Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten
Abstract
1. Introduction
2. Results
2.1. Design, Preparation, and Characterization of the Immunizing Hapten for OTA
2.2. Development of the Anti-OTA Antibody
2.3. Evaluation of the Anti-OTA Antiserum with a Simple-Format ELISA
2.4. Various Applications of the Anti-OTA Antibody
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Immunizing Hapten for OTA (OTA-GGGK)
Chemistry
5.2. Development of the Anti-OTA Antibody
5.2.1. Conjugation of OTA-GGGK to bTGB
5.2.2. Immunization Protocol (Injections and Bleedings)
5.3. Evaluation of the Anti-OTA Antibody with a Simple-Format ELISA
5.3.1. Conjugation of OTA to Ovalbumin
5.3.2. ELISA Buffers
5.3.3. Titration ELISA Protocol
5.3.4. Displacement ELISA Protocol
5.4. Application of the Anti-OTA Antibody to a Multiple Mycotoxin Microarray Platform, an OTA-Optical Immunosensor, and a Biotin–Streptavidin ELISA
5.4.1. Multiple Mycotoxin Microarray Platform
5.4.2. Optical Immunosensor
5.4.3. Biotin–Streptavidin ELISA
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Absorbance |
A0 | Absorbance of the zero standard |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
AFB1 | Aflatoxin B1 |
AU | Absorbance units |
Boc | tert-Butyloxycarbonyl |
BSA | Bovine serum albumin |
bTGB | Bovine thyroglobulin |
Chlorpyrifos | O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate |
DCM | Dichloromethane |
DIC | N,N′-Diisopropylcarbodiimide |
DMF | N,N-Dimethylformamide |
DMSO | Dimethylsulfoxide |
DON | Deoxynivalenol |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide |
ELISA | Enzyme-linked immunosorbent assay |
ESI-MS | Electrospray ionization mass spectrometry |
Fmoc | 9-Fluorenylmethyloxycarbonyl |
Fmoc-SPPS | 9-Fluorenylmethyloxycarbonyl-based solid-phase peptide synthesis |
FUM-B1 | Fumonisin B1 |
GGGK | Glycyl-glycyl-glycyl-lysine |
HPLC | High-performance liquid chromatography |
HPLC-FLD | High-performance liquid chromatography with fluorescence detection |
ID | Internal diameter |
LC-MS | Liquid chromatography–mass spectrometry |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
LoD | Limit of detection |
MCPA | Methyl-4-chloro-phenoxyacetic acid |
MRL | Maximum residue level |
MW | Molecular weight |
m/z | Mass-to-charge ratio |
OPP | Ortho-phenyl-phenol |
OTA | Ochratoxin A |
OTA-GGGK | Ochratoxin A-glycyl-glycyl-glycyl-lysine |
OTB | Ochratoxin B |
OTC | Ochratoxin C |
OVA | Ovalbumin |
Oxyma | Ethyl 2-cyano-2-(hydroxyimino) acetate |
PB | Phosphate buffer, 0.01 M, pH 7.4 |
PBS | Phosphate-buffered saline (phosphate buffer, 0.01 M, pH 7.4, with 0.9% (w/v) NaCl) |
PBS-T | PBS containing 0.05% (v/v) Tween 20 |
PDA | Photodiode array |
PMMA | Oxygen plasma micro-nanostructured poly (methyl methacrylate) |
RP-HPLC | Reversed-phase high-performance liquid chromatography |
Rt | Retention time |
RT | Room temperature |
sdAb | Single-domain antibody |
SPPS | Solid phase peptide synthesis |
TFA | Trifluoroacetic acid |
TIS | Tri-isopropylsilane |
TMB | 3,3′,5,5′-tetramethylbenzidine |
Triclopyr | [(3,5,6-trichloropyridin-2-yl)oxy]acetic acid |
UV-vis | Ultraviolet–visible |
References
- Banahene, J.C.M.; Ofosu, I.W.; Odai, B.T.; Lutterodt, H.E.; Agyemang, P.A.; Ellis, W.O. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024, 10, e39313. [Google Scholar] [CrossRef] [PubMed]
- Ben Miri, Y.; Benabdallah, A.; Chentir, I.; Djenane, D.; Luvisi, A.; De Bellis, L. Comprehensive insights into ochratoxin A: Occurrence, analysis, and control strategies. Foods 2024, 13, 1184. [Google Scholar] [CrossRef]
