Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = Fe isotope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6434 KB  
Article
Age and Origin of Mafic Dykes in the Mianhuakeng Uranium Deposit, South China: Tectonic and Metallogenic Implications
by Jing Lai, Fujun Zhong, Liang Qiu, Gongjian Li, Wenquan Liu, Haiyang Wang and Fei Xia
Minerals 2026, 16(1), 54; https://doi.org/10.3390/min16010054 - 1 Jan 2026
Viewed by 192
Abstract
The Mianhuakeng deposit, located within the Zhuguangshan batholith in the Nanling area, is currently recognized as the largest granite-related uranium deposit in China. A portion of the uranium ore bodies is spatially associated with NE-trending mafic veins within the granite. In this study, [...] Read more.
The Mianhuakeng deposit, located within the Zhuguangshan batholith in the Nanling area, is currently recognized as the largest granite-related uranium deposit in China. A portion of the uranium ore bodies is spatially associated with NE-trending mafic veins within the granite. In this study, the field investigation, zircon U-Pb dating, S and Pb isotope analysis, and whole-rock geochemical analysis were conducted on these mafic veins to explore their crystallization age, petrogenesis, tectonic setting, and relationships with uranium mineralization. The weighted mean result of zircon U-Pb is 189 ± 3 Ma, suggesting that the mafic dyke was crystallized during the Early Jurassic. The whole-rock geochemistry and isotopes exhibit characteristics of intraplate basalts, suggesting that the mafic dykes originate from an enriched mantle source consisting of garnet–spinel lherzolite, with an estimated partial melting of 1%–5%. Mafic magmas underwent low-degree contamination from the lower crust during upwelling, induced by the extension of the lithosphere during the Early Jurassic. The analyses of pyrite sulfur isotopes in mafic samples vary between −2.9‰ and 1.8‰, significantly different from that of pyrite (−14.4‰ to −7.8‰) formed during the uranium mineralization. Furthermore, the ages of the pitchblende of 127–54 Ma are much younger than the crystallization ages of mafic dykes, indicating that the mafic magmas did not contribute to the uranium mineralization of Mianhuakeng deposit during magmatism. However, the abundant reducing minerals (e.g., pyrite, hornblende, and Fe2+-bearing minerals) in the mafic dykes can act as a redox barrier, reducing mobile U6+ to immobile U4+ during fluid–rock interaction, thereby facilitating uranium precipitation from the hydrothermal ore-forming fluids. The secondary fractures created by the intrusion of mafic magma probably provided favorable pathways for the movement of hydrothermal fluids. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

17 pages, 811 KB  
Article
Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS
by Yalei Dong, Shuyan Sun, Yasen Qiao, Chunhui Yu, Haiyan Wang and Lei Sun
Molecules 2026, 31(1), 90; https://doi.org/10.3390/molecules31010090 - 25 Dec 2025
Viewed by 335
Abstract
As rapidly developing consumer products, cosmetics confront challenges regarding safety, especially hazardous ingredients, like sex hormones. Prolonged exposure to trace sex hormones in cosmetics can inflict immeasurable damage to human health. To accurately detect the trace amounts of sex hormones in cosmetics, a [...] Read more.
As rapidly developing consumer products, cosmetics confront challenges regarding safety, especially hazardous ingredients, like sex hormones. Prolonged exposure to trace sex hormones in cosmetics can inflict immeasurable damage to human health. To accurately detect the trace amounts of sex hormones in cosmetics, a reliable method was developed and validated using ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MS/MS) with magnetic solid-phase extraction (MSPE) and isotope-labeled internal standards (IL-ISs). The conditions of sample pretreatment, chromatography, and mass parameters were systemically investigated. In the MSPE procedure, the commercial Fe3O4@HLB magnetic material was employed for sample pretreatment, which was beneficial for operation, as well as sample purification and analyte enrichment. The utilization of IL-ISs compensated for potential matrix effects and losses during sample preparation, thereby improving precision and accuracy. Based on the proposed MSPE technology, UHPLC-MS/MS can address the qualitative and quantitative analysis needs for target analytes in complex cosmetic matrices. At three fortification levels, recoveries were in the range of 71.7–116.2%, with a relative standard deviation (RSD) ranging from 1.6% to 8.3%. Furthermore, based on the method proposed here, a total of 116 batches of cosmetics were analyzed, and trace progestins and estrogens were discovered in 10 samples. The MSPE method, coupled with UHPLC-MS/MS using IL-ISs, was convenient, efficient, and feasible for detecting trace amounts of sex hormones in cosmetics. The method scored 0.66 (out of 1) on the AGREE metric, confirming its green profile. Based on the detected concentrations, a preliminary safety evaluation was performed to assess the potential health risks of residual progesterone in hair loss prevention cosmetics by calculating the margin of safety (MoS). Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

