Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146,135)

Search Parameters:
Keywords = FORM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2711 KiB  
Article
Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten
by Chrysoula-Evangelia Karachaliou, Christos Zikos, Christos Liolios, Maria Pelecanou and Evangelia Livaniou
Toxins 2025, 17(8), 415; https://doi.org/10.3390/toxins17080415 (registering DOI) - 16 Aug 2025
Abstract
We report herein the development of a polyclonal antibody against ochratoxin A (OTA) using a specially designed synthetic OTA derivative as the immunizing hapten. This OTA derivative contains a tetrapeptide linker (glycyl-glycyl-glycyl-lysine, GGGK), through which it can be linked to a carrier protein [...] Read more.
We report herein the development of a polyclonal antibody against ochratoxin A (OTA) using a specially designed synthetic OTA derivative as the immunizing hapten. This OTA derivative contains a tetrapeptide linker (glycyl-glycyl-glycyl-lysine, GGGK), through which it can be linked to a carrier protein and form an immunogenic conjugate. The OTA derivative (OTA-glycyl-glycyl-glycyl-lysine, OTA-GGGK) has been synthesized on a commercially available resin via the well-established Fmoc-based solid-phase peptide synthesis (Fmoc-SPPS) strategy; overall, this approach has allowed us to avoid tedious liquid-phase synthesis protocols, which are often characterized by multiple steps, several intermediate products and low overall yield. Subsequently, OTA-GGGK was conjugated to bovine thyroglobulin through glutaraldehyde, and the conjugate was used in an immunization protocol. The antiserum obtained was evaluated with a simple-format ELISA in terms of its titer and capability of recognizing the natural free hapten; the anti-OTA antibody, as a whole IgG fragment, was successfully applied to three different immunoanalytical systems for determining OTA in various food materials and wine samples, i.e., a multi-mycotoxin microarray bio-platform, an optical immunosensor, and a biotin–streptavidin ELISA, which has proved the analytical effectiveness and versatility of the anti-OTA antibody developed. The same approach may be followed for developing antibodies against other low-molecular-weight toxins and hazardous substances. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

19 pages, 4994 KiB  
Article
The Role of Nutritional Environment in Cryptococcus gattii Titan Cells’ Ultrastructure, Biophysical Properties, Molecular Features, and Virulence in Cryptococcosis
by Igor Avellar-Moura, Glauber R. de S. Araujo, Juliana Godoy, Vinicius Alves, Iara Bastos de Andrade, Juliana Soares, Bruno Pontes and Susana Frases
Infect. Dis. Rep. 2025, 17(4), 101; https://doi.org/10.3390/idr17040101 (registering DOI) - 16 Aug 2025
Abstract
Background/Objectives: Cryptococcus gattii presents a significant threat to healthy individuals. Titan cell formation, a key virulence factor, is influenced by the nutritional environment and plays a critical role in immune evasion and stress resistance. This study investigates the molecular and biophysical changes in [...] Read more.
Background/Objectives: Cryptococcus gattii presents a significant threat to healthy individuals. Titan cell formation, a key virulence factor, is influenced by the nutritional environment and plays a critical role in immune evasion and stress resistance. This study investigates the molecular and biophysical changes in titanized C. gattii cells grown in nutrient-rich Neurobasal™ medium, a potent inducer of titan cells. Methods: An integrative approach was used, combining scanning electron microscopy, optical tweezers, fluorescence microscopy, and physicochemical methods to analyze C. gattii cells grown in Neurobasal™ medium and minimal media. Results: Cells grown in Neurobasal™ medium exhibited significant differences compared to those grown in minimal media. These included a thicker and more defined polysaccharide capsule, enhanced capsule elasticity, and the secretion of more elastic polysaccharides. Furthermore, cells grown in the enriched medium showed reduced susceptibility to antifungals and delayed mortality in infection models. Conclusions: C. gattii adapts to nutritional cues by forming titan cells, thereby enhancing its pathogenicity. Targeting nutritional sensing pathways may offer novel therapeutic strategies against cryptococcal infections. Full article
16 pages, 7110 KiB  
Article
Lipidomics Approach Reveals the Effects of Physical Refining Processes on the Characteristic Fatty Acids and Physicochemical Indexes of Safflower Seed Oil and Flaxseed Oil
by Jiayan Yang, Haoan Zhao, Fanhua Wu, Zeyu Wang, Lin Yuan, Yu Qiu, Liang Wang and Min Zhu
Foods 2025, 14(16), 2845; https://doi.org/10.3390/foods14162845 (registering DOI) - 16 Aug 2025
Abstract
As the principal dietary source of lipids, edible oils (notably vegetable oils) exist in crude form predominantly as triacylglycerols (about 95%), with the remainder comprising impurities and diverse minor components. Therefore, the refining processes of vegetable oil are particularly important. The application potential [...] Read more.