- Cramer, B.; Harrer, H.; Nakamura, K.; Uemura, D.; Humpf, H.U. Total synthesis and cytotoxicity evaluation of all ochratoxin A stereoisomers. Bioorg. Med. Chem. 2010, 18, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Coton, M.; Coton, E.; Hymery, N. Occurrence of the two major regulated mycotoxins, ochratoxin A and fumonisin B1, in cereal and cereal-based products in Europe and toxicological effects: A review. Environ. Toxicol. Pharmacol. 2024, 109, 104489. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, H.; Alizadeh, N.; Moradi, M.; Sharafi, K.; Mousavi Khaneghah, A. The prevalence and concentration of ochratoxin A in meat and edible offal: A global systematic review and meta-analysis. Food Chem. Toxicol. 2023, 178, 113921. [Google Scholar] [CrossRef] [PubMed]
- Bonerba, E.; Manfredi, A.; Dimuccio, M.M.; Lorusso, P.; Pandiscia, A.; Terio, V.; Di Pinto, A.; Panseri, S.; Ceci, E.; Bozzo, G. Ochratoxin A in poultry supply chain: Overview of feed occurrence, carry-over, and pathognomonic lesions in target organs to promote food safety. Toxins 2024, 16, 487. [Google Scholar] [CrossRef]
- Aranda, C.; Rodriguez, R.; Fernández-Baldo, M.A.; Durán, P. Mycotoxins in cheese: Assessing risks, fungal contaminants, and control strategies for food safety. Foods 2025, 14, 351. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Kabak, B. Occurrence of mycotoxins in dried fruits worldwide, with a focus on aflatoxins and ochratoxin A: A review. Toxins 2023, 15, 576. [Google Scholar] [CrossRef]
- La Placa, L.; Tsitsigiannis, D.; Camardo Leggieri, M.; Battilani, P. From grapes to wine: Impact of the vinification process on ochratoxin A contamination. Foods 2023, 12, 260. [Google Scholar] [CrossRef]
- Zjalic, S.; Markov, K.; Loncar, J.; Jakopovic, Z.; Beccaccioli, M.; Reverberi, M. Biocontrol of occurrence ochratoxin A in wine: A review. Toxins 2024, 16, 277. [Google Scholar] [CrossRef]
- Fakhri, Y.; Ranaei, V.; Pilevar, Z.; Belaia, O.F.; Kolaeva, N.V.; Sarafraz, M.; Mousavi Khaneghah, A. Prevalence and concentration of Ochratoxin A in beer: A global systematic review, meta-analysis, and health risk assessment. Food Sci. Nutr. 2024, 12, 8503–8514. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Alanazi, Y.A.; Alrohaimi, Y.; Shaik, R.A.; Alrashidi, S.; Al-Ghasham, Y.A.; Alkhalifah, Y.S.; Ahmad, R.K. Occurrence, evaluation, and human health risk assessment of ochratoxin a in infant formula and cereal-based baby food: A global literature systematic review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2024, 41, 1171–1186. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Alanazi, Y.A.; Alrohaimi, Y.; Shaik, R.A.; Alrashidi, S.; Al-Ghasham, Y.A.; Alkhalifah, Y.S.; Ahmad, R.K. Infant nutrition at risk: A global systematic review of ochratoxin A in human breast milk-human health risk assessment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2024, 41, 1611–1624. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.D.; Ryu, D. Practical strategies to reduce ochratoxin A in Foods. Toxins 2024, 16, 58. [Google Scholar] [CrossRef]
- Ding, L.; Han, M.; Wang, X.; Guo, Y. Ochratoxin A: Overview of prevention, removal, and detoxification methods. Toxins 2023, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- Więckowska, M.; Szelenberger, R.; Niemcewicz, M.; Harmata, P.; Poplawski, T.; Bijak, M. Ochratoxin A—The current knowledge concerning hepatotoxicity, mode of action and possible prevention. Molecules 2023, 28, 6617. [Google Scholar] [CrossRef] [PubMed]
- Khoi, C.S.; Chen, J.H.; Lin, T.Y.; Chiang, C.K.; Hung, K.Y. Ochratoxin A-induced nephrotoxicity: Up-to-date evidence. Int. J. Mol. Sci. 2021, 22, 11237. [Google Scholar] [CrossRef] [PubMed]