12 pages, 328 KB  
Article
Influence of Sourdough Fermentation-Induced Dephytinization on Iron Absorption from Whole Grain Rye Bread–Double-Isotope Crossover and Single-Blind Absorption Studies
by Michael Hoppe, Ann-Sofie Sandberg and Lena Hulthén
Nutrients 2025, 17(24), 3891; https://doi.org/10.3390/nu17243891 - 12 Dec 2025
Viewed by 574
Abstract
Background/Objectives: There are substantial beneficial health effects from a diet rich in whole grains. However, a high intake of whole grain, and hence a high intake of the iron absorption inhibitor phytate, may result in the impaired bioavailability of non-heme iron. The [...] Read more.
Background/Objectives: There are substantial beneficial health effects from a diet rich in whole grains. However, a high intake of whole grain, and hence a high intake of the iron absorption inhibitor phytate, may result in the impaired bioavailability of non-heme iron. The study examined non-heme iron absorption in healthy women from two portions (80 g and 120 g) of identical whole grain bread, baked with or without phytate-degrading techniques. Methods: The study included two single-blinded iron isotope trials. Subjects were served meals containing whole grain rye bread, which was either baked from scalded flour or sourdough-fermented flour labeled with 55Fe or 59Fe. The absorption of non-heme iron from the meals was measured through the erythrocyte incorporation of radioiron isotopes. Results: Iron absorption from the 80 g high-phytate bread was 7.0 ± 4.1% (mean ± SD, n = 8). Iron absorption from the 80 g dephytinized bread was 19.1 ± 15.1% (mean ± SD) and thus on average 2.8 times higher compared to the absorption from the high-phytate bread (p = 0.001). Iron absorption from the 120 g high-phytate bread was 4.6 ± 2.9% (mean ± SD, n = 17). Iron absorption from the 120 g dephytinized bread was 15.0 ± 9.2% (mean ± SD) and thus on average 3.5 times higher compared to the absorption from the high-phytate bread (p = 0.001). Conclusions: Iron uptake was significantly higher from dephytinized bread compared to scalded bread. And the higher the amount of phytate, the higher the beneficial effects on iron absorption from dephytinization. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

14 pages, 1283 KB  
Article
A Comparative Study of COMPLET Code Predictions with Experimental Data on Alpha Particle-Induced Reactions on Cobalt Isotope up to 120 MeV
by Cherie Sisay Mekonen and Ayyagari Venkata Mohan Rao
Atoms 2025, 13(12), 96; https://doi.org/10.3390/atoms13120096 - 4 Dec 2025
Viewed by 392
Abstract
A comparative study of alpha-induced reactions on cobalt isotope with the predictions by COMPLET code is presented for nine excitation functions, 59Co(α,p5n)57Ni, 59Co (α,p6n)56Ni, 59Co(α,2pn)60Co, 59Co(α,3pn)59Fe, 59Co(α,αn)58Co, 59 [...] Read more.
A comparative study of alpha-induced reactions on cobalt isotope with the predictions by COMPLET code is presented for nine excitation functions, 59Co(α,p5n)57Ni, 59Co (α,p6n)56Ni, 59Co(α,2pn)60Co, 59Co(α,3pn)59Fe, 59Co(α,αn)58Co, 59Co(α,α2n)57Co, 59Co(α,α3n)56Co, 59Co(α,2αn)54Mn, and 59Co(α,2α3n)52Mn. The experimental values were taken from the EXFOR data base. Theoretical cross-sections were calculated using initial exciton number n0 = 4 (4p0h) and level density parameter a (=ACN/10) globally. While several reactions showed excellent agreement with experimental data, others displayed a notable discrepancy. This is because of the limitations of the COMPLET code to take the alpha emission in a pre-equilibrium phase. Full article
Show Figures