As the principal dietary source of lipids, edible oils (notably vegetable oils) exist in crude form predominantly as triacylglycerols (about 95%), with the remainder comprising impurities and diverse minor components. Therefore, the refining processes of vegetable oil are particularly important. The application potential of safflower seed oil (SSO) in both nutraceutical and pharmaceutical domains is attributed to its exceptionally high linoleic acid concentration and abundant polyphenolic constituents. However, a systematic analysis of SSO during physical refining has yet to be conducted. This study aims to investigate the effects of refining processes on the fatty acids of SSO compared with flaxseed oil (FSO). In this study, chemical analysis, gas chromatography and ultra-high-performance liquid chromatography were used to analyze and compare the physicochemical indexes, fatty acid composition, and the lipidomics of SSO and FSO. Results indicated that optimized refining significantly enhances quality parameters in both SSO and FSO. A total of 40 and 43 fatty acids were identified in SSO and FSO, respectively. Deacidification significantly altered their fatty acid profiles, particularly polyunsaturated fatty acids, with C18:2 and C18:3 being the most affected. A total of 20 significantly different lipids were screened (variable importance in projection > 1.5, p < 0.05) and were mainly classified as glycerophospholipids and glycerolipids, of which two lipids (C18:2 and C18:3 (9, 12, 15)) demonstrated particularly marked differences, suggesting that these lipid species represent significant discriminators between SSO and FSO groups; these two lipids exhibited significant alterations during the refining processes of SSO and FSO, respectively. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

17 pages, 3794 KiB  
Article
Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications
by Alina Matei, Cosmin Obreja, Cosmin Romaniţan, Oana Brîncoveanu, Marius Stoian and Vasilica Țucureanu
Coatings 2025, 15(8), 958; https://doi.org/10.3390/coatings15080958 (registering DOI) - 16 Aug 2025
Abstract
In the present paper, the interaction between metal oxide nanoparticles and carbon materials was studied, and the results showed a synergetic effect, leading to an improvement in the properties of the obtained hybrid composites. The In2O3 NPs were prepared by [...] Read more.
In the present paper, the interaction between metal oxide nanoparticles and carbon materials was studied, and the results showed a synergetic effect, leading to an improvement in the properties of the obtained hybrid composites. The In2O3 NPs were prepared by the precipitation method and thermal treatment at 550 °C. The composites were obtained using an ex situ method, by mixing the In2O3 NPs with reduced oxide graphene (rGO) in a ratio of 10:1. The structural, morphological, and chemical composition studies of the In2O3 NPs and In2O3-rGO composites were investigates by FTIR and EDX spectroscopy, SEM microscopy, and XRD analysis. These techniques have highlighted the obtaining of In2O3 of high purity, and crystallinity, with the mean particle size in the range of 8–25 nm, but also, the dispersion of In2O3 NPs onto rGO sheets. We examined the influence of the In2O3 nanostructure morphology and In2O3-rGO composites on the electrochemical properties using cyclic voltammetry. The surface properties of the In2O3 and composite films were studied by contact angles, which indicate the maintenance of the hydrophilic nature. The obtained results establish the synergy between the main components to form In2O3-rGO, which can be used for the development of biosensors to enhance the device performance. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

37 pages, 3861 KiB  
Review
Research Progress on Biomarkers and Their Detection Methods for Benzene-Induced Toxicity: A Review
by Runan Qin, Shouzhe Deng and Shuang Li
Chemosensors 2025, 13(8), 312; https://doi.org/10.3390/chemosensors13080312 (registering DOI) - 16 Aug 2025
Abstract
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise [...] Read more.
