Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications
Abstract
1. Introduction
2. Experiment and Methods
2.1. Synthesis of In2O3 Nanoparticles
2.2. Synthesis of In2O3-rGO Composites
2.3. Characterization Methods
3. Results
3.1. Structural Analysis
3.1.1. Functional Group Analysis (FTIR)
3.1.2. Compositional Analysis (EDX)
3.1.3. Structural Studies (XRD)
3.2. Morphological Analysis
3.3. Wetting Capacity (Contact Angle)
3.4. Electrochemical Analysis (CV)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DIW | Deionized water |
SDS | Sodium dodecyl sulfate |
CTAB | Cetyltrimethylammonium bromide |
CTAC | Cetyltrimethylammonium chloride |
PDDA | Poly(diallyldimethylammonium chloride) |
rGO | Reduced oxide graphene |
GO | Graphene oxide |
FTIR | Fourier Transform Infrared spectroscopy |
SEM | Scanning Electron Microscopy |
EDX | Element energy dispersive spectroscopy |
XRD | X-ray diffraction |
CA | Contact angle |
CV | Cyclic voltammetry |
PBS | Phosphate Buffered Saline |
References
- Channabasavana Hundi Puttaningaiah, K.P. Innovative Carbonauceous Materials and Metal/Metal Oxide Nanoparticles for Electrochemical Biosensor Applications. Nanomater 2024, 14, 1890. [Google Scholar] [CrossRef]
- Dawood, A.; Ahmad, J.; Ali, S.; Ullah, S.; Asghar, Z.; Shah, M. Metal oxide-carbon composites and their applications in optoelectronics and electrochemical energy devices. In Metal Oxides, Metal Oxide-Carbon Hybrid Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 309–339. [Google Scholar]
- Chavall, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Harinath Babu, S.; Kaleemulla, S.; Madhusudhana Rao, N.; Krishnamoorthi, C. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications. J. Magn. Magn. Mat. 2016, 416, 66–74. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Bhardwaj, N.; Kukkar, M.; Sharma, A.L.; Kim, K.H.; Deep, A. Formation of high-purity indium oxide nanoparticles and their application to sensitive detection of ammonia. Sensors 2015, 15, 31930–31938. [Google Scholar] [CrossRef]
- Yang, W.; Huo, Y.; Wang, T.; Liu, X.; Li, D.; Yu, H.; Dong, X.; Yang, Y. RGO@In2O3 based flexible gas sensor: Efficient monitoring of trace NO2 gas at room temperature. Sens. Actuators B Chem. 2025, 430, 137359. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Z.; Hao, J.; Zhao, S.; Yu, Y.; Dong, Y.; Liu, H.; Huang, C.; Gao, C.; Zhou, Y.; et al. Gas Sensing Properties of Indium–Oxide–Based Field–Effect Transistor: A Review. Sensors 2024, 24, 6150. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.; Qin, S.; Hou, L.; Liu, Z.; Cui, Q.; Chen, Y. Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. J. Mater. Chem. A 2013, 1, 5274. [Google Scholar] [CrossRef]
- Qurashi, A.; Irfan, M.F.; Alam, M.W. In2O3 nanostructures and their chemical and biosensor applications. Arab. J. Sci. Eng. 2010, 35, 125–145. [Google Scholar]
- Yahia, A.; Attafa, A.; Saidi, H.; Dahnoun, M.; Khelifi, C.; Bouhdjer, A.; Saadi, A.; Ezzaoui, H. Structural, optical, morphological and electrical properties of indium oxide thin films prepared by sol gel spin coating process. Surf. Interfaces 2019, 14, 158–165. [Google Scholar] [CrossRef]
- Horoz, B.; Tuna Yıldırım, S.; Soltabayev, B.; Ates, A. Effect of SILAR cycle on gas sensing properties of In2O3 thin films for CO gas sensor. J. Mater. Sci. Mater. Electron. 2024, 35, 163. [Google Scholar] [CrossRef]