Figure 1

16 pages, 1233 KB  
Article
Elemental Composition and Strontium Isotopic Ratio Analysis of Industrial Hemp (Cannabis sativa L.) for Textile Applications
by Mirco Rivi, Veronica D’Eusanio, Andrea Marchetti, Emilio Bonfiglioli and Lorenzo Tassi
Molecules 2025, 30(23), 4573; https://doi.org/10.3390/molecules30234573 - 27 Nov 2025
Viewed by 437
Abstract
Industrial hemp (Cannabis sativa L.) is increasingly valued as a sustainable raw material for textile applications, yet reliable analytical tools to characterize and trace its origin are still limited. This study presents a pilot investigation on the elemental composition and strontium isotopic [...] Read more.
Industrial hemp (Cannabis sativa L.) is increasingly valued as a sustainable raw material for textile applications, yet reliable analytical tools to characterize and trace its origin are still limited. This study presents a pilot investigation on the elemental composition and strontium isotopic ratio (87Sr/86Sr) of Italian industrial hemp samples, with the aim of evaluating their potential as chemical markers for geographic traceability. Hemp stalks and fibers collected from different Italian regions were finely ground, mineralized using microwave-assisted digestion, and analyzed by atomic absorption spectroscopy (AAS), inductively coupled-plasma mass spectrometry (ICP-MS), and multicollector ICP-MS (MC-ICP-MS). The analytical protocol was validated using certified reference materials, showing recoveries between 95.7% and 102.1%. The measured 87Sr/86Sr ratios ranged from 0.7085 to 0.7105, with consistent intra-sample reproducibility and values reflecting regional geochemical backgrounds. Elemental profiling revealed marked variability among samples, particularly Sr, Ca, Fe, and trace metals. Principal Component Analysis (PCA) indicated partial clustering according to geographical origin, distinguishing northern from southern Italian samples. Heavy-metal concentrations (Hg, Pb, Cd) were well below international textile safety thresholds, confirming the environmental sustainability of local hemp cultivation. Full article
(This article belongs to the Special Issue Advances in Trace Element Analysis: Techniques and Applications)
Show Figures

Figure 1

23 pages, 13616 KB  
Article
Source and Precipitation Process of Gold in the Linglong Gold Deposit, Jiaodong Peninsula: Constraints from Trace Elements of Pyrite and S-Pb Isotopes
by Fei Ren, Zheng-Jiang Ding, Zhong-Yi Bao, Jun-Wei Wang, Shun-Xi Ma, Tao Niu, Kai-Qiang Geng, Bin Wang, Chao Li, Gui-Jie Li and Shan-Shan Li
Minerals 2025, 15(11), 1220; https://doi.org/10.3390/min15111220 - 19 Nov 2025
Viewed by 488
Abstract
Jiaodong Gold Province is a globally rare giant gold cluster, with ongoing debates regarding its metallogenic material sources and mineralization mechanisms. This study focuses on the Linglong quartz-vein-type gold deposit within the Zhaoping Fault Zone, conducting in situ trace element and S-Pb isotope [...] Read more.
Jiaodong Gold Province is a globally rare giant gold cluster, with ongoing debates regarding its metallogenic material sources and mineralization mechanisms. This study focuses on the Linglong quartz-vein-type gold deposit within the Zhaoping Fault Zone, conducting in situ trace element and S-Pb isotope analyses of pyrite from different mineralization stages. The trace element characteristics were investigated to explore the sources of metallogenic materials, the evolution of ore-forming fluids, and the mechanisms of gold precipitation. The main findings are as follows: (1) In the Linglong gold deposit, gold primarily enters the pyrite lattice as a solid solution (Au+) through Au-As coupling. From the Py1 to Py3 stages, Co and Ni contents significantly decrease, while Cu, As, Au, and polymetallic element contents continuously increase. Additionally, Cu mainly replaces Fe2+ in the form of Cu2+, whereas Pb predominantly exists as micro inclusions of galena. (2) The S isotope (Py1: δ34S = +7.60‰–+8.25‰, Py2: δ34S = +6.15‰–+8.15‰, Py3: δ34S = +6.90‰–+9.10‰) and Pb isotope (206Pb/204Pb = 16.95–17.715, 207Pb/204Pb = 15.472–15.557, 208Pb/204Pb = 37.858–38.394) systems collectively constrain the ore-forming materials such that they are dominated by metasomatized enriched lithospheric mantle, with simultaneous mixing of crustal materials. (3) The ore-forming fluid underwent a continuous evolution process characterized by persistently decreasing temperatures and a transition from mantle-dominated to crust–mantle mixed sources. The Py1 stage was predominantly composed of mantle-derived magmatic fluids uncontaminated by crustal materials, representing a high-temperature, closed environment. In the Py2 stage, the fluid system transitioned to an open system with the incorporation of crustal materials. Through coupled substitution of “As3+ + Au+ → Fe2+” and dissolution–reprecipitation processes, gold was initially activated and enriched. During the Py3 stage, pyrite underwent dissolution–reprecipitation under tectonic stress and fluid activity, promoting extraordinary element enrichment and serving as the primary mechanism for gold precipitation. Concurrently, bismuth–tellurium melt interactions further facilitated the precipitation of gold minerals. Full article
(This article belongs to the Special Issue Gold–Polymetallic Deposits in Convergent Margins)
Show Figures