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise prevention and control of its health impacts. Programmed cell death (PCD), an orderly and regulated form of cellular demise controlled by specific intracellular genes in response to various stimuli, has emerged as a key pathway where dysfunction may underlie benzene-induced toxicity. This review systematically integrates evidence linking benzene toxicity to PCD dysregulation, revealing that benzene and its metabolites induce abnormal subtypes of PCD (apoptosis, autophagy, ferroptosis) in hematopoietic cells. This occurs through mechanisms including activation of Caspase pathways, regulation of long non-coding RNAs, and epigenetic modifications, with recent research highlighting the IRP1-DHODH-ALOX12 ferroptosis axis and oxidative stress–epigenetic interactions as pivotal. Additionally, this review describes a comprehensive monitoring system for early toxic effects comprising benzene exposure biomarkers (urinary t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA)), PCD-related molecules (Caspase-3, let-7e-5p, ACSL1), oxidative stress indicators (8-OHdG), and genetic damage markers (micronuclei, p14ARF methylation), with correlative analyses between PCD mechanisms and benzene toxicity elaborated to underscore their integrative roles in risk assessment. Furthermore, the review details analytical techniques for these biomarkers, including direct benzene detection methods—direct headspace gas chromatography with flame ionization detection (DHGC-FID), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and portable headspace sampling (Portable HS)—alongside molecular imprinting and fluorescence probe technologies, as well as methodologies for toxic effect markers such as live-cell imaging, electrochemical techniques, methylation-specific PCR (MSP), and Western blotting, providing technical frameworks for mechanistic studies and translational applications. By synthesizing current evidence and mechanistic insights, this work offers novel perspectives on benzene toxicity through the PCD lens, identifies potential therapeutic targets associated with PCD dysregulation, and ultimately establishes a theoretical foundation for developing interventional strategies against benzene-induced toxicity while emphasizing the translational value of mechanistic research in occupational and environmental health. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

34 pages, 1707 KiB  
Review
Mimicking Gastric Cancer Collagen Reorganization with Decellularized ECM-Based Scaffolds
by Néstor Corro, Sebastián Alarcón, Ángel Astroza, Roxana González-Stegmaier and Carolina Añazco
Biology 2025, 14(8), 1067; https://doi.org/10.3390/biology14081067 (registering DOI) - 16 Aug 2025
Abstract
The tumor microenvironment (TME) has a substantial impact on the progression of gastric cancer. Collagen, the most abundant protein in the extracellular matrix (ECM), forms a dense physical barrier that regulates anti-tumor immunity in the TME. It is a significant regulator of the [...] Read more.
The tumor microenvironment (TME) has a substantial impact on the progression of gastric cancer. Collagen, the most abundant protein in the extracellular matrix (ECM), forms a dense physical barrier that regulates anti-tumor immunity in the TME. It is a significant regulator of the signaling pathways of cancer cells, which are responsible for migration, proliferation, and metabolism. ECM proteins, particularly remodeling enzymes and collagens, can be modified to increase stiffness and alter the mechanical properties of the stroma. This, in turn, increases the invasive potential of tumor cells and resistance to immunotherapy. Given the dynamic nature of collagen, novel therapeutic strategies have emerged that target both collagen biosynthesis and degradation, processes that are essential for addressing ECM stiffening. This review delineates the upregulation of the expression and deposition of collagen, as well as the biological functions, assembly, and reorganization that contribute to the dissemination of this aggressive malignancy. Furthermore, the review emphasizes the importance of creating 3D in vitro models that incorporate innovative biomaterials that avoid the difficulties of traditional 2D culture in accurately simulating real-world conditions that effectively replicate the distinctive collagen microenvironment. Ultimately, it investigates the use of decellularized ECM-derived biomaterials as tumor models that are designed to precisely replicate the mechanisms associated with the progression of stomach cancer. Full article
(This article belongs to the Special Issue Tumor Biomechanics and Mechanobiology)
Show Figures

Graphical abstract

19 pages, 6626 KiB  
Article
Evaluation of the Quality of Welded Joints After Repair of Automotive Frame Rails
by Andrzej Augustynowicz, Mariusz Prażmowski, Wiktoria Wilczyńska and Mariusz Graba
Materials 2025, 18(16), 3849; https://doi.org/10.3390/ma18163849 (registering DOI) - 16 Aug 2025
Abstract
Passenger cars have unibody constructions, which means that their collision damage often involves key structural components. Successful repair requires the selection of appropriate technology and adherence to quality standards, which directly affects the safety of the vehicle’s continued operation. A commonly used method [...] Read more.
