Influence of Sourdough Fermentation-Induced Dephytinization on Iron Absorption from Whole Grain Rye Bread–Double-Isotope Crossover and Single-Blind Absorption Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. General Protocol
2.2. Inclusion/Exclusion Criteria
2.3. Iron Absorption Measurement
2.4. Total Administered Radioactivity
2.5. The Bread
2.6. Anthropometric and Laboratory Measurements
2.7. Statistics
3. Results
3.1. Trial 1
3.2. Trial 2
4. Discussion
4.1. Effect of Phytate Reduction
4.2. Comparison with Algorithm Predictions
4.3. Phytic Acid-to-Iron Molar Ratio
4.4. Impact of Portion Size
4.5. Absolute Iron Absorption and Nutritional Relevance
4.6. Other Potential Influences
4.7. Comparison with Previous Studies
4.8. Strengths and Limitations
4.9. Implications for Dietary Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TSAT | Transferrin saturation |
| SF | Serum ferritin concentration |
| S-Fe | Serum iron concentration |
| TIBC | Total iron binding capacity |
| sTfR | Soluble transferrin receptor |
| CRP | C-reactive protein |
| AGP | Alpha 1-acid glycoprotein |
| Hb | Hemoglobin concentration |
| PA | Phytic acid |
References
- Slavin, J.L. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 2008, 109, 1716–1731. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020.
- NNR. Nordic Nutrition Recommendations 2023; Nordic Council of Ministers: Copenhagen, Denmark, 2023. [Google Scholar]
- IOM (Institute of Medicine of the National Academies). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients); The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- EFSA (EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA)). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 77. [Google Scholar] [CrossRef]
- USDA/HHS (U.S. Department of Agriculture and U.S. Department of Health and Human Services). Dietary Guidelines for Americans; USDA/HHS: Washington, DC, USA, 2010.
- Kristensen, M.B.; Tetens, I.; Jørgensen, A.B.A.; Thomsen, A.D.; Milman, N.; Hels, O.; Sandström, B.; Hansen, M. A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. Eur. J. Nutr. 2005, 44, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Bjorn-Rasmussen, E. Iron absorption from wheat bread. Influence of various amounts of bran. Nutr. Metab. 1974, 16, 101–110. [Google Scholar] [CrossRef]
- Lind, T.; Lonnerdal, B.; Persson, L.A.; Stenlund, H.; Tennefors, C.; Hernell, O. Effects of weaning cereals with different phytate contents on hemoglobin, iron stores, and serum zinc: A randomized intervention in infants from 6 to 12 mo of age. Am. J. Clin. Nutr. 2003, 78, 168–175. [Google Scholar] [CrossRef]
- Gillooly, M.; Bothwell, T.H.; Torrance, J.D.; MacPhail, A.P.; Derman, D.P.; Bezwoda, W.R.; Mills, W.; Charlton, R.W.; Mayet, F. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br. J. Nutr. 1983, 49, 331–342. [Google Scholar] [CrossRef]
- Widdowson, E.M.; Mccance, R.A. Iron exchange of adults on white and brown bread diets. Lancet 1942, 239, 588–591. [Google Scholar] [CrossRef]
- Marolt, G.; Gričar, E.; Pihlar, B.; Kolar, M. Complex Formation of Phytic Acid With Selected Monovalent and Divalent Metals. Front. Chem. 2020, 8, 582746. [Google Scholar] [CrossRef]
- Hallberg, L. Wheat fiber, phytates and iron absorption. Scand. J. Gastroenterol. Suppl. 1987, 129, 73–79. [Google Scholar] [CrossRef]
- Chondrou, T.; Adamidi, N.; Lygouras, D.; Hirota, S.A.; Androutsos, O.; Svolos, V. Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability-A Narrative Review of Human Interventions. Nutrients 2024, 16, 4069. [Google Scholar] [CrossRef]
- Hallberg, L.; Brune, M.; Rossander, L. Iron absorption in man: Ascorbic acid and dose-dependent inhibition by phytate. Am. J. Clin. Nutr. 1989, 49, 140–144. [Google Scholar] [CrossRef]