Figure 1

20 pages, 1771 KB  
Article
Hard Evidence from Turtle Shells: Tracing Metal and Non-Metallic Elements Bioaccumulation in Freshwater Ecosystems
by Haithem Aib, Badis Bakhouche, Krisztián Nyeste, Boglárka Döncző, Selmane Chabani, Amina Saadi, Zsolt Varga and Herta Mária Czédli
Environments 2025, 12(11), 445; https://doi.org/10.3390/environments12110445 - 18 Nov 2025
Viewed by 1314
Abstract
The longevity, site fidelity, and trophic position of freshwater turtles have led to their increasing recognition as useful bioindicators of environmental contamination. Mauremys leprosa (n = 25) shells from a Northern African wetland system were examined for trace element concentrations in order [...] Read more.
The longevity, site fidelity, and trophic position of freshwater turtles have led to their increasing recognition as useful bioindicators of environmental contamination. Mauremys leprosa (n = 25) shells from a Northern African wetland system were examined for trace element concentrations in order to assess shell composition as a non-invasive biomonitoring method. Micro x-ray fluorescence (μXRF) method was used to measure the shell concentrations of 17 elements, including Ca, P, Fe, Zn, Mn, Sr, Pb, Sb, and Al. As would be expected from the structural composition of bony tissues, calcium and phosphorus were the predominant constituents. In addition to bulk concentrations, micro-XRF elemental mapping revealed heterogeneous spatial distributions of essential and toxic elements within the shells, providing visual evidence of bioaccumulation patterns and supporting the use of shells as non-invasive bioindicators. There were statistically significant sex-related differences in the levels of trace elements, with males exhibiting higher concentrations of Mg, Mn, Sb, Pb, and Al (p < 0.05). Spearman correlations revealed strong associations between certain shell elements (e.g., Fe, Mn, Ti, Zn) and morphometric parameters. Comparisons with environmental samples (water and sediment) showed moderate to strong correlations, particularly with sediment metal concentrations, supporting the utility of shell chemistry as an integrative exposure matrix. Nonetheless, there were significant percentages of censored or missing values for certain metals (Cu, Ni, and As). This study emphasizes how viable turtle shells are as non-lethal markers of bioaccumulation and stresses how crucial it is to take environmental matrices, element-specific variability, and sex into account when assessing contamination. Longitudinal monitoring, physiological biomarkers, and isotopic analysis should all be used in future studies to bolster the causal relationships between environmental exposure and turtle health. Full article
Show Figures