Passenger cars have unibody constructions, which means that their collision damage often involves key structural components. Successful repair requires the selection of appropriate technology and adherence to quality standards, which directly affects the safety of the vehicle’s continued operation. A commonly used method is a system of replacing damaged components with new ones, while repair by molding and forming is also possible—provided the original structural features are preserved. Automotive body repairs require advanced welding techniques and high precision. Methods such as MIG, TIG, as well as brazing and soldering have replaced older techniques, providing more efficient joining of HSS and HSLA components. Maintaining quality workmanship is crucial, as repair errors can weaken a vehicle’s structure and compromise passenger safety. This article presents the results of a study on the evaluation of the quality, microstructure, and mechanical properties of welded joints of a passenger car frame rail section made of high-strength, low-alloy steel—HSLA 320. The joints were made by three welding methods: MMA, MAG, and TIG, using different technological parameters. Microstructural analysis, non-destructive testing, and microhardness measurements made it possible to assess the impact of the chosen technology on the quality and strength of the joints. The best results were obtained for the TIG method, characterized by the highest repeatability and precision. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 7190 KiB  
Article
The Influences of π-Conjugated Aliphatic Chains in Ionic Liquids of Antimony Pentachloride with Pyridine Imidazolium Hybrid Salts: A DFT Study
by Manuel Luque-Román, Jesús Baldenebro-López, José J. Campos-Gaxiola, Adriana Cruz-Enríquez, Carlos A. Peñuelas, Alberto Báez-Castro, Rody Soto-Rojo, Tomás Delgado-Montiel, Samuel Soto-Acosta and Daniel Glossman-Mitnik
Inorganics 2025, 13(8), 269; https://doi.org/10.3390/inorganics13080269 (registering DOI) - 16 Aug 2025
Abstract
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their [...] Read more.
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their ground-state geometry. Using conceptual DFT, parameters such as chemical hardness, electrophilicity index, electroaccepting power, and electrodonating power were studied. The energy gap was obtained for all ten molecular systems, ranging from −4.038 to −3.706 eV as the chain length increased, favoring intramolecular charge transfer in long-chain systems. Natural bond orbital (NBO) analysis showed charge redistribution between anion and cation as the π-conjugated aliphatic chain grows. At the same time, non-covalent interaction (NCI) studies revealed key attractions and repulsive interactions, such as H···Cl and Cl···π, which are modulated by chain length. These results demonstrate that the structural modification of the cation allows for the fine-tuning of the electronic properties of ionic liquids (ILs). Increasing the conjugated aliphatic chain length was observed to reduce the chemical hardness and electrophilicity index, as well as affecting the Egap of the molecular systems. This work demonstrates that there is an optimal size for the inorganic ion, allowing it to form an optimal IL compound. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

14 pages, 1306 KiB  
Review
Gold Nanoparticles as Targeted Drug Delivery Systems for Liver Cancer: A Systematic Review of Tumor Targeting Efficiency and Toxicity Profiles
by Meda Cosma, Teodora Mocan, Cristian Delcea, Teodora Pop, Ofelia Mosteanu and Lucian Mocan
Int. J. Mol. Sci. 2025, 26(16), 7917; https://doi.org/10.3390/ijms26167917 (registering DOI) - 16 Aug 2025
Abstract
Hepatocellular carcinoma (HC) ranks as the fifth most prevalent form of cancer among humans and is a significant contributor to cancer-related deaths. During the latest year, an interesting scientific fascination arose around gold nanoparticles (AUNPs) following the recovery of their remarkable properties. Some [...] Read more.