- Brune, M.; Rossander-Hultén, L.; Hallberg, L.; Gleerup, A.; Sandberg, A.-S. Iron absorption from bread in humans: Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 1992, 122, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.F.; Reddy, M.B.; Juillerat, M.-A.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003, 77, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Huyskens, M.; Lemmens, E.; Grootaert, C.; Van Camp, J.; Verbeke, K.; Delcour, J.A.; Smolders, E. The impact of wheat sprouting on iron and zinc bioaccessibility and bioavailability to Caco-2 cells. Food Chem. 2025, 495 Pt 2, 146332. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, E.; De Brier, N.; Spiers, K.M.; Ryan, C.; Garrevoet, J.; Falkenberg, G.; Goos, P.; Smolders, E.; Delcour, J.A. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chem. 2018, 264, 367–376. [Google Scholar] [CrossRef]
- Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated grains: A superior whole grain functional food? Can. J. Physiol. Pharmacol. 2013, 91, 429–441. [Google Scholar] [CrossRef]
- Brise, H.; Hallberg, L. A method for comparative studies on iron absorption in man using two radioiron isotopes. Acta Med. Scand. 1962, 171, 7–22. [Google Scholar] [CrossRef]
- Björn-Rasmussen, E.; Halberg, L.; Magnusson, B.; Rossander, L.; Svanberg, B.; Arvidsson, B. Measurement of iron absorption from compositite meals. Am. J. Clin. Nutr. 1976, 29, 772–778. [Google Scholar] [CrossRef]
- Brise, H.; Hallberg, L. Determinations of Fe55 and Fe59 in blood. Int. J. Appl. Rad. Isotopes 1960, 9, 100–108. [Google Scholar]
- Cartwright, G.E. The anemia of chronic disorders. Semin. Hematol. 1966, 3, 351–375. [Google Scholar]
- Jurado, R.L. Iron, infections, and anemia of inflammation. Clin. Infect. Dis. 1997, 25, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L. Food iron absorption. In Iron; Cook, J.D., Ed.; Churchill-Livingstone: New York, NY, USA, 1980; pp. 116–133. [Google Scholar]
- Hallberg, L.; Björn-Rasmussen, E. Determination of iron absorption from whole diet. A new two-pool model using two radioiron isotopes given as haem and non-haem iron. Scand. J. Haematol. 1972, 9, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.D.; Layrisse, M.; Martinez-Torres, C.; Walker, R.; Monsen, E.; Finch, C.A. Food iron absorption measured by an extrinsic tag. J. Clin. Investig. 1972, 51, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Eakins, J.; Brown, D. An improved method for the simultaneous determination of iron-55 and iron-59 in blood by liquid scintillation counting. Int. J. Appl. Radiat. Isot. 1966, 17, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L. Blood volume, hemolysis and regeneration of blood in pernicious anemia; studies based on the endogenous formation of carbon monoxide and determinations of the total amount of hemoglobin. Scand. J. Clin. Lab. Investig. 1955, 7 (Suppl. S16), 1–127. [Google Scholar]
- Carlsson, N.-G.; Bergman, E.-L.; Skoglund, E.; Hasselblad, K.; Sandberg, A.-S. Rapid analysis of inositol phosphates. J. Agric. Food Chem. 2001, 49, 1695–1701. [Google Scholar] [CrossRef]
- Scheers, N.; Rossander-Hulthen, L.; Torsdottir, I.; Sandberg, A.-S. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)). Eur. J. Nutr. 2016, 55, 373–382. [Google Scholar] [CrossRef]
- Theander, O.; Åman, P.; Westerlund, E.; Andersson, R.; Pettersson, D. Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): Collaborative study. J. AOAC Int. 1995, 78, 1030–1044. [Google Scholar] [CrossRef]
- ISO 15189:2022; Medical Laboratories—Requirements for Quality and Competence. International Organization for Standardization: Geneva, Switzerland, 2022.