- Obafemi, B.A.; Adedara, I.A.; Rocha, J.B.T. Neurotoxicity of ochratoxin A: Molecular mechanisms and neurotherapeutic strategies. Toxicology 2023, 497–498, 153630. [Google Scholar] [CrossRef]
- Serrano-Civantos, M.; Beraza, E.; Álvarez-Erviti, L.; de Cerain, A.L.; Vettorazzi, A. Potential role of ochratoxin A in Parkinson’s disease: A systematic review of current evidence. Arch. Toxicol. 2025, 99, 1769–1790. [Google Scholar] [CrossRef]
- Więckowska, M.; Cichon, N.; Szelenberger, R.; Gorniak, L.; Bijak, M. Ochratoxin A and its role in cancer development: A comprehensive review. Cancers 2024, 16, 3473. [Google Scholar] [CrossRef]
- Aydemir, M.C.; Yaman, İ.; Kilic, M.A. Membrane receptor-mediated disruption of cellular homeostasis: Changes in intracellular signaling pathways increase the toxicity of ochratoxin A. Mol. Nutr. Food Res. 2024, 68, e2300777. [Google Scholar] [CrossRef]
- Frangiamone, M.; Lázaro, Á.; Cimbalo, A.; Font, G.; Manyes, L. In vitro and in vivo assessment of AFB1 and OTA toxic effects and the beneficial role of bioactive compounds. A systematic review. Food Chem. 2024, 447, 138909. [Google Scholar] [CrossRef]
- Bui-Klimke, T.R.; Wu, F. Ochratoxin A and human health risk: A review of the evidence. Crit. Rev. Food. Sci. Nutr. 2015, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed]
- Coronel, M.B.; Marin, S.; Tarragó, M.; Cano-Sancho, G.; Ramos, A.J.; Sanchis, V. Ochratoxin A and its metabolite ochratoxin alpha in urine and assessment of the exposure of inhabitants of Lleida, Spain. Food Chem. Toxicol. 2011, 49, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, K.; Blaszkewicz, M.; Degen, G.H. Simultaneous analysis of ochratoxin A and its major metabolite ochratoxin alpha in plasma and urine for an advanced biomonitoring of the mycotoxin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2623–2629. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006; OJEU: Luxembourg, 2023; Volume L119, pp. 103–157. [Google Scholar]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; et al. EFSA Panel on Contaminants in the Food Chain (CONTAM). Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef]
- Alhamoud, Y.; Yang, D.; Kenston, S.S.F.; Liu, G.; Liu, L.; Zhou, H.; Ahmed, F.; Zhao, J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens. Bioelectron. 2019, 141, 111418. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Ma, Z.; Zhang, Q.; Li, H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 5444–5461. [Google Scholar] [CrossRef]
- Delfino, D.; Lucchetti, D.; Mauti, T.; Mancuso, M.; Di Giustino, P.; Triolone, D.; Vaccari, S.; Bonanni, R.C.; Neri, B.; Russo, K. Investigation of ochratoxin A in commercial cheeses and pork meat products by liquid chromatography-tandem mass spectrometry. J. Food Sci. 2022, 87, 4465–4475. [Google Scholar] [CrossRef]
- Ndoro, J.; Manduna, I.T.; Nyoni, M.; de Smidt, O. Multiple mycotoxin contamination in medicinal plants frequently sold in the free state province, South Africa detected using UPLC-ESI-MS/MS. Toxins 2022, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-S.; Zhao, J.; Ma, T.-T.; Li, Z.-Y.; Wang, L.-L.; Ji, S.-L.; Sun, M.-Y.; Liu, Y.-S.; Hu, Z.-H.; Liu, Q.-W.; et al. Magnetic covalent organic framework for effective solid-phase extraction and HPLC determination of ochratoxin A in food. LWT—Food Sci. Technol. 2023, 179, 114639. [Google Scholar] [CrossRef]
- Pakshir, K.; Dehghani, A.; Nouraei, H.; Zareshahrabadi, Z.; Zomorodian, K. Evaluation of fungal contamination and ochratoxin A detection in different types of coffee by HPLC-based method. J. Clin. Lab. Anal. 2021, 35, e24001. [Google Scholar] [CrossRef] [PubMed]