Hepatocellular carcinoma (HC) ranks as the fifth most prevalent form of cancer among humans and is a significant contributor to cancer-related deaths. During the latest year, an interesting scientific fascination arose around gold nanoparticles (AUNPs) following the recovery of their remarkable properties. Some studies suggest that AUNPs can enhance drug targeting in cancer treatment and reduce its toxicity. The major purpose of this paper is to systematically review the effectiveness, safety, and prospective mechanism of gold nanoparticles in delivering drugs for liver cancer treatment. Comprehensive research was conducted using major scientific databases (i.e., PubMed, Web of Science, and Scopus) to identify studies focusing on AUNPs in drug delivery systems. We mainly focused on studies that specifically analyzed liver cancer. The current results of the systematic review show that the application of gold nanoparticles (AUNPs) in liver cancer drug delivery enhances drug targeting to liver tumors. This efficient factor improves the bioavailability and elevates the therapeutic index of chemotherapeutic agents in treatment. This systematic review highlights the significant potential of AUNPs to increase the delivery of drugs for liver cancer treatment effectively. The major findings indicate that AUNPs improve the targeting and bioavailability of chemotherapeutic agents, enhancing therapeutic outcomes such as tumor suppression and improved survival rates. While the results of this review are encouraging; however, further research is necessary to ensure the safety and efficacy of AUNPs in clinical settings. Human trials must address concerns regarding long-term toxicity and regulatory approval. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

14 pages, 369 KiB  
Article
Rethinking Moral Responsibility: The Case of the Evil-Natured Tyrants in Confucian Thought
by Yunwoo Song
Religions 2025, 16(8), 1062; https://doi.org/10.3390/rel16081062 (registering DOI) - 16 Aug 2025
Abstract
In general, the justification for the divine punishment in the Christian cosmos hinges on the notion of free will. Despite doctrinal complexities involving sin, grace, and divine sovereignty, individuals are held morally responsible for choosing evil over good. According to an ancient Chinese [...] Read more.
In general, the justification for the divine punishment in the Christian cosmos hinges on the notion of free will. Despite doctrinal complexities involving sin, grace, and divine sovereignty, individuals are held morally responsible for choosing evil over good. According to an ancient Chinese legend, however, the tyrant King Zhou (11th C. BCE) who lost his throne due to a changed mandate from Heaven was born with extreme evil tendencies. But if his evilness was determined before his birth and all his evil deeds are consequences of his natural tendencies, what might justify his punishment? Through an examination of Confucian responses to this question, this essay argues that Confucians did not ground moral responsibility in volitional freedom but rather in the extremity of one’s moral conduct. Their framework reveals a distinctive form of compatibilism—one in which blame is assigned not on the basis of freedom to choose otherwise but on how radically one’s actions deviate from shared ethical expectations. This suggests that the assumption of free will as a necessary condition for moral responsibility may reflect culturally specific intuitions, rather than a universal moral standard. Full article
25 pages, 5827 KiB  
Article
Multi-Scale CNN for Health Monitoring of Jacket-Type Offshore Platforms with Multi-Head Attention Mechanism
by Shufeng Feng, Lei Song, Jia Zhou, Zhuoyi Yang, Yoo Sang Choo, Tengfei Sun and Shoujun Wang
J. Mar. Sci. Eng. 2025, 13(8), 1572; https://doi.org/10.3390/jmse13081572 (registering DOI) - 16 Aug 2025
Abstract
Vibration-based structural health monitoring methods have been widely applied in the field of damage identification. This paper proposes an intelligent diagnostic approach that integrates a multi-scale convolutional neural network with a multi-head attention mechanism (MSCNN-MHA) for the structural health monitoring of jacket-type offshore [...] Read more.
Vibration-based structural health monitoring methods have been widely applied in the field of damage identification. This paper proposes an intelligent diagnostic approach that integrates a multi-scale convolutional neural network with a multi-head attention mechanism (MSCNN-MHA) for the structural health monitoring of jacket-type offshore platforms. Through numerical simulations, acceleration response signals of three-pile and four-pile jacket platforms under random wave excitation are analyzed. Damage localization studies are conducted under simulated crack and pitting corrosion cases. Unlike previous studies that often idealize damage by weakening structural parameters or removing components, this study focuses on small-scale damage forms to better reflect real engineering conditions. To verify the noise resistance of the proposed method, noise is added to the original signals for further testing. Finally, experiments are conducted on the basic structure of the jacket-type offshore platform, simulating small-scale crack and pitting damage under sinusoidal and pulse excitation, to further evaluate the applicability of the method. Compared to previous CNN and MSCNN-based approaches, the results of this study demonstrate that the MSCNN-MHA method achieves higher accuracy in identifying and locating minor damage in jacket-type offshore platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 2062 KiB  
Article
The Feedback of Stress Phytohormones in Avena sativa (L.) on Soil Multi-Contamination
by Veronika Zemanová, Milan Pavlík, Milan Novák and Daniela Pavlíková
Plants 2025, 14(16), 2554; https://doi.org/10.3390/plants14162554 (registering DOI) - 16 Aug 2025
Abstract
As chemical messengers, phytohormones can enhance the tolerance of plants to stress caused by toxic elements (TEs) such as cadmium (Cd), lead (Pb), and zinc (Zn). This study investigated the combined toxicity of Cd, Pb, and Zn, and its impact on stress phytohormones [...] Read more.