- Hallberg, L.; Hulthén, L. Prediction of dietary iron absorption: An algorithm for calculating absorption and bioavailability of dietary iron. Am. J. Clin. Nutr. 2000, 71, 1147–1160. [Google Scholar] [CrossRef]
- Siegenberg, D.; Baynes, R.D.; Bothwell, T.H.; Macfarlane, B.J.; Lamparelli, R.D.; Car, N.G.; MacPhail, P.; Schmidt, U.; Tal, A.; Mayet, F. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am. J. Clin. Nutr. 1991, 53, 537–541. [Google Scholar] [CrossRef]
- Larsson, M.; Rossander-Hulthén, L.; Sandström, B.; Sandberg, A.-S. Improved zinc and iron absorption from breakfast meals containing malted oats with reduced phytate content. Br. J. Nutr. 1996, 76, 677–688. [Google Scholar] [CrossRef]
- Hurrell, R.F. Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam. Nutr. Res. 2004, 74, 445–452. [Google Scholar] [CrossRef]
- Hoppe, M.; Ross, A.B.; Svelander, C.; Sandberg, A.-S.; Hulthén, L. Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: A 12-week, randomized, parallel-design intervention study. Eur. J. Nutr. 2019, 58, 853–864. [Google Scholar] [CrossRef]
- Bergqvist, S.W.; Sandberg, A.-S.; Andlid, T.; Wessling-Resnick, M. Lactic acid decreases Fe(II) and Fe(III) retention but increases Fe(III) transepithelial transfer by Caco-2 cells. J. Agric. Food Chem. 2005, 53, 6919–6923. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]

| Trial 1 (n = 8) | Trial 2 (n = 17) | |||
|---|---|---|---|---|
| Meal A | Meal B | Meal A | Meal B | |
| Administered amount of bread/meal (g) | 80 | 80 | 120 | 120 |
| Whole grain (g) | 30 | 30 | 44 | 44 |
| Phytate phosphorus (mg) * | 31 | <1.0 | 47 | <1.0 |
| Lactic acid (mg) | 5 | 920 | 7 | 1380 |
| Non-heme Fe (mg) | 1.0 | 1.0 | 1.4 | 1.4 |
| Ascorbic acid (mg) | 1.0 | 1.0 | 1.6 | 1.6 |
| Calcium (mg) | 4 | 4 | 6 | 6 |
| Molar ratio phytic acid */Fe | 9.3:1 | <0.1:1 | 11.1:1 | <0.1:1 |
| Trial 1 (n = 8) | Trial 2 (n = 17) | |
|---|---|---|
| Age (years) | 24.4 ± 4.9 (20–35) | 23.6 ± 2.4 (19–28) |
| Height (cm) | 170.8 ± 3.5 (166–176) | 168.4 ± 6.0 (161–180) |
| Weight (kg) | 60.8 ± 5.7 (49–66) | 61.6 ± 9.3 (45–84) |
| Hb (g/L) | 129.5 ± 8.7 (112–139) | 131.5 ± 7.1 (120–151) |
| TSAT (%) | 21.8 ± 16.9 (5–58) | 11.2 ± 13.1 (8–43) |
| SF (ug/L) | 30.4 ± 17.4 (7–55) | 40.5 ± 27.1 (9–100) |
| S-Fe (µmol/L) | 15.1 ± 8.8 (4–31) | 18.6 ± 9.3 (6–44) |
| TIBC (µmol/L) | 77.6 ± 16.2 (54–110) | 77.6 ± 11.7 (66–110) |
| sTfR (mg/L) | 4.0 ± 3.2 (2–12) | 3.1 ± 0.7 (2–5) |
| CRP (mg/L) | 1.5 ± 0.7 (1–2) | 2.7 ± 1.1 (2–4) |
| AGP (g/L) | 0.6 ± 0.1 (0.4–0.8) | 0.7 ± 0.1 (0.4–1.0) |
| Subject | Iron Absorption (%) | Iron Absorption Ratio | p-Value | |
|---|---|---|---|---|
| Meal A | Meal B | (Meal B/Meal A) | ||
| 1 | 9.0 | 23.3 | 2.59 | |
| 2 | 5.6 | 10.5 | 1.88 | |
| 3 | 5.5 | 9.8 | 1.78 | |
| 4 | 5.1 | 10.8 | 2.12 | |
| 5 | 1.1 | 5.9 | 5.36 | |
| 6 | 15.1 | 52.8 | 3.50 | |
| 7 | 8.6 | 23.6 | 2.74 | |
| 8 | 5.8 | 15.8 | 2.72 | |
| Mean | 7.0 | 19.1 | 2.84 | <0.001 |
| SD | 4.1 | 15.1 | 1.16 | |
| SEM | 1.4 | 5.3 | 0.41 | |
| Subject | Iron Absorption (%) | Iron Absorption Ratio | p-Value | |
|---|---|---|---|---|
| Meal A | Meal B | (Meal B/Meal A) | ||
| 1 | 0.7 | 2.8 | 4.00 | |
| 2 | 7.5 | 22.7 | 3.03 | |
| 3 | 6.1 | 25.3 | 4.15 | |
| 4 | 0.5 | 2.2 | 4.40 | |
| 5 | 7.2 | 18.2 | 2.53 | |
| 6 | 0.6 | 2.1 | 3.50 | |
| 7 | 0.6 | 1.8 | 3.00 | |
| 8 | 7.8 | 17.3 | 2.22 | |
| 9 | 3.2 | 13.0 | 4.06 | |
| 10 | 6.6 | 18.4 | 2.79 | |
| 11 | 3.3 | 14.8 | 4.48 | |
| 12 | 3.3 | 15.1 | 4.58 | |
| 13 | 8.1 | 20.1 | 2.48 | |
| 14 | 6.1 | 17.1 | 2.80 | |
| 15 | 5.1 | 14.9 | 2.92 | |
| 16 | 8.8 | 36.4 | 4.14 | |
| 17 | 3.3 | 13.0 | 3.94 | |
| Mean | 4.6 | 15.0 | 3.47 | <0.001 |
| SD | 2.9 | 9.2 | 0.79 | |
| SEM | 0.7 | 2.2 | 0.19 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppe, M.; Sandberg, A.-S.; Hulthén, L. Influence of Sourdough Fermentation-Induced Dephytinization on Iron Absorption from Whole Grain Rye Bread–Double-Isotope Crossover and Single-Blind Absorption Studies. Nutrients 2025, 17, 3891. https://doi.org/10.3390/nu17243891
Hoppe M, Sandberg A-S, Hulthén L. Influence of Sourdough Fermentation-Induced Dephytinization on Iron Absorption from Whole Grain Rye Bread–Double-Isotope Crossover and Single-Blind Absorption Studies. Nutrients. 2025; 17(24):3891. https://doi.org/10.3390/nu17243891
Chicago/Turabian StyleHoppe, Michael, Ann-Sofie Sandberg, and Lena Hulthén. 2025. "Influence of Sourdough Fermentation-Induced Dephytinization on Iron Absorption from Whole Grain Rye Bread–Double-Isotope Crossover and Single-Blind Absorption Studies" Nutrients 17, no. 24: 3891. https://doi.org/10.3390/nu17243891
APA StyleHoppe, M., Sandberg, A.-S., & Hulthén, L. (2025). Influence of Sourdough Fermentation-Induced Dephytinization on Iron Absorption from Whole Grain Rye Bread–Double-Isotope Crossover and Single-Blind Absorption Studies. Nutrients, 17(24), 3891. https://doi.org/10.3390/nu17243891