- Yang, B.; Li, P.; Chen, Z.; Xu, H.; Fu, C.; Ding, X.; Zhang, J. Effect of Titanium Cation Doping on the Performance of In2O3 Thin Film Transistors Grown via Atomic Layer Deposition. Coatings 2023, 13, 605. [Google Scholar] [CrossRef]
- Fakhri, M.A. Effect of substrate temperature on optical and structural properties of indium oxide thin films prepared by reactive PLD method. Eng. Technol. J. 2014, 32, 1323–1330. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhu, X.; Wang, X.; Cai, X.; Zhang, B.; Qiu, D.; Wu, H. Annealing effects of In2O3 thin films on electrical properties and application in thin film transistors. Thin Solid Film. 2011, 519, 3254–3258. [Google Scholar] [CrossRef]
- Veeraswamy, Y.; Vijayakumar, Y.; Ramana Reddy, M.V. Effect of substrate on structural and optical properties of In2O3 thin films prepared by electron beam evaporation. Asian J. Appl. Sci. 2014, 7, 737–744. [Google Scholar] [CrossRef]
- Jothibas, M.; Manoharan, C.; Dhanapandian, S. Effect of precursor concentration on the preparation of In2O3 thin films prepared by spray pyrolysis. Int. J. Curr. Res. 2013, 5, 3268–3275. [Google Scholar]
- Goh, K.W.; Johan, M.R.; Wong, Y.H. Enhanced structural properties of In2O3 nanoparticles at lower calcination temperature synthesised by co-precipitation method. Micro Nano Lett. 2018, 13, 270–275. [Google Scholar] [CrossRef]
- Lin, L.T.; Tang, L.; Zhang, R.; Deng, C.; Chen, D.J.; Cao, L.W.; Meng, J.X. Monodisperse In2O3 nanoparticles synthesized by a novel solvothermal method with In(OH)3 as precursors. Micro Nano Lett. 2018, 13, 270–275. [Google Scholar] [CrossRef]
- Askarinejad, A.; Askarinejad, M.; Bahramifar, N.; Morsali, A. Synthesis and characterisation of In(OH)3 and In2O3 nanoparticles by sol-gel and solvothermal methods. J. Exp. Nanosci. 2010, 5, 294–301. [Google Scholar] [CrossRef]
- Sabry, S.R.; Ibrahim, R.; Agool, R.; Asaad Abbas, M. Calcination temperature dependent of hydrothermal indium oxide nanostructures. Aust. J. Basic Appl. Sci. 2014, 8, 165–168. [Google Scholar]
- Nirmala, E.I.; Kartharinal Punithavathy, I.; Johnson Jeyakumar, S.; Jothibas, M. Annealing temperature effect on hydrothermally prepared indium oxide spherical nano particles. J. Nano. Adv. Mat. 2017, 5, 11–16. [Google Scholar]
- Jothibas, M.; Manoharan, C.; Johnson Jeyakumar, S.; Praveen, P. Study on structural and optical behaviors of In2O3 nanocrystals as potential candidate for optoelectronic devices. J. Mater. Sci. Mater. Electron. 2015, 26, 9600–9606. [Google Scholar] [CrossRef]
- Nguyen, T.T.D.; Choi, H.N.; Ahemad, M.J.; Van Dao, D.; Lee, I.H.; Yu, Y.T. Hydrothermal synthesis of In2O3 nanocubes for highly responsive and selective ethanol gas sensing. J. Alloy. Compd. 2020, 820, 153133. [Google Scholar] [CrossRef]
- Ullah, H.; Yamani, Z.H.; Qurashi, A.; Iqbal, J.; Kashif, S. Study of the optical and gas sensing properties of In2O3 nanoparticles synthesized by rapid sonochemical method. J. Mater. Sci. Mater Electron. 2020, 31, 17474–17481. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Yang, Z.; Wang, Q. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties. Phys. E Low Dimens. Syst. Nanostruct. 2018, 97, 38–44. [Google Scholar] [CrossRef]