As chemical messengers, phytohormones can enhance the tolerance of plants to stress caused by toxic elements (TEs) such as cadmium (Cd), lead (Pb), and zinc (Zn). This study investigated the combined toxicity of Cd, Pb, and Zn, and its impact on stress phytohormones (jasmonates, salicylic acid, and abscisic acid), in oat (Avena sativa L.) using anthropogenically contaminated soil in a 4-week pot experiment. The uptake of TEs by the roots increased in the multi-contaminated soil, while Zn was the only TE to be translocated to the leaves. The toxic effect of the TEs was assessed in terms of plant growth, revealing a decline in leaf dry biomass, whereas the impact on the roots was insignificant. These findings align with the levels of stress phytohormones. An increase in bioactive forms of stress phytohormones in leaves due to TEs indicates TE toxicity and leaf sensitivity. Conversely, low levels of these phytohormones, along with crosstalk between them, suggest reduced defense against TEs in the roots. The abundance of stress phytohormones declined in the following order: salicylic acid > jasmonates > abscisic acid. These results help to understand the mechanism by which plants respond to TEs, particularly their combined toxicity. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

18 pages, 5597 KiB  
Article
Loading Eu2O3 Enhances the CO Oxidation Activity and SO2 Resistance of the Pt/TiO2 Catalyst
by Zehui Yu, Jianyu Cai, Yudong Meng, Jian Li, Wenjun Liang and Xing Fan
Catalysts 2025, 15(8), 783; https://doi.org/10.3390/catal15080783 (registering DOI) - 16 Aug 2025
Abstract
Pt/TiO2 and Pt-Eu2O3/TiO2 catalysts were prepared via the impregnation method for catalytic oxidation of CO. The Pt-2Eu2O3/TiO2 catalyst exhibited better CO oxidation activity as well as greater SO2 resistance than the [...] Read more.
Pt/TiO2 and Pt-Eu2O3/TiO2 catalysts were prepared via the impregnation method for catalytic oxidation of CO. The Pt-2Eu2O3/TiO2 catalyst exhibited better CO oxidation activity as well as greater SO2 resistance than the Pt/TiO2 catalyst. For the inlet gas consisting of 0.8% CO, 5% O2, and balanced N2, the lowest complete conversion temperatures (T100) of CO were 120 °C and 140 °C for the Pt-2Eu2O3/TiO2 and Pt/TiO2 catalysts, respectively. During the 72 h SO2-resistance test at 200 °C under an inlet gas composition of 0.8% CO, 5% O2, 15% H2O, 50 ppm SO2, and balanced N2, the CO conversion on the Pt-2Eu2O3/TiO2 catalyst remained >99%, while that on the Pt/TiO2 catalyst gradually decreased to 77.8%. Pre-loading 2 wt% Eu2O3 on TiO2 enhanced the dispersion of Pt, increased the proportion of Pt0, and facilitated the adsorption and dissociation of H2O, all of which promoted CO oxidation. SO2 preferentially occupied the Eu2O3 sites by forming stable sulfates on the Pt-2Eu2O3/TiO2 catalyst, which protected the Pt active sites from poisoning. The OH* species produced from the dissociation of H2O played a significant role in promoting CO oxidation through the formation of COOH* as the key reaction intermediate. The developed Pt-2Eu2O3/TiO2 catalyst has great application potential in terms of the removal of CO from industrial flue gases. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

16 pages, 677 KiB  
Article
Cross-Cultural Differences and Clinical Presentations in Burning Mouth Syndrome: A Cross-Sectional Comparative Study of Italian and Romanian Outpatient Settings
by Claudiu Gabriel Ionescu, Gennaro Musella, Federica Canfora, Cristina D’Antonio, Lucia Memé, Stefania Leuci, Luca D’Aniello, Ioanina Parlatescu, Lorenzo Lo Muzio, Michele Davide Mignogna, Serban Tovaru and Daniela Adamo
J. Clin. Med. 2025, 14(16), 5805; https://doi.org/10.3390/jcm14165805 (registering DOI) - 16 Aug 2025
Abstract
Background/Objectives: Burning Mouth Syndrome (BMS) is a chronic orofacial pain disorder characterized by persistent intraoral burning sensations without visible mucosal lesions. Although its biopsychosocial complexity is increasingly recognized, cross-cultural comparison data remain limited. Methods: This cross-sectional study assessed 60 patients with [...] Read more.
