Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Fe3O4@HLB
2.2. Development of LC-MS/MS Method
2.3. Optimization of Sample Pretreatment
2.4. Method Evaluation
2.5. Method Comparison
2.6. The Greenness of the Proposed Method
2.7. Application
2.8. Safety Evaluation
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Apparatus
3.3. Sample Preparation
3.4. LC-MS/MS Instrument Parameters
3.5. Safety Evaluation of P in Cosmetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, L.; Yates, S.R. A review on structural elucidation of metabolites of environmental steroid hormones via liquid chromatography–mass spectrometry. TrAC Trends Anal. Chem. 2018, 109, 142–153. [Google Scholar] [CrossRef]
- Bayode, A.A.; Olisah, C.; Emmanuel, S.S.; Adesina, M.O.; Koko, D.T. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: A systemic scientometric review. RSC Adv. 2023, 13, 22675–22697. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Sousa, D.; Bernardo, M.; Matos, I.; Fonseca, I.; Vale Cardoso, V.; Neves Carneiro, R.; Silva, S.; Fontes, P.; Daam, M.A.; et al. Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules 2021, 26, 1010. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Kroll, K.J.; Silva-Sanchez, C.; Carriquiriborde, P.; Fernandino, J.I.; Denslow, N.D.; Somoza, G.M. Steroid hormones and estrogenic activity in the wastewater outfall and receiving waters of the Chascomus chained shallow lakes system (Argentina). Sci. Total Environ. 2020, 743, 140401. [Google Scholar] [CrossRef]
- Song, X.; Wen, Y.; Wang, Y.; Adeel, M.; Yang, Y. Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: Analytical and modelling approaches. Chemosphere 2018, 198, 546–555. [Google Scholar] [CrossRef]
- Wojnarowski, K.; Podobinski, P.; Cholewinska, P.; Smolinski, J.; Dorobisz, K. Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals 2021, 11, 2152. [Google Scholar] [CrossRef]
- Gibson, D.A.; Saunders, P.T. Endocrine disruption of oestrogen action and female reproductive tract cancers. Endocr. Relat. Cancer 2014, 21, T13–T31. [Google Scholar] [CrossRef]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef]
- Lyytinen, H.; Pukkala, E.; Ylikorkala, O. Breast Cancer Risk in Postmenopausal Women Using Estrogen-Only Therapy. Obstet. Gynecol. 2006, 108, 1354–1360. [Google Scholar] [CrossRef]
- Rosset, F.; Marino, M.; Mastorino, L.; Pala, V.; Santaniello, U.; Sciamarrelli, N.; Giunipero di Corteranzo, I.; Aquino, C.; Ribero, S.; Quaglino, P. Hormonal Therapies in Cosmetic Dermatology: Mechanisms, Clinical Applications, and Future Perspectives. Cosmetics 2025, 12, 207. [Google Scholar] [CrossRef]
- Lei, L.; Kang, M.Q.; Li, N.; Yang, X.; Liu, Z.L.; Wang, Z.B.; Zhang, L.Y.; Zhang, H.Q.; Yu, Y. Determination of sex hormones in cosmetic products by magnetically stirring extraction bar liquid–liquid microextraction coupled with high performance liquid chromatography. Anal. Methods 2014, 6, 3674. [Google Scholar] [CrossRef]
- Guo, P.; Xu, X.; Xian, L.; Ge, Y.; Luo, Z.; Du, W.; Jing, W.; Zeng, A.; Chang, C.; Fu, Q. Development of molecularly imprinted column-on line-two dimensional liquid chromatography for rapidly and selectively monitoring estradiol in cosmetics. Talanta 2016, 161, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Ni, M.L.; Zhao, H.Y.; Ge, X.M.; He, X.Y.; Yin, J.Y.; Yu, X.J.; Fan, Y.M.; Huang, Z.Q. Multiresidue analysis of 59 nonallowed substances and other contaminants in cosmetics. J. Sep. Sci. 2014, 37, 3684–3690. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, L.; Wang, M.; Zhao, H.; Zhao, F. Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023, 28, 1980. [Google Scholar] [CrossRef]
- Du, X.N.; He, Y.; Chen, Y.W.; Liu, Q.; Sun, L.; Sun, H.M.; Wu, X.F.; Lu, Y. Decoding Cosmetic Complexities: A Comprehensive Guide to Matrix Composition and Pretreatment Technology. Molecules 2024, 29, 411. [Google Scholar] [CrossRef]