Figure 1

30 pages, 12195 KB  
Article
Neodymium-Rich Monazite of the Lemhi Pass District, Idaho and Montana: Chemistry and Geochronology
by Virginia S. Gillerman, Michael J. Jercinovic and Mark D. Schmitz
Minerals 2025, 15(11), 1156; https://doi.org/10.3390/min15111156 - 31 Oct 2025
Viewed by 981
Abstract
Thorium-rare earth-iron oxide deposits of the Lemhi Pass district, Idaho and Montana, are enriched in the middle rare earth elements (REE), and particularly neodymium (Nd). Overall, thorium (Th) and total rare earth oxide (TREO) grades of the deposits are sub equal at 0.4 [...] Read more.
Thorium-rare earth-iron oxide deposits of the Lemhi Pass district, Idaho and Montana, are enriched in the middle rare earth elements (REE), and particularly neodymium (Nd). Overall, thorium (Th) and total rare earth oxide (TREO) grades of the deposits are sub equal at 0.4 wt. % but locally exceed 1 wt. % TREO. Nd-monazite, the major REE phase (35 wt. % Nd2O3) occurs in hydrothermal Th-REE mineralized quartz veins and biotite-rich shear zones of enigmatic origin. Hosted in Mesoproterozoic metasedimentary rocks, the deposits are modest in size but present over a large area with no obvious source pluton exposed. This paper documents the geochemistry of the monazite and provides the first geochronological data to constrain its origin. Elemental mapping and U-Th-total Pb EPMA dating of the monazite and thorite document a Paleozoic age for mineralization centered in the Late Devonian at approximately 355 Ma ± 20 Ma. A second period of volumetrically minor Th and REE remobilization is dated as Mesozoic (ca. 100 Ma). For context, a reactivated passive continental margin was present during the Devonian in eastern Idaho, while the Mesozoic was a time of major accretionary tectonics and arc magmatism further west. Nd and Pb isotopic data require a significant interaction of the fluids with an ancient crustal component represented by regional Mesoproterozoic metasedimentary rocks and granitoids. A source–transport–deposition model is hypothesized with metasomatic fractionation and enrichment of Nd during regional hydrothermal circulation. The aqueous fluids were hot, oxidizing, and likely saline, but the exact source of the Th and REEs and the mechanism of enrichment remains problematic. Additional analytical work and increased knowledge of the regional and district geology will improve this unconventional hypothesis for formation of Lemhi Pass’ unusual Nd-rich Th-REE-Fe mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

33 pages, 77489 KB  
Article
Chemistry and Fe Isotopes of Magnetites in the Orbicular Bodies in the Tanling Diorite and Implications for the Skarn Iron Mineralization in the North China Craton
by Ruipeng Li, Shangguo Su and Peng Wang
Minerals 2025, 15(10), 1061; https://doi.org/10.3390/min15101061 - 9 Oct 2025
Viewed by 544
Abstract
Skarn-type iron ore is economically significant, and numerous skarn ore deposits have been identified in the North China Craton. The newly discovered orbicular diorite in this region is distinguished from other analogous rocks due to the accumulation of large magnetite particles, which may [...] Read more.
Skarn-type iron ore is economically significant, and numerous skarn ore deposits have been identified in the North China Craton. The newly discovered orbicular diorite in this region is distinguished from other analogous rocks due to the accumulation of large magnetite particles, which may shed new light on the genesis of this ore type. The magnetite in different parts of the orbicular structure exhibits distinct compositional differences. For example, magnetite at the edge has a small particle size (200 μm) and is associated with the minerals plagioclase and hornblende, indicating that it crystallized from normal diorite magma. By contrast, magnetite in the core has a relatively large particle size (>1000 μm), is associated with apatite and actinolite, and contains apatite inclusions as well as numerous pores. The size of magnetite in the mantle falls between that of the edge and the core. The syngenetic minerals of magnetite in the mantle include epidote and plagioclase. The magnetites in the cores of orbicules have a higher content of Ti, Al, Ni, Cr, Sc, Zn, Co, Ga, and Nb than those in the rim. The δ56Fe value of the core magnetite (0.46‰–0.78‰) is much higher than that of the mantle and rim magnetite in orbicules. Moreover, the δ56Fe value of magnetite increases as the V content of magnetite gradually decreases. This large iron isotope fractionation is likely driven by liquid immiscibility that forms iron-rich melts under high oxygen fugacity. The reaction between magma and carbonate xenoliths (Ca, Mg)CO3 during magma migration generates abundant CO2, which significantly increases the oxygen fugacity of the magmatic system. Under the action of CO2 and other volatile components, liquid immiscibility occurs in the magma chamber, and Fe-rich oxide melts are formed by the melting of carbonate xenoliths. Iron oxides (Fe3O4/Fe2O3) will crystallize close to the liquidus due to high oxygen fugacity. These characteristics of magnetite in the Tanling orbicular diorite (Wuan, China) indicate that diorite magma reacts with carbonate xenoliths to form “Fe-rich melts”, and skarn iron deposits are probably formed by the reaction of intermediate-basic magma with carbonate rocks that generate such “Fe-rich melts”. A possible reaction is as follows: diorite magma + carbonate → (magnetite-actinolite-apatite) + garnet + epidote + feldspar + hornblende + CO2↑. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

13 pages, 2571 KB  
Article
Operando NRVS on LiFePO4 Battery with 57Fe Phonon DOS
by Alexey Rulev, Nobumoto Nagasawa, Haobo Li, Hongxin Wang, Stephen P. Cramer, Qianli Chen, Yoshitaka Yoda and Artur Braun
Crystals 2025, 15(10), 841; https://doi.org/10.3390/cryst15100841 - 27 Sep 2025
Cited by 1 | Viewed by 1069
Abstract
The vibration properties of materials play a role in their conduction of electric charges. Ionic conductors such as electrodes and solid electrolytes are also relevant in this respect. The vibration properties are typically assessed with infrared and Raman spectroscopy, and inelastic neutron scattering, [...] Read more.
The vibration properties of materials play a role in their conduction of electric charges. Ionic conductors such as electrodes and solid electrolytes are also relevant in this respect. The vibration properties are typically assessed with infrared and Raman spectroscopy, and inelastic neutron scattering, which all allow for the derivation of the phonon density of states (PDOS) in part of a full portion of the Brioullin zone. Nuclear resonant vibration spectroscopy (NRVS) is a novel method that produces the element-specific PDOS from Mössbauer-active isotopes in a compound. We employed NRVS operando on a pouch cell battery containing a Li57FePO4 electrode, and thus could derive the PDOS of the 57Fe in the electrode during charging and discharging. The spectra reveal reversible vibrational changes associated with the two-phase conversion between LiFePO4 and FePO4, as well as signatures of metastable intermediate states. We demonstrate how the NRVS data can be used to tune the atomistic simulations to accurately reconstruct the full vibration structures of the battery materials in operando conditions. Unlike optical techniques, NRVS provides bulk-sensitive, element-specific access to the full phonon spectrum under realistic operando conditions. These results establish NRVS as a powerful method to probe lattice dynamics in working batteries and to advance the understanding of ion transport and phase transformation mechanisms in electrode materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

26 pages, 6089 KB  
Article
Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton
by Renzhi Zhu, Pei Ni, Yan Li and Fanglai Wan
Minerals 2025, 15(10), 1009; https://doi.org/10.3390/min15101009 - 24 Sep 2025
Viewed by 603
Abstract
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite [...] Read more.
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite (formerly Group-II). Nevertheless, the petrogenesis of transitional diamond-bearing kimberlites remains poorly understood due to limited research. The diamondiferous transitional Wafangdian kimberlite in the North China Craton (NCC) thus provides a valuable opportunity for a detailed case study. We investigated fresh hypabyssal transitional Wafangdian kimberlites using bulk-rock major and trace element geochemistry to constrain near-primary parental magma compositions and decipher their petrogenesis. Geochemical compositions identify samples affected by crustal contamination based on elevated SiO2, Pb, heavy rare earth element (HREE) concentrations, and Sr isotopic ratios. Compositional variations among macrocrystic samples (MgO: 29.7–31.5 wt.%; SiO2: 30.6–34.7 wt.%; CaO: 3.9–7.5 wt.%; Mg# [atomic Mg/(Mg + Fe2+) × 100]: 85–88) result from substantial entrainment and partial assimilation of peridotite xenoliths (up to 35%). In contrast, variations within aphanitic samples (MgO: 24.0–29.7 wt.%; SiO2: 27.7–30.9 wt.%; CaO: 6.0–11.8 wt.%; Mg#: 81–85) are attributed to fractional crystallization of olivine and phlogopite (~1–32%). Based on these constraints, the near-primary parental magma composition for the Wafangdian kimberlite is estimated as ~29.7 wt.% SiO2, ~29.7 wt.% MgO, and Mg# 85. Trace element concentrations in the transitional Wafangdian kimberlites resemble those of archetypal kimberlites globally (e.g., Nb/U > 26, La/Nb < 1.4, Ba/Nb < 16, Th/Nb < 0.25), indicating a shared convective mantle source. However, the Wafangdian kimberlites exhibit distinct characteristics: εNd(t) values ranging from −3.44 to −1.77, higher Al2O3 and K2O contents, and lower Ce/Pb ratios (10–20) compared to archetypal kimberlites. These features suggest the mantle source region was profoundly influenced by deeply subducted oceanic material. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