Background/Objectives: Burning Mouth Syndrome (BMS) is a chronic orofacial pain disorder characterized by persistent intraoral burning sensations without visible mucosal lesions. Although its biopsychosocial complexity is increasingly recognized, cross-cultural comparison data remain limited. Methods: This cross-sectional study assessed 60 patients with BMS (30 Italian, 30 Romanian) who underwent standardized clinical, psychological, and sleep evaluations. Data collected included sociodemographics, clinical characteristics, diagnostic history, comorbidities, and symptomatology. The assessment tools used included the Numeric Rating Scale (NRS), Short Form of the McGill Pain Questionnaire (SF-MPQ), Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Rating Scale (HAM-D), Pittsburgh Sleep Quality Index (PSQI), and Epworth Sleepiness Scale (ESS). Statistical comparisons were conducted using Mann–Whitney U and Fisher’s exact tests with Bonferroni correction. Results: No significant differences were observed in age, sex, or body mass index. Italian patients had fewer years of education (p = 0.001), higher pain intensity (NRS, p < 0.001), poorer sleep quality (PSQI, ESS, p = 0.001), and more frequent pre-existing sleep disorders (p < 0.001). Romanian patients showed higher levels of anxiety (HAM-A, p < 0.001), longer diagnostic delays (p = 0.002), and more dysesthetic or perceptual symptoms, including tingling and oral dysmorphism (p < 0.05). Stressful events before onset were more common among Romanians (p < 0.001), while Italians more often received a correct diagnosis at first consultation (p = 0.005). Conclusions: This first cross-national comparison of BMS in Western and Eastern Europe shows that cultural, healthcare, and clinician education differences can shape symptom profiles, comorbidities, and diagnostic delays, underscoring the need for personalized, country-specific management strategies. Full article
(This article belongs to the Special Issue New Perspective of Oral and Maxillo-Facial Surgery)
17 pages, 41138 KiB  
Article
Study on Microstructure and Properties of K-TIG Welded Joint of 95 mm Ti-6Al-4V Thick Plate
by Yinqing Gong, Songxiao Hui, Yang Yu, Zhihao Zhang, Xiongyue Ye, Wenjun Ye and Zhongliang Wang
Materials 2025, 18(16), 3848; https://doi.org/10.3390/ma18163848 (registering DOI) - 16 Aug 2025
Abstract
This study investigates the application of the Keyhole–Tungsten Inert Gas Welding (K-TIG) hot-wire filling welding technique with mechanical arc oscillation to weld a 95 mm-thick Ti-6Al-4V titanium alloy plate. The root layer thickness achieved with this technique reaches up to 17 mm, with [...] Read more.
This study investigates the application of the Keyhole–Tungsten Inert Gas Welding (K-TIG) hot-wire filling welding technique with mechanical arc oscillation to weld a 95 mm-thick Ti-6Al-4V titanium alloy plate. The root layer thickness achieved with this technique reaches up to 17 mm, with an average filling thickness of 2.5 mm. The weld bead displays a smooth, shiny appearance, and no significant welding defects are observed in the cross-section of the welded joint. Experimental results show that the welded joint consists of the α phase in different forms, as well as fine α+β microstructures. Compared to the base material, both the weld metal and the heat-affected zone exhibit a lower crystallographic texture strength, with more complex texture types. The impact toughness of the welded joint is excellent, with no significant weaknesses. The impact toughness of the weld metal significantly surpasses that of both the base material and the heat-affected zone. The engagement strengthening effect induced by high-current filling plays a crucial role in enhancing the impact toughness of the weld metal. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop