led to a degradation of corrosion resistance, especially at 3.0 wt%, due to microstructural changes and the formation of metallic Ag precipitates, AgSCN, and galvanic cells, which promoted localized corrosion. EIS results revealed that Cu- and Ag-modified alloys developed less homogeneous and less protective passive layers over time, as indicated by increased double-layer capacitance (Cdl) and reduced constant phase element exponent (ndl) values. Overall, the Fe40Al alloy shows intrinsic corrosion resistance in simulated physiological environments, and Cu additions can enhance this performance under controlled conditions. However, Ag additions negatively affect the protective behavior of the passive layer. These findings offer critical insight into the design of Fe-Al-based biomaterials for dental or biomedical applications where corrosion resistance and electrochemical stability are paramount. Full article
Show Figures

Figure 1

10 pages, 2101 KB  
Article
Structural and Ferromagnetic Response of B2-Type Al45Mn41.8X13.2 (X = Fe, Co, Ni) Alloys
by Esmat Dastanpour, Haireguli Aihemaiti, Shuo Huang, Valter Ström, Lajos Károly Varga and Levente Vitos
Magnetochemistry 2025, 11(8), 67; https://doi.org/10.3390/magnetochemistry11080067 - 6 Aug 2025
Viewed by 608
Abstract
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate [...] Read more.
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate that adding 13.2 atomic percent magnetic 3d metal to AlMn stabilizes a ferromagnetic B2 structure, where Al and X occupy different sublattices. We employ density functional theory calculations and experimental characterizations to underscore the role of the late 3d metals for the phase stability of the quasi-ordered ternary systems. We show that these alloys possess large local magnetic moments primarily due to Mn atoms partitioned to the Al-free sublattice. The revealed magneto-chemical effect opens alternative routes for tailoring the magnetic properties of B2 intermetallic compounds for various magnetic applications. Full article
(This article belongs to the Special Issue Advances in Functional Materials with Tunable Magnetic Properties)
Show Figures

Figure 1

18 pages, 6570 KB  
Article
Deposition Process and Interface Performance of Aluminum–Steel Joints Prepared Using CMT Technology
by Jie Zhang, Hao Du, Xinyue Wang, Yinglong Zhang, Jipeng Zhao, Penglin Zhang, Jiankang Huang and Ding Fan
Metals 2025, 15(8), 844; https://doi.org/10.3390/met15080844 - 29 Jul 2025
Cited by 1 | Viewed by 550
Abstract
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of [...] Read more.
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of equipment. Achieving high-quality joining between the aluminum alloy and steel has become a key process in the preparation of the anode assembly. To join the guide rods and steel claws, this work uses Cold Metal Transfer (CMT) technology to clad aluminum on the steel surface and employs machine vision to detect surface forming defects in the cladding layer. The influence of different currents on the interfacial microstructure and mechanical properties of aluminum alloy cladding on the steel surface was investigated. The results show that increasing the cladding current leads to an increase in the width of the fusion line and grain size and the formation of layered Fe2Al5 intermetallic compounds (IMCs) at the interface. As the current increases from 90 A to 110 A, the thickness of the Al-Fe IMC layer increases from 1.46 μm to 2.06 μm. When the current reaches 110 A, the thickness of the interfacial brittle phase is the largest, at 2 ± 0.5 μm. The interfacial region where aluminum and steel are fused has the highest hardness, and the tensile strength first increases and then decreases with the current. The highest tensile strength is 120.45 MPa at 100 A. All the fracture surfaces exhibit a brittle fracture. Full article
Show Figures

Figure 1

29 pages, 8611 KB  
Article
Study of Corrosion Resistance of Hybrid Structure of DP980 Two-Phase Steel and Laser-Welded 6013-T4 Aluminum Alloy
by Antonio Faria Neto, Erica Ximenes Dias, Francisco Henrique Cappi Freitas, Cristina Sayuri Fukugauchi, Erick Siqueira Guidi, Marcelo Sampaio Martins, Antonio Jorge Abdalla and Marcelo dos Santos Pereira
J. Manuf. Mater. Process. 2025, 9(7), 237; https://doi.org/10.3390/jmmp9070237 - 9 Jul 2025
Viewed by 835
Abstract
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy [...] Read more.
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy and DP980 steel were evaluated for their morphology, microhardness, and corrosion resistance. Corrosion resistance was assessed using the electrochemical noise technique over time in 0.1 M Na2SO4 and 3.5% NaCl solutions. The wavelet function was applied to remove the DC trend, and energy diagrams were generated to identify the type of corrosive process occurring on the electrodes. Corrosion on the electrodes was also monitored using photomicrographic images. Analysis revealed an aluminum–steel mixture in the melting zone, along with the presence of AlFe, AlFe3, and AlI3Fe4 intermetallic compounds. The highest Vickers microhardness was observed in the heat-affected zone, adjacent to the melt zone, where a martensitic microstructure was identified. The 6013-T4 aluminum alloy demonstrated the highest corrosion resistance in both media. Conversely, the electrochemical noise resistance was similar for the DP980 steel and the weld bead, indicating that the laser welding process does not significantly impact this property. The energy diagrams showed that localized pitting corrosion was the predominant form of corrosion. However, generalized and mixed corrosion were also observed, which corroborated the macroscopic analysis of the electrodes. Full article
Show Figures

Figure 1

14 pages, 5234 KB  
Article
Study of the Influence of Air Plasma Spraying Parameters on the Structure, Corrosion Resistance, and Tribological Characteristics of Fe–Al–Cr Intermetallic Coatings
by Bauyrzhan Rakhadilov, Lyaila Bayatanova, Aidar Kengesbekov, Nurtoleu Magazov, Zhanerke Toleukhanova and Didar Yeskermessov
Coatings 2025, 15(7), 790; https://doi.org/10.3390/coatings15070790 - 4 Jul 2025
Viewed by 752
Abstract
The development of power engineering requires the introduction of new materials and technologies to improve the quality and durability of products. One promising direction is the creation of heat-protective coatings for the protection of working surfaces of turbine blades of gas turbine engines [...] Read more.
The development of power engineering requires the introduction of new materials and technologies to improve the quality and durability of products. One promising direction is the creation of heat-protective coatings for the protection of working surfaces of turbine blades of gas turbine engines operating at temperatures up to 1000–1200 °C. Intermetallic coatings based on iron aluminides (Fe3Al, FeAl) have high resistance to oxidation due to the formation of an oxide layer: Al2O3. However, their application is limited by brittleness due to the so-called third element effect, which can be reduced through alloying with chromium. In this study the processes of formation of Fe–Al–Cr intermetallic coatings produced by air plasma spraying and the mechanisms affecting their stability at high temperatures were investigated. Experimental studies included the analysis of the microhardness, wear resistance, and corrosion resistance of coatings, as well as their phase composition and microstructure. The results showed that the optimization of sputtering parameters, especially in the FrCrAl (30_33) mode, promotes the formation of a coating with improved tribological and anticorrosion characteristics, which is associated with its dense and uniform structure. These data have an important practical significance for the creation of wear-resistant and corrosion-resistant coatings applicable in power engineering. Full article
Show Figures

Figure 1

22 pages, 11408 KB  
Article
The Influence of Beryllium Incorporation into an Al-5wt.%Cu-1wt.%Si Alloy on the Solidification Cooling Rate, Microstructural Length Scale, and Corrosion Resistance
by Joyce Ranay Santos, Milena Poletto Araújo, Talita Vida, Fabio Faria Conde, Noé Cheung, Amauri Garcia and Crystopher Brito
Metals 2025, 15(7), 736; https://doi.org/10.3390/met15070736 - 30 Jun 2025
Viewed by 472
Abstract
The addition of beryllium (Be) to Al–Cu alloys enhances their mechanical properties and corrosion resistance. This study aims to investigate the effects of solidification cooling rates and the addition of Be on the microstructural refinement and corrosion behavior of an Al–5wt.%Cu–1wt.%Si–0.5wt.%Be alloy. Radial [...] Read more.
The addition of beryllium (Be) to Al–Cu alloys enhances their mechanical properties and corrosion resistance. This study aims to investigate the effects of solidification cooling rates and the addition of Be on the microstructural refinement and corrosion behavior of an Al–5wt.%Cu–1wt.%Si–0.5wt.%Be alloy. Radial solidification under unsteady-state conditions was performed using a stepped brass mold, producing four distinct cooling rates. An experimental growth law, λ2 = 26T˙1/3, was established, confirming the influence of Be and the cooling rate on dendritic size reduction. The final microstructure was characterized by an α-Al dendritic matrix with eutectic compounds (α-Al + θ-Al2Cu + Si + Fe-rich phase) confined to the interdendritic regions. No Be-containing intermetallic phases were detected, and beryllium remained homogeneously distributed within the eutectic. Notably, Be addition promoted a morphological transformation of the Fe-rich phases from angular or acicular forms into a Chinese-script-like structure, which is associated with reduced local stress concentrations. Tensile tests revealed an ultimate tensile strength of 248.8 ± 11.2 MPa and elongation of approximately 6.4 ± 0.5%, indicating a favorable balance between strength and ductility. Corrosion resistance assessment by EIS and polarization tests in a 0.06 M NaCl solution showed a corrosion rate of 28.9 µm·year−1 and an Epit of −645 mV for the Be-containing alloy, which are lower than those measured for the reference Al–Cu and Al–Cu–Si alloys. Full article
Show Figures

Figure 1

18 pages, 12852 KB  
Article
Effect of Al-5Ti-2B on the Microstructure and Mechanical Properties of Recycled Al-7Si-0.3Mg-1Fe Alloy
by Weihe Shi, Lin Chen, Bing He, Biwang Lu and Jianbing Yang
Crystals 2025, 15(7), 584; https://doi.org/10.3390/cryst15070584 - 20 Jun 2025
Viewed by 509
Abstract
This study systematically investigates the influence of grain refinement on the microstructural evolution and mechanical properties of recycled Al-7Si-0.3Mg-1Fe alloy through the addition of varying concentrations (0–1.25 wt.%) of Al-5Ti-2B master alloy. The synergistic effects of Al-5Ti-2B on the α-Al phase, eutectic Si, [...] Read more.
This study systematically investigates the influence of grain refinement on the microstructural evolution and mechanical properties of recycled Al-7Si-0.3Mg-1Fe alloy through the addition of varying concentrations (0–1.25 wt.%) of Al-5Ti-2B master alloy. The synergistic effects of Al-5Ti-2B on the α-Al phase, eutectic Si, and Fe-rich intermetallics were characterized using metallographic analysis, XRD, SEM-BSE imaging, and EDS. In the unrefined alloy, the microstructure consisted of an α-Al solid solution with coarse plate-like eutectic Si, while Fe primarily formed needle-like β-Al5FeSi phases that either surrounded or penetrated the eutectic Si. Increasing the Al-5Ti-2B addition refined both the α-Al dendrites and eutectic Si, while the β-Al5FeSi phase transitioned from coarse to fine needles. The optimal refinement was achieved at a 1% Al-5Ti-2B addition, yielding a tensile strength of 149.4 MPa and elongation of 4.3%. However, excessive addition (1.25%) led to eutectic Si aggregation and β-Al5FeSi coarsening, resulting in mechanical property deterioration and brittle fracture behavior. These findings provide insights into optimizing grain refinement for enhancing the performance of recycled Al-Si-Mg-Fe alloys. Full article
Show Figures

Figure 1

13 pages, 2488 KB  
Article
Silicon and Manganese Effect on the Phase Composition of an Al-Fe Alloy and the Use of the ThermoCalc Software Complex for Thermodynamic Analysis
by Bakhtiyar Suleyev, Aristotel Issagulov, Ardak Dostayeva, Dastan Aubakirov and Togzhan Sultanbek
Alloys 2025, 4(2), 10; https://doi.org/10.3390/alloys4020010 - 30 May 2025
Viewed by 877
Abstract
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for [...] Read more.
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for developing conductive aluminum alloys with enhanced performance characteristics. It was found that when silicon and manganese are added in amounts up to 0.6%, the formation of intermetallic phases such as Al8Fe2Si and Al15Mn3Si2 occurs. These phases significantly influence the electrical conductivity and mechanical stability of the alloy. Thermodynamic modeling proved effective in predicting phase formation, guiding the selection of alloy compositions, and optimizing heat treatment parameters. The optimal composition for a conductive aluminum alloy includes up to 0.8% Fe, 0.5% Si, and 0.6% Mn. Heat treatment in the range of 500–550 °C resulted in a favorable combination of strength, electrical conductivity, and thermal resistance. The findings support the use of Al–Fe–Si–Mn alloys in electrical and structural applications and demonstrate the value of combining computational and experimental approaches in alloy design. Full article
Show Figures

Figure 1

20 pages, 29323 KB  
Article
CALPHAD-Assisted Analysis of Fe-Rich Intermetallics and Their Effect on the Mechanical Properties of Al-Fe-Si Sheets via Continuous Casting and Direct Rolling
by Longfei Li, Xiaolong Li, Lei Shi, Shouzhi Huang, Cong Xu, Guangxi Lu and Shaokang Guan
Metals 2025, 15(6), 578; https://doi.org/10.3390/met15060578 - 23 May 2025
Viewed by 716
Abstract
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, [...] Read more.
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, utilizing the Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD) technique. Comprehensive microstructure and surface segregation analyses of continuous casted ingots and direct-rolled sheets revealed that the Al-Fe-Si alloy with a combined Fe + Si content of 0.7% and an optimal Fe/Si atomic ratio of 3:1 (FS31) presents optimized mechanical properties: ultimate tensile strength of 145.8 MPa, elongation to failure of 5.7%, accompanied by a cupping value of 6.64 mm. Notably, Mn addition further refined the grain structure of casting ingots and enhanced the strength of both ingots and rolled sheets. Among the experimental alloys, FS14 (optimal Fe/Si atomic ratio of 1:4) sheets displayed the least surface segregation upon Mn incorporation. Through systematic optimization, an Al-Fe-Si-Mn alloy composition (Fe + Si = 0.7%, Fe/Si = 1:4 atomic ratio, 0.8 wt.% Mn) was engineered for TBCCR processing, achieving enhanced comprehensive performance: ultimate tensile strength of 189.4 MPa, elongation to failure of 7.32%, and cupping value of 7.71 mm. This composition achieves an optimal balance between grain refinement, mechanical properties (strength–plasticity synergy), formability (cupping value), and corrosion resistance (corrosion current density). The performance optimization strategy integrates synergistic improvements in strength, ductility, and corrosion resistance, providing valuable guidance for developing high-performance aluminum alloys suitable for the TBCCR process. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics Analysis of Metallic Material)
Show Figures

Figure 1

Back to TopTop