- Husain, Z.A.; Majeed, A.A.; Rasheed, R.T.; Mansoor, H.S.; Hussein, N.N. Antibacterial activity of In2O3 nanopowders prepared by hydrothermal method. Mater. Today Proc. 2021, 42, 1816–1821. [Google Scholar] [CrossRef]
- Shao, M.; Chen, H.; Shen, M.; Chen, W. Synthesis and photocatalytic properties of In2O3 micro/nanostructures with different morphologies. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 503–507. [Google Scholar] [CrossRef]
- Dodd, A. Synthesis of indium oxide nanoparticles by solid state reaction. J. Nanopart. Res. 2009, 11, 2171–2177. [Google Scholar] [CrossRef]
- Song, P.; Han, D.; Zhang, H.; Li, J.; Yang, Z.; Wang, Q. Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators B 2014, 196, 434–439. [Google Scholar] [CrossRef]
- Han, B.; Wang, J.; Yang, W.; Chen, X.; Wang, H.; Chen, J.; Zhang, C.; Sun, J.; Wei, X. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sens. Actuators B Chem. 2009, 309, 127788. [Google Scholar] [CrossRef]
- Li, P.; Fan, H. Porous In2O3 microstructures: Hydrothermal synthesis and enhanced Cl2 sensing performance. Mater. Sci. Semicond. Process. 2015, 29, 83–89. [Google Scholar] [CrossRef]
- Latha, C.K.; Raghasudha, M.; Aparna, Y.; Ramchander, M.; Ravinder, D.; Jaipal, K.; Veerasomaiah, P.; Shridhar, D. Effect of capping agent on the morphology, size and optical properties of In2O3 nanoparticles. Mater. Res. 2017, 20, 256–263. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, J.M.; Kim, K.N.; Kim, C.H.; Jang, C.H. Synthesis of In2O3 nano-materials with various shapes. Curr. Appl. Phys. 2006, 6, e198–e201. [Google Scholar] [CrossRef]
- Li, P.; Cai, C.; Cheng, T.; Huang, Y. Hydrothermal synthesis and Cl2 sensing performance of porous-sheets-like In2O3 structures with phase transformation. RSC Adv. 2017, 7, 50760–50771. [Google Scholar] [CrossRef]
- Hong, X.; Wang, X.; Li, Y.; Fu, J.; Liang, B. Progress in Graphene/Metal Oxide Composite Photocatalysts for Degradation of Organic Pollutants. Catalysts 2020, 10, 921. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Li, J.; Shao, T.; Jin, L. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition. J. Photochem. Photobiol. A Chem. 2013, 271, 111–116. [Google Scholar] [CrossRef]
- An, D.; Wang, Q.; Tong, X.; Lian, X.; Zou, Y.; Li, Y. ZnO-enhanced In2O3-based sensors for n-butanol gas. Ceram. Int. 2019, 45, 6869–6874. [Google Scholar] [CrossRef]
- Yaragani, V.; Kamatam, H.P.; Deva Arun Kumar, K.; Mele, P.; Christy, A.J.; Gunavathy, K.V.; Alomairy, S.; Al-Buriahi, M.S. Structural, Magnetic and Gas Sensing Activity of Pure and Cr Doped In2O3 Thin Films Grown by Pulsed Laser Deposition. Coatings 2021, 11, 588. [Google Scholar] [CrossRef]
- Boukhoubza, I.; Derkaoui, I.; Basyooni, M.A.; Achehboune, M.; Khenfouch, M.; Belaid, W.; Enculescu, M.; Matei, E. Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devices. Mater. Chem. Phys. 2023, 306, 128063. [Google Scholar] [CrossRef]
- Joseph, T.; Thomas, N. A facile electrochemical sensor based on titanium oxide (TiO2)/reduced graphene oxide (RGO) nano composite modified carbon paste electrode for sensitive detection of epinephrine (EP) from ternary mixture. Mater. Today Proc. 2021, 41, 606–609. [Google Scholar] [CrossRef]