- Savastano, M.L.; Losito, I.; Pati, S. Rapid and automatable determination of ochratoxin A in wine based on microextraction by packed sorbent followed by HPLC-FLD. Food Control 2016, 68, 391–398. [Google Scholar] [CrossRef]
- Meira, D.I.; Barbosa, A.I.; Borges, J.; Reis, R.L.; Correlo, V.M.; Vaz, F. Label-free localized surface plasmon resonance (LSPR) biosensor, based on Au-Ag NPs embedded in TiO2 matrix, for detection of Ochratoxin-A (OTA) in wine. Talanta 2025, 284, 127238. [Google Scholar] [CrossRef]
- López-Puertollano, D.; Agulló, C.; Mercader, J.V.; Abad-Somovilla, A.; Abad-Fuentes, A. Immunoanalytical methods for ochratoxin A monitoring in wine and must based on innovative immunoreagents. Food Chem. 2021, 345, 128828. [Google Scholar] [CrossRef]
- Fan, X.; Tan, C.; Mei, X.; Ma, J.; Wu, K.; Deng, A.; Feng, X.; Li, J. Highly efficient electrochemiluminescent properties of porphyrin-based metal-organic framework Zn-TCPP and its immunoassay application to the detection of ochratoxin A. Anal. Chim. Acta 2024, 1330, 343267. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Yang, H.; Zhou, Y. Triple-readout immunoassay based on copper ion trigger for the detection of ochratoxin A. Anal. Chim. Acta 2025, 1345, 343750. [Google Scholar] [CrossRef]
- Kong, Y.; Qian, X.; Mei, X.; Ma, J.; Wu, K.; Deng, A.; Li, J. Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. Talanta 2025, 281, 126937. [Google Scholar] [CrossRef]
- Long, X.; Zhang, T.; Yang, L.; Guo, C.; Zhao, Q.; Cui, Y.; Wang, C.; Zhang, Y.; He, Y. CRISPR/Cas12a-based indirect competitive enzyme-linked immunosorbent assay for sensitive detection of ochratoxin A. J. Agric. Food Chem. 2024, 72, 21912–21921. [Google Scholar] [CrossRef]
- Tobias, C.; López-Puertollano, D.; Abad-Somovilla, A.; Mercader, J.V.; Abad-Fuentes, A.; Rurack, K. Development of simple and rapid bead-based cytometric immunoassays using superparamagnetic hybrid core-shell microparticles. ACS Meas. Sci. Au 2024, 4, 678–688. [Google Scholar] [CrossRef]
- de Andrade Silva, T.; Arcadio, F.; Zeni, L.; Martins, R.; de Oliveira, J.P.; Marques, C.; Cennamo, N. Plasmonic immunosensors based on spoon-shaped waveguides for fast and on-site ultra-low detection of ochratoxin A in coffee samples. Talanta 2024, 271, 125648. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Dong, Y.; Li, S.; Ma, X.; Pang, C.; Wang, S.; Zhang, J.; Chen, Y. A particle counting immunosensor for the sensitive detection of ochratoxin A via click chemistry-mediated signal amplification. J. Hazard. Mater. 2025, 488, 137381. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Song, X.; He, J. Diazo-functionalised immunoelectrochemical sensor for the detection of ochratoxin a in foods. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2024, 41, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, X.X.; Wang, Y.; Li, S.; Ren, S.; Wang, Y.; Han, D.; Qin, K.; Chang, X.; Zhou, H.; et al. A facile dual-mode immunosensor based on speckle Ag-doped nanohybrids for ultrasensitive detection of Ochratoxin A. Food Chem. 2024, 439, 138102. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, M.; Peng, D.; Zheng, H.; Qin, H.; Xiao, J.; Wu, Y.; Yang, N. A self-supported electrochemical immunosensor based on Cu2O/CuO@AuNPs heterostructures for sensitive and selective detection of ochratoxin A in food. Talanta 2025, 287, 127657. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Yang, J.; Li, Z.; Li, Q.; Xiao, L.; Tan, T.; Li, J. Photonic microbead array digital time-resolved fluorescence ultrasensitive platform for simultaneous detection of multiple mycotoxins. Anal. Chem. 