- Kamata, K.; Harada, H. High-Performance Liquid Chromatographic Determination of Estradiol Benzoate in Cosmetics. Jpn. J. Toxicol. Environ. Health 2008, 30, 313–316. [Google Scholar] [CrossRef]
- Wu, C.-S.; Jin, Y.; Zhang, J.-L.; Ren, Y.; Jia, Z.-X. Simultaneous determination of seven prohibited substances in cosmetic products by liquid chromatography–tandem mass spectrometry. Chin. Chem. Lett. 2013, 24, 509–511. [Google Scholar] [CrossRef]
- Meng, X.; Bai, H.; Guo, T.; Niu, Z.; Ma, Q. Broad screening of illicit ingredients in cosmetics using ultra-high-performance liquid chromatography–hybrid quadrupole-Orbitrap mass spectrometry with customized accurate-mass database and mass spectral library. J. Chromatogr. A 2017, 1528, 61–74. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Ouyang, Y.; Hu, Z.; Ma, L.; Zhang, J.; Lin, J.; Chen, H. Trace detection of hormones and sulfonamides in viscous cosmetic products by neutral desorption extractive electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2011, 46, 794–803. [Google Scholar] [CrossRef]
- Ouyang, J.; An, D.; Chen, T.; Lin, Z. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur. J. Mass Spectrom. 2017, 23, 280–286. [Google Scholar] [CrossRef]
- Shang, Y.; Meng, X.; Liu, J.; Song, N.; Zheng, H.; Han, C.; Ma, Q. Applications of mass spectrometry in cosmetic analysis: An overview. J. Chromatogr. A 2023, 1705, 464175. [Google Scholar] [CrossRef] [PubMed]
- Salamat, Q.; Tatardar, F.; Moradi, R.; Soylak, M. Recent Advancement and Prospects of Novel Nanomaterial-Based Solid-Phase Extraction (SPE) Techniques. Anal. Lett. 2024, 58, 943–983. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Yu, Y.; Liu, J.; Li, G.; Wu, Y. Highly sensitive determination of endocrine disrupting chemicals in foodstuffs through magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. J. Sci. Food Agric. 2021, 101, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Šafaříková, M.; Šafařík, I. Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999, 194, 108–112. [Google Scholar] [CrossRef]
- Ariffin, M.M.; Azmi, A.H.M.; Saleh, N.M.; Mohamad, S.; Rozi, S.K.M. Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchem. J. 2019, 147, 930–940. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Liang, N.; Zhao, L. Deep eutectic solvent-based magnetic colloidal gel assisted magnetic solid-phase extraction: A simple and rapid method for the determination of sex hormones in cosmetic skin care toners. Chemosphere 2020, 255, 127004. [Google Scholar] [CrossRef]
- Lopes, K.L.; de Oliveira, H.L.; Serpa, J.A.S.; Torres, J.A.; Nogueira, F.G.E.; de Freitas, V.A.A.; Borges, K.B.; Silva, M.C. Nanomagnets based on activated carbon/magnetite nanocomposite for determination of endocrine disruptors in environmental water samples. Microchem. J. 2021, 168, 106366. [Google Scholar] [CrossRef]
- Mpupa, A.; Nqombolo, A.; Mizaikoff, B.; Nomngongo, P.N. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, beta-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules 2021, 27, 248. [Google Scholar] [CrossRef]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef]
- Hewavitharana, A.K. Matrix matching in liquid chromatography–mass spectrometry with stable isotope labelled internal standards—Is it necessary? J. Chromatogr. A 2011, 1218, 359–361. [Google Scholar] [CrossRef]
- Hewavitharana, A.K.; Abu Kassim, N.S.; Shaw, P.N. Standard addition with internal standardisation as an alternative to using stable isotope labelled internal standards to correct for matrix effects-Comparison and validation using liquid chromatography-tandem mass spectrometric assay of vitamin D. J. Chromatogr. A 2018, 1553, 101–107. [Google Scholar] [CrossRef]