- Mliki, H.; Echabaane, M.; Rouis, A.; El Ghoul, J.M.; Bessueille, F.; Ayed, D.; Jaffrezic-Renault, N. Highly electroactive Co–ZnO/GO nanocomposite: Electrochemical sensing platform for oxytetracycline determination. Helyion 2024, 10, e30265. [Google Scholar] [CrossRef]
- Pitiphattharabun, S.; Auewattanapun, K.; Htet, T.L.; Thu, M.M.; Panomsuwan, G.; Techapiesancharoenkij, R.; Ohta, J.; Jongprateep, O. Reduced graphene oxide/zinc oxide composite as an electrochemical sensor for acetylcholine detection. Sci. Rep. 2024, 14, 14224. [Google Scholar] [CrossRef]
- Maqbool, A.; Shahid, A.; Jahan, Z.; Khan Niazi, M.B.; Inam, M.A.; Tawfeek, M.A.; Kamel, E.M.; Akhtar, M.A. Development of ZnO-GO-NiO membrane for removal of lead and cadmium heavy metal ions from wastewater. Chemosphere 2023, 338, 139622. [Google Scholar] [CrossRef] [PubMed]
- Motitswe, M.G.; Badmus, K.O.; Khotseng, L. Application of Reduced Graphene Oxide-Zinc Oxide Nanocomposite in the Removal of Pb(II) and Cd(II) Contaminated Wastewater. Appl. Nano 2024, 5, 162–189. [Google Scholar] [CrossRef]
- Pruna, A.; Poliac, I.; Busquets Mataix, D.; Ruotolo, A. Synergistic effects in ZnO nanorod films by pulsed electrodeposition on graphene oxide towards enhanced photocatalytic degradation. Ceram. Int. 2024, 50, 4622–4631. [Google Scholar] [CrossRef]
- Bao, H.V.; Dat, N.M.; Giang, N.T.H.; Thinh, D.B.; Tai, L.T.; Trinh, D.N.; Hai, N.D.; Khoa, N.A.D.; Huong, L.M.; Nam, H.M.; et al. Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surf. Interface 2021, 23, 100950. [Google Scholar] [CrossRef]
- Khan, M.; Ferlazzo, A.; Crispi, S.; Hussain, M.; Neri, G. Easy preparation of cobalt oxide/copper oxide composites for gas sensing application. Phys. Scr. 2023, 98, 125927. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, B.; Cheng, M.; Zhao, L.; Lu, G. Gas Sensors Based on Metal Oxides Decorated by Reduced Graphene Oxide with Enhanced Gas Sensing Properties. In Proceedings of the 17th International Meeting on Chemical Sensors, Vienna, Austria, 15–19 June 2018. [Google Scholar]
- Mirzaei, A.; Bang, J.H.; Choi, M.S.; Han, S.; Lee, H.Y.; Kim, S.S.; Kim, H.W. Changes in characteristics of Pt-functionalized RGO nanocomposites by electron beam irradiation for room temperature NO2 sensing. Ceram. Int. 2020, 46, 21638–21646. [Google Scholar] [CrossRef]
- Kant, R.; Panwar, R.S. Synergistic effect of rGO with Co-doped ZnO in tuning dielectric and optical properties synthesized by two step chemical method. J. Mol. Struct. 2025, 1327, 141177. [Google Scholar] [CrossRef]
- Tuan, P.V.; Hung, N.D.; Ha, L.T. Effect of rGO on the microstructure, electrical, optical, and photocatalytic properties of ZnO/rGO nanorods. J. Mol. Struct. 2025, 1330, 141515. [Google Scholar] [CrossRef]
- Khamkhash, L.; Em, S.; Molkenova, A.; Hwang, Y.H.; Atabaev, T.S. Crack-Free and Thickness-Controllable Deposition of TiO2–rGO Thin Films for Solar Harnessing Devices. Coatings 2022, 12, 218. [Google Scholar] [CrossRef]
- Rehman, N.; Pandey, A.; Pandey, A. Preparation of a label-free and prompt immuno sensing of Salmonella enterica via electrochemical techniques. Sens. Biosens. Res. 2025, 48, 100789. [Google Scholar]
- Liu, Z.; Navik, R.; Tan, H.; Xiang, Q.; Wahyudiono; Goto, M.; Ibarra, R.M.; Zhao, Y. Graphene-based materials prepared by supercritical fluid technology and its application in energy storage. J. Supercrit. Fluids. 2022, 188, 105672. [Google Scholar] [CrossRef]
- Das, P.; Ibrahim, S.; Chakraborty, K.; Ghosh, S.; Pal, T. Stepwise reduction of graphene oxide and studies on defect-controlled physical properties. Sci. Rep. 2024, 14, 294. [Google Scholar] [CrossRef]
- Tucureanu, V.; Obreja, C.A.; Craciun, G.; Romanitan, C.; Mihailescu, C.M.; Stan, D.; Matei, A. Preparation and evaluation of nanocomposites based on transitional oxides and carbon materials for electrochemical applications. Ceram. Int. 2022, 48, 27201–27212. [Google Scholar] [CrossRef]
- Tucureanu, V.; Obreja, C.A.; Pachiu, C.; Brîncoveanu, O.; Matei, A. Synthesis and Characterization of Nanocomposites Based on Carbon Materials and Transitional Oxides. Mater. Proc. 2023, 14, 8. [Google Scholar]
- Mushahary, M.; Sarkar, A.; Basumatary, F.; Brahma, S.; Das, B.; Basumatary, S. Recent developments on graphene oxide and its composite materials: From fundamentals to applications in biodiesel synthesis, adsorption, photocatalysis, supercapacitors, sensors and antimicrobial activity. Results Surf. Interfaces 2024, 15, 100225. [Google Scholar] [CrossRef]
- Al-Moayid, S.M.; Algarni, H.; Elhosiny Ali, H.; Khairy, Y. Synthesis of reduced graphene oxide decorated with cuprite nanoparticles for energy-storage devices: Dielectric properties and electrical conductivity. Phys. Rev. B Condens. Matter. 2025, 714, 417490. [Google Scholar] [CrossRef]
- Askari, M.B.; Salarizadeh, P.; Bartolomeo, A.D.; Ramezan Zadeh, M.H.; Beitollahi, H.; Tajik, S. Hierarchical nanostructures of MgCo2O4 on reduced graphene oxide as a high-performance catalyst for methanol electro-oxidation. Ceram. Int. 2021, 47, 16079–16085. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Advanced characterization techniques for nanostructured materials in biomedical applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 122–143. [Google Scholar] [CrossRef]
- Pronin, I.A.; Averin, I.A.; Karmanov, A.A.; Yakushova, N.D.; Komolov, A.S.; Lazneva, E.F.; Sychev, M.M.; Moshnikov, V.A.; Korotcenkov, G. Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing. Nanomaterials 2022, 12, 1924. [Google Scholar] [CrossRef]
- Obreja, A.C.; Cristea, D.; Gavrila, R.; Schiopu, V.; Dinescu, A.; Danila, M.; Comanescu, F. Functionalized graphene/poly 3-hexyl thiophene based nanocomposites. In Proceeding of the International Semiconductor Conference CAS, Sinaia, Romania, 17–19 October 2011. [Google Scholar]
- Ayeshamariam, A.; Bououdina, M.; Sanjeeviraja, C. Optical, electrical and sensing properties of In2O3 nanoparticles. Mat. Sci. Semicon. Proc. 2013, 16, 686–695. [Google Scholar] [CrossRef]
- Pawar, K.K.; Desai, D.V.; Bodake, M.; Patil, H.S.; More, S.M.; Nimbalkar, A.S.; Mali, S.S.; Dongale, T.D. Highly reliable multilevel resistive switching in a nanoparticulated In2O3 thin-film memristive device. J. Phys. D Appl. Phys. 2019, 52, 175306. [Google Scholar] [CrossRef]
- Joseph Panneerdoss, I.; Johnson Jeyakumar, S.; Ramalingam, S.; Jothibas, M. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV–Visible investigation and optical analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 147, 1–13. [Google Scholar] [CrossRef]
- Stokey, M.; Korlacki, R.; Knight, S.; Ruder, A.; Hilfiker, M.; Galazka, Z.; Irmscher, K.; Zhang, Y.; Zhao, H.; Darakchieva, V.; et al. Optical phonon modes, static and high-frequency dielectric constants, and effective electron mass parameter in cubic In2O3. J. Appl. Phys. 2021, 129, 225102. [Google Scholar] [CrossRef]
- Tucureanu, V.; Matei, A.; Avram, A.A. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- All, A.; Abdel-Salam, A.I.; Salim, S.A.; Morsy, M. Tailoring porous structure composed of nano indium oxide and nano zinc ferrite to be act as an efficient humidity sensor. Appl. Phys. A. 2025, 131, 423. [Google Scholar] [CrossRef]
- Nasriddinov, A.; Tokarev, S.; Fedorova, O.; Bozhev, I.; Rumyantseva, M. In2O3 Based Hybrid Materials: Interplay between Microstructure, Photoelectrical and Light Activated NO2 Sensor Properties. Chemosensors 2022, 10, 135. [Google Scholar] [CrossRef]
- Halbos, R.J.; Al-Algawi, S.; Rasheed, R.T.; Hassan, R.A.; Mahdi, R.R.; Azeez, H.; Fayad, F.A. A Study of In2O3 Nano Particles for Gas Sensor Application. J. Fuzzy Syst. Control. 2024, 2, 135–139. [Google Scholar] [CrossRef]
- Shinde, D.V.; Ahn, D.Y.; Jadhav, V.V.; Lee, D.Y.; Shrestha, N.K.; Lee, J.K.; Lee, H.Y.; Mane, R.S.; Han, S.H. A coordination chemistry approach for shape-controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties. J. Mater. Chem. A 2014, 2, 5490–5498. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, S.; Xie, P.; Gao, Z.; Zou, R. Preparation, characterization and photocatalytic activity of juglans-like indium oxide (In2O3) nanospheres. Mater. Lett. 2017, 192, 76–79. [Google Scholar] [CrossRef]
- Carvalho, M.H.; Piton, M.R.; Lemine, O.M.; Bououdina, M.; Galet, H.V.A.; Pereira, E.C.; Galvão Gobato, Y.; Ade Oliveira, A.J. Effects of strain, defects and crystal phase transition in mechanically milled nanocrystalline In2O3 powder. Mater. Res. Express 2019, 6, 025017. [Google Scholar] [CrossRef]
- Uma, K.; Chong, S.; Mohan, S.C.; Jothivenkatachalam, K.; Yang, T.C.K.; Lin, J.H. Multi-functional RGO-supported α-Fe2O3 nanocomposites for high-performance pseudocapacitors and visible light–driven photocatalytic applications. Ionics 2020, 26, 3491–3500. [Google Scholar] [CrossRef]
- Romanitan, C.; Tudose, I.V.; Mouratis, K.; Popescu, M.C.; Pachiu, C.; Couris, S.; Koudoumas, E.; Suchea, M. Structural Investigations in Electrochromic Vanadium Pentoxide Thin Films. Phys. Status Solidi A 2022, 219, 2100431. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Samoila, P.; Airinei, A.; Olaru, N.; Rotaru, A.; Romanitan, C.; Tudoran, L.B.; Suchea, M. Cu/TiO2 composite nanofibers with improved photocatalytic performance under UV and UV–visible light irradiation. Surf. Interfaces 2022, 28, 101644. [Google Scholar] [CrossRef]
- Marinas, I.C.; Gradisteanu Pircalabioru, G.; Oprea, E.; Geana, E.I.; Zgura, I.; Romanitan, C.; Matei, E.; Angheloiu, M.; Brincoveanu, O.; Georgescu, M.; et al. Physico-chemical and pro-wound healing properties of microporous cellulosic sponge from Gleditsia triacanthos pods functionalized with Phytolacca americana fruit extract. Cellulose 2023, 30, 10313–10339. [Google Scholar] [CrossRef]
- De Lima, B.S.; Komorizono, A.A.; Ndiaye, A.L.; Bernardi, M.I.B.; Brunet, J.; Mastelaro, V.R. Tunning the Gas Sensing Properties of rGO with In2O3 Nanoparticles. Surfaces 2022, 5, 127–142. [Google Scholar] [CrossRef]
- Song, J.W.; Fan, L.W. Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer. Adv. Colloid Interface Sci. 2021, 288, 102339. [Google Scholar] [CrossRef]
- Ubuo, E.E.; Udoetok, I.A.; Tyowua, A.T.; Ekwere, I.O.; Al-Shehri, H.S. The Direct cause of Amplified Wettability: Roughness or Surface Chemistry? J. Compos. Sci. 2021, 5, 213. [Google Scholar] [CrossRef]
- Zulkharnay, R.; Ualibek, O.; Toktarbaiuly, O.; May, P.W. Hydrophobic behaviour of reduced graphene oxide thin film fabricated via electrostatic spray deposition. Bull. Mater. Sci. 2021, 44, 112. [Google Scholar] [CrossRef]
- Ryl, J.; Cieslik, M.; Zielinski, A.; Ficek, M.; Dec, B.; Darowicki, K.; Bogdanowicz, R. High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification. Materials 2020, 13, 964. [Google Scholar] [CrossRef]
- Metikos-Hukovic, M.; Omanovic, S. Thin indium oxide film formation and growth: Impedance spectroscopy and cyclic voltammetry investigations. J. Electroanal. Chem. 1998, 455, 181–189. [Google Scholar] [CrossRef]
Possible Bond Assignments | Wavenumber (cm−1) | |||
---|---|---|---|---|
In2O3 from Acetate | In2O3 from Chloride | rGO | In2O3-rGO | |
O-H from H2O | - | - | 4000–3000 | 4000–3000 |
C=O from CO2 | - | - | 2400–2200 | 2400–2200 |
O-H din H2O | - | - | 2000–1100 | 2000–1100 |
υas (In-O), B2 | 598 | 597 | - | 599 |
υas (In-O), B2 | 562 | 562 | - | 563 |
δ (In-O), B2 | 536 | 535 | - | 537 |
υs (In-O), A1 | 409 | 409 | - | 415 |
Diffraction Parameters | In2O3 from Acetate | In2O3 from Chloride | In2O3-rGO Composite | ||
---|---|---|---|---|---|
Mean Crystallite Size (nm) | 12.64 | 13.29 | 11.85 | ||
Lattice Strain (%) | +0.183 | +0.302 | +0.18 | ||
a = b = c (Å) | 10.122 | 10.137 | 10.124 | ||
Unit Cell Volume [Å3] | 1037.05 | 1041.66 | 1037.66 | ||
Phase | Miller Indices | 2θ (°) | |||
In2O3 | (211) | 21.33 | 21.36 | - | 21.3 |
Graphite | (002) | - | - | 24.16 | 25.39 |
In2O3 | (222) | 30.47 | 30.45 | - | 30.5 |
In2O3 | (400) | 35.35 | 35.32 | - | 35.6 |
In2O3 | (411) | 37.48 | 37.45 | - | 37.65 |
In2O3 | (332) | 41.69 | 41.73 | - | 41.84 |
In2O3 | (431) | 45.61 | 45.67 | - | 45.83 |
In2O3 | (440) | 50.93 | 50.82 | - | 51.04 |
In2O3 | (622) | 60.5 | 60.55 | - | 60.86 |
In2O3 | (631) | 62.05 | 62.26 | - | 62.39 |
Samples | Epa (mV) | Epc (mV) | ΔEp (mV) | E0’ (mV) |
---|---|---|---|---|
In2O3 from acetate | 309 | 185 | 124 | 247 |
In2O3 from chloride | 292 | 174 | 118 | 233 |
In2O3-rGO | 356 | 142 | 208 | 249 |
Au substrate | 307 | 155 | 152 | 231 |
rGO | 333 | 138 | 195 | 235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, A.; Obreja, C.; Romaniţan, C.; Brîncoveanu, O.; Stoian, M.; Țucureanu, V. Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications. Coatings 2025, 15, 958. https://doi.org/10.3390/coatings15080958
Matei A, Obreja C, Romaniţan C, Brîncoveanu O, Stoian M, Țucureanu V. Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications. Coatings. 2025; 15(8):958. https://doi.org/10.3390/coatings15080958
Chicago/Turabian StyleMatei, Alina, Cosmin Obreja, Cosmin Romaniţan, Oana Brîncoveanu, Marius Stoian, and Vasilica Țucureanu. 2025. "Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications" Coatings 15, no. 8: 958. https://doi.org/10.3390/coatings15080958
APA StyleMatei, A., Obreja, C., Romaniţan, C., Brîncoveanu, O., Stoian, M., & Țucureanu, V. (2025). Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications. Coatings, 15(8), 958. https://doi.org/10.3390/coatings15080958