26 pages, 7813 KB  
Article
Fe–Si–O Isotope Characteristics and Ore Formation Mechanisms of the Hugushan Area BIF-Type Iron Deposits in the Central North China Craton
by Ende Wang, Deqing Zhang, Jinpeng Luan, Yekai Men, Ran Wang, Jianming Xia and Suibo Zhang
Minerals 2025, 15(9), 996; https://doi.org/10.3390/min15090996 - 19 Sep 2025
Viewed by 700
Abstract
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a [...] Read more.
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a new perspective on the ore formation mechanism of the Hugushan BIFs. The samples from the upper and lower parts of the Hugushan BIFs are characterized by slight enrichment of heavy and light Fe isotopes, respectively. Additionally, the samples from the upper part of the Hugushan BIFs show characteristics of slightly positive Ce anomalies and negative La anomalies, suggesting that the shallow ancient seawater was in a partially oxidized state, whereas the deep seawater remained in a reductive environment during the depositional period. The low Al2O3 and TiO2 concentrations, as well as the depletion of Zr and Hf in the Hugushan BIFs, suggest that the contribution of terrestrial detrital materials to deposition is extremely limited. The BIFs all exhibit positive Eu anomalies, and the quartz in the BIFs is depleted in 30Si, a characteristic similar to that observed in siliceous rocks formed in hydrothermal vent environments and during hydrothermal plume activity. Additionally, the δ18O values of quartz in Hugushan BIFs are similar to the O isotope compositions of hydrothermal sedimentary siliceous rocks, further suggesting that the silicon in BIFs originates primarily from seafloor hydrothermal activity. The combination of Eu/Sm, Sm/Yb, and Y/Ho ratios indicates that the major components (iron and silica) of the Hugushan Iron Ore Deposit originated from the mixing of high-temperature hydrothermal fluids with seawater, with the hydrothermal fluid contributing slightly less than 0.1%. The magnetite and quartz bands in the BIFs exhibit inhomogeneous and covariant δ56Fe and δ30Si isotope characteristics, suggesting that the alternating siliceous and ferruginous layers are products of original chemical deposition in the ocean. Periodic hydrothermal activity and ocean transgression caused the recurring deposition of siliceous and ferruginous layers, resulting in the characteristic banded structure of the Hugushan Iron Ore Deposit. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

19 pages, 3882 KB  
Article
Olivine and Whole-Rock Geochemistry Constrain Petrogenesis and Geodynamics of Early Cretaceous Fangcheng Basalts, Eastern North China Craton
by Qiao-Chun Qin, Lu-Bing Hong, Yin-Hui Zhang, Hong-Xia Yu, Dan Wang, Le Zhang and Peng-Li He
Minerals 2025, 15(9), 928; https://doi.org/10.3390/min15090928 - 30 Aug 2025
Viewed by 736
Abstract
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through [...] Read more.
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through integrated geochemical analysis (major/trace elements, Sr-Nd-Pb isotopes, olivine chemistry) of Early Cretaceous (~125 Ma) Fangcheng basalts from Shandong. These basalts possess high MgO (8.14–11.31 wt%), Mg# (67.23–73.69), Ni (126–244 ppm), and Cr (342–526 ppm). Their trace elements show island arc basalt (IAB) affinities: enrichment in large-ion lithophile elements and depletion in high-field-strength elements, with negative Sr and Pb anomalies. Enriched Sr-Nd isotopic compositions [87Sr/86Sr(t) = 0.709426–0.709512; εNd(t) = −12.60 to −13.10], unradiogenic 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios (17.55–17.62 and 37.77–37.83, respectively), and slightly radiogenic 207Pb/204Pb(t) ratios (15.55–15.57) reflect an upper continental crustal signature. Covariations of major elements, Cr, Ni, and trace element ratios (Sr/Nd, Sc/La) with MgO indicate dominant olivine + pyroxene fractionation. High Ce/Pb ratios and lack of correlation between Ce/Pb or εNd(t) and SiO2 preclude significant crustal contamination. The combined isotopic signature and IAB-like trace element patterns support a lithospheric mantle source that was metasomatized by upper crustal material. Olivine phenocrysts exhibit variable Ni (1564–4786 ppm), Mn (903–2406 ppm), Fe/Mn (56.63–85.49), 10,000 × Zn/Fe (9.55–19.55), and Mn/Zn (7.07–14.79), defining fields indicative of melts from both peridotite and pyroxenite sources. High-MgO samples (>10 wt%) in the Grossular/Pyrope/Diopside/Enstatite diagram show a clinopyroxene, garnet, and olivine residue. Reconstructed primary melts yield formation pressures of 3.5–3.9 GPa (110–130 km depth) and temperatures of 1474–1526 °C, corresponding to ~60 mW/m2 surface heat flow. This demonstrates retention of a ≥110–130 km thick lithosphere during peak destruction, arguing against delamination and supporting a thermo-mechanic erosion mechanism dominated by progressive convective thinning of the lithospheric base via asthenospheric flow. Our findings therefore provide crucial thermal and structural constraints essential for resolving the dynamics of cratonic lithosphere modification. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

33 pages, 8120 KB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 1513
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

17 pages, 2439 KB  
Article
Why Does the Water Color in a Natural Pool Turn into Reddish-Brown “Pumpkin Soup”?
by Donglin Li, Mingyang Zhao, Qi Liu, Lizeng Duan, Huayu Li, Yun Zhang, Qingyan Gao, Haonan Zhang and Bofeng Qiu
Sustainability 2025, 17(16), 7255; https://doi.org/10.3390/su17167255 - 11 Aug 2025
Viewed by 1095
Abstract
Inland aquatic ecosystems, encompassing lakes, reservoirs, and ponds, serve as vital repositories of water resources and provide essential ecological, social, and cultural services. Water color, a key indicator of water quality, reflects the complex interactions among physicochemical, biological, and environmental drivers. Heilong Pool [...] Read more.
Inland aquatic ecosystems, encompassing lakes, reservoirs, and ponds, serve as vital repositories of water resources and provide essential ecological, social, and cultural services. Water color, a key indicator of water quality, reflects the complex interactions among physicochemical, biological, and environmental drivers. Heilong Pool (HP) in Southwest China, which consists of a Clear Pool (CP) and a Turbid Pool (TP), has recently exhibited an anomalous reddish-brown “pumpkin soup” phenomenon in the CP, while the TP remains unchanged. This unusual phenomenon has raised widespread public concern regarding water resource security and its potential association with geological disasters. To elucidate the ecological and geochemical mechanisms of this phenomenon, we employed a multifaceted analytical approach that included assessing nutrient elements, quantifying heavy metal concentrations, analyzing dissolved substances, characterizing algal community composition, and applying δD-δ18O isotope analytical models. Our findings illustrated that while Bacillariophyta predominate (>79.3% relative abundance) in the algal community of HP, they were not the primary determinant of water color changes. Instead, Fe(OH)3 colloidal particles, originating from groundwater–surface water interactions and controlled by redox environment dynamics periodically, emerged as the principal factors of the reddish-brown discoloration. The genesis of the “pumpkin soup” water coloration was attributed to the precipitation-induced displacement of anoxic groundwater from confined karst conduits. Subsequent exfiltration and atmospheric exposure facilitate oxidative precipitation, forming authigenic rust-hued Fe(OH)3 colloidal complexes. This study provides new insights into the geochemical and hydrological mechanisms underlying water color anomalies in karst-dominated catchments. Full article
Show Figures

Figure 1

Back to TopTop