- Stokvis, E.; Rosing, H.; Beijnen, J.H. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: Necessity or not? Rapid Commun. Mass Spectrom. 2005, 19, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, M.; Huang, K.; Cui, J.; Liu, H.; Yu, Y.; Ma, S.; Liu, X.; Lin, M. Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment. J. Hazard. Mater. 2024, 464, 132895. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, D.; Liu, J.; Hu, N.; Shi, X.; Dai, C.; Sun, Z.; Suo, Y.; Li, G.; Wu, Y. Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples. Microchem. J. 2018, 143, 350–358. [Google Scholar] [CrossRef]
- Senosy, I.A.; Guo, H.M.; Ouyang, M.N.; Lu, Z.H.; Yang, Z.H.; Li, J.H. Magnetic solid-phase extraction based on nano-zeolite imidazolate framework-8-functionalized magnetic graphene oxide for the quantification of residual fungicides in water, honey and fruit juices. Food Chem. 2020, 325, 126944. [Google Scholar] [CrossRef]
- Feng, X.; Xu, X.; Liu, Z.; Xue, S.; Zhang, L. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: A rapid approach for determination of estrogens in milk and cosmetics. Talanta 2020, 209, 120542. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Q.; Guo, M.; Yang, K.; Yu, L.; Luo, Z.; Chang, C.; Fu, Q. Selective Analysis of Progesterone in Cosmetic Samples Based on Molecularly Imprinted Solid-Phase Extraction and High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2023, 61, 995–1004. [Google Scholar] [CrossRef]
- Kang, M.; Sun, S.; Li, N.; Zhang, D.; Chen, M.; Zhang, H. Extraction and determination of hormones in cosmetics by homogeneous ionic liquid microextraction high-performance liquid chromatography. J. Sep. Sci. 2012, 35, 2032–2039. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.; Zhang, Y.; Du, J.; Xiao, H.; Yang, Z.; Xu, J. Multi-class analysis of 100 drug residues in cosmetics using high-performance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Talanta 2024, 266, 124954. [Google Scholar] [CrossRef]
- Shi, C.-X.; Chen, Z.-P.; Chen, Y.; Yu, R.-Q. Quantitative analysis of hormones in cosmetics by LC-MS/MS combined with an advanced calibration model. Anal. Methods 2015, 7, 6804–6809. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Li, N.; Cui, L.; Wang, X.; Zhao, R.-S. Recent application of magnetic solid phase extraction for food safety analysis. Trends Anal. Chem. 2019, 120, 115632. [Google Scholar] [CrossRef]
- Yin, S.-J.; Zhao, J.; Yang, F.-Q. Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis. J. Pharm. Biomed. Anal. 2021, 192, 113675. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.-L.; Wang, Z.-H.; Li, T.; Song, Z.-C.; Zhu, H.-E.; Shan, J.-H.; Wang, R.-G. Separation and enrichment of β-agonists from animal livers based on magnetic solid-phase extraction with automated-treatment device. Chin. J. Anal. Chem. 2024, 52, 277–285. [Google Scholar] [CrossRef]
- Świłt, P.; Orzeł, J. Towards the assessment of exposure to bisphenols in everyday items with increased accuracy by the use of integrated calibration method (ICM)-based methodology. J. Chromatogr. A 2024, 1715, 464612. [Google Scholar] [CrossRef] [PubMed]
- Bahgat, E.A.; Saleh, H.; Darwish, I.M.; El-Abassy, O.M. Green HPLC technique development for the simultaneous determination of the potential combination of Mirabegron and Tamsulosin. Sci. Rep. 2025, 15, 7005. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE–Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076. [Google Scholar] [CrossRef]
- National Medical Products Administration. NMPA Announcement on Updating the Catalogue of Raw Materials Banned for Cosmetics. 2021. Available online: https://english.nmpa.gov.cn./2021-05/28/c_655126.htm (accessed on 21 November 2025).
- Michalak, M.; Zagórska-Dziok, M.; Żarnowiec, P.; Ostróżka-Cieślik, A.; Bocho-Janiszewska, A.; Stryjecka, M.; Dobros, N.; Kostrzewa, D.; Paradowska, K. Evaluation of Salvia yangii Extract as a Promising Protective Raw Material Applied Topically to the Skin. Molecules 2025, 30, 3505. [Google Scholar] [CrossRef]
- Madoromae, H.; Lertcanawanichakul, M. Red Palm Oil: Nutritional Composition, Bioactive Properties, and Potential Applications in Health and Cosmetics: A Narrative Review. Molecules 2025, 30, 4402. [Google Scholar] [CrossRef]
- Sun, J.; Sun, S.; Qiao, Y.; Yu, X.; Dong, Y.; Sun, L.; Wang, H.; Liu, D. Determination of sex hormones in herb materials using supramolecular solvent extraction coupled with liquid chromatography-tandem mass spectrometry. Results Chem. 2025, 17, 102636. [Google Scholar] [CrossRef]
- Culleré, L.; Sangüesa, E.; Lomba, L.; Ribate, M.P.; Zuriaga, E.; García, C.B. A Systematic Review: Migration of Chemical Compounds from Plastic Material Containers in Food and Pharmaceutical Fields. J. Xenobiot. 2025, 15, 194. [Google Scholar] [CrossRef]
- Silva, G.M.D.; Ancel, M.A.P.; Cabanha, R.S.D.C.F.; Oliveira, A.L.F.D.; Lima, A.C.P.; Corrêa, A.C.L.; Vilela, M.L.B.; Garcia, D.A.Z.; Lacerda, O.D.; Melo, E.S.D.P.; et al. Investigation and Health Risk Assessment of Potentially Toxic Elements in Hair-Dye Products Sold in Brazil and Paraguay. Sci 2025, 7, 160. [Google Scholar] [CrossRef]
- Hall, B.; Steiling, W.; Safford, B.; Coroama, M.; Tozer, S.; Firmani, C.; McNamara, C.; Gibney, M. European consumer exposure to cosmetic products, a framework for conducting population exposure assessments Part 2. Food Chem. Toxicol. 2011, 49, 408–422. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.; Tozer, S.; Safford, B.; Coroama, M.; Steiling, W.; Leneveu-Duchemin, M.C.; McNamara, C.; Gibney, M. European consumer exposure to cosmetic products, a framework for conducting population exposure assessments. Food Chem. Toxicol. 2007, 45, 2097–2108. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, P.F.; Heywood, R.; Allen, D.G.; Hossack, D.J.N.; Sortwell, R.J.; Walton, R.M. Treatment of rhesus monkeys (macaca mulatta) with intravaginal rings impregnated with either progesterone or norethisterone. Contraception 1979, 20, 339–351. [Google Scholar] [CrossRef]
- Burry, K.A.; Patton, P.E.; Hermsmeyer, K. Percutaneous absorption of progesterone in postmenopausal women treated with transdermal estrogen. Am. J. Obstet. Gynecol. 1999, 180, 1504–1511. [Google Scholar] [CrossRef]
- Stanczyk, F.Z.; Paulson, R.J.; Roy, S. Percutaneous administration of progesterone: Blood levels and endometrial protection. Menopause 2005, 12, 232–237. [Google Scholar] [CrossRef]
- He, Q.; Zhong, Y.; Li, P.; Guo, Y.; Mei, C.; Xu, D.; Yan, E.; Xi, S.; He, G.; Tan, J. From Safety Evaluation to Influencing Factors Analysis: A Comprehensive Investigation on Ocular Irritation of Baby Bath Products. Toxics 2025, 13, 948. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, S.; Huang, C.; Liu, H.; Dong, Y.; Wang, H.; Sun, L. Simultaneous Determination of Hormones in Botanical Dietary Supplements with Supramolecular Solvent-Based Extraction by HPLC-MS/MS. J. Sep. Sci. 2025, 48, e70110. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety (SCCS). SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation—12th Revision. SCCS/1647/22. 2023. Available online: https://health.ec.europa.eu/publications/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-12th-revision_en (accessed on 21 November 2025).



| No. | Abbreviation | Precursor Ion (m/z) | Product Ion (m/z) | CE (V) | RT (min) | Detect Mode |
|---|---|---|---|---|---|---|
| 1 | E3 | 287.1 | 171.0 *, 145.0 | 43, 43 | 3.4 | ESI- |
| 2 | E3-D3 | 289.7 | 173.0 *, 146.8 | 42, 48 | 3.4 | ESI- |
| 3 | E2 | 271.2 | 183.3 *, 145.2 | 49, 47 | 4.8 | ESI- |
| 4 | E2-D5 | 276.3 | 187.2 *, 147.2 | 49, 47 | 4.8 | ESI- |
| 5 | EE2 | 295.2 | 159.0 *, 145.0 | 43, 47 | 5.3 | ESI- |
| 6 | GET | 309.1 | 241.1 *, 199.2 | 30, 44 | 5.5 | ESI+ |
| 7 | MT | 303.2 | 97.0 *, 108.9 | 30, 29 | 5.6 | ESI+ |
| 8 | E1 | 269.1 | 145.1 *, 143.1 | 43, 61 | 5.6 | ESI- |
| 9 | E1-D2 | 271.2 | 147.1 *, 145.1 | 37, 69 | 5.6 | ESI- |
| 10 | DES | 267.1 | 222.2 *, 251.2 | 42, 35 | 5.9 | ESI- |
| 11 | DES-D8 | 275.2 | 259.2 *, 228.1 | 28, 38 | 5.9 | ESI- |
| 12 | HEX | 268.8 | 119.1 *, 134.0 | 41, 15 | 6.2 | ESI- |
| 13 | DIEP | 264.9 | 93.1 *, 259.0 | 32, 26 | 6.2 | ESI- |
| 14 | NG | 313.2 | 109.0 *, 245.3 | 33, 24 | 6.4 | ESI+ |
| 15 | 20α-DHP | 317.3 | 97.1 *, 109.0 | 29, 29 | 6.8 | ESI+ |
| 16 | DelatP | 313.2 | 43.1 *, 159.1 | 73, 25 | 7.7 | ESI+ |
| 17 | MGA | 385.1 | 267.3 *, 325.1 | 24, 20 | 8.3 | ESI+ |
| 18 | P | 315.2 | 109.0 *, 97.3 | 30, 30 | 8.5 | ESI+ |
| 19 | P-D9 | 324.4 | 100.2 *, 112.8 | 25, 25 | 8.3 | ESI+ |
| 20 | CMA | 405.1 | 309.3 *, 267.3 | 23, 30 | 8.7 | ESI+ |
| 21 | MPG | 387.2 | 122.9 *, 327.0 | 35, 18 | 8.8 | ESI+ |
| No. | Cosmetics | Analysis Throughout | Analytes | Pretreatment Process | Pretreatment Time (min) | Analytical Methods | LOD | LOQ | Reference |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 8 | Nandrolone, testosterone, E1, 17a-DHP, MPG, MGA, P, and androlin | Dilution, pH adjustment, and MSEBLLME | >60 | HPLC-DAD | 0.91–1.01 ng/mL | 3.04–5.97 ng/mL | [9] |
| 2 | Toner | 4 | EE, NG, MA, and MPA | Dried under nitrogen, redissolved, and DES-MCG | <60 | HPLC-DAD | 1.2~6.6 ng/mL | 4.4~26.6 ng/mL | [26] |
| 3 | Lotion | 5 | E1, E2, CMA, MGA, and MPA | Centrifugation and MILs-DLLME | >15 | HPLC-UV | 5~15 ng/mL | 15~35 ng/mL | [36] |
| 4 | Lotion, emulsion, and cream | 6 | P, E1, E3, DES, DEX, and HYD | Centrifuged, dried under nitrogen, redissolved, and MISPE | - a | HPLC-UV | 16 ng/mL | 50 ng/mL | [37] |
| 5 | Liquid cosmetics and gel-like cosmetics | 8 | P, 17α-E3, 17α-ethinylestradiol, E1, 17α-DHP, MPG, MGA, and norethisterone acetate | Dilution, pH adjustment, HILME, and centrifugation | - | HPLC-DAD | 0.03~0.24 ng/mL | 0.1~0.78 ng/mL | [38] |
| 6 | Toner and Lotion | 2 | E1 and P | Solvent extracted, centrifugation, and filtration | 41.5 | HPLC-MS/MS | <25 μg/kg | 100 μg/kg | [17] |
| 7 | Toner and lotion | 4 | MT, CMA, MPG, and P | Solvent extracted, filtration, and SPE | >20 | HPLC-Q-TOF-HRMS | 10.43~12.43 μg/kg | 11.89~22.59 μg/kg | [39] |
| 8 | Cleaning toner and essence emulsion | 4 | E1, P, MIN, and HYD | Ultrasonic bath and refrigerated centrifugation | >35 | HPLC-MS/MS with MEMMS model | 0.03~1.0 μg/kg | 0.07~3.0 μg/kg | [40] |
| 9 | Toner, lotion, gel, and cream | 16 | E1, E2, E3, EE2, GET, MT, DES, HEX, DIEP, NG, 20α-DHP, DelatP, MGA, P, CMA, and MPG | Solvent extracted and MSPE | 20.5 | UHPLC-MS/MS | 0.2~1.0 μg/kg | 1.0~3.0 μg/kg | The present method |
| No. | Cosmetic Category | Detected | Detected | ||
|---|---|---|---|---|---|
| Compound | Amount (μg/kg) | Compound | Amount (μg/kg) | ||
| 1 | hair loss prevention | P | 20.6 | 20α-DHP | 7.6 |
| 2 | hair loss prevention | P | 27.2 | 20α-DHP | 7.5 |
| 3 | hair loss prevention | P | 36.3 | 20α-DHP | 7.9 |
| 4 | hair loss prevention | P | 22.0 | / | / |
| 5 | hair loss prevention | P | 30.4 | / | / |
| 6 | hair loss prevention | P | 6.5 | / | / |
| 7 | hair loss prevention | P | 7.7 | / | / |
| 8 | children’s cosmetics | P | 70.5 | / | / |
| 9 | children’s cosmetics | E3 | 13.1 | / | / |
| 10 | children’s cosmetics | E2 | 13.7 | / | / |
| Cosmetic Product Categories | Detected Results (mg/kg) | Daily Exposure Level a | SED b (μg/kg·bw/day) | NOAEL c (μg/kg·bw/d) | MoS d | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean + SD | Maximum | Estimated Daily Amount Applied (g/d) | Relative Daily Amount Applied | Retention Factor | Calculated Daily Exposure Eproduct (g/d) | Calculated Relative Daily Exposure Eproduct/bw (mg/kg·bw/day) | ||||
| Hair loss prevention | 0.022 ± 0.011 | 0.0363 | 10.46 | 150.49 | 0.01 | 0.11 | 1.51 | 5.4 × 10−3 | 708 | 1.3 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dong, Y.; Sun, S.; Qiao, Y.; Yu, C.; Wang, H.; Sun, L. Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS. Molecules 2026, 31, 90. https://doi.org/10.3390/molecules31010090
Dong Y, Sun S, Qiao Y, Yu C, Wang H, Sun L. Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS. Molecules. 2026; 31(1):90. https://doi.org/10.3390/molecules31010090
Chicago/Turabian StyleDong, Yalei, Shuyan Sun, Yasen Qiao, Chunhui Yu, Haiyan Wang, and Lei Sun. 2026. "Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS" Molecules 31, no. 1: 90. https://doi.org/10.3390/molecules31010090
APA StyleDong, Y., Sun, S., Qiao, Y., Yu, C., Wang, H., & Sun, L. (2026). Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS. Molecules, 31(1), 90. https://doi.org/10.3390/molecules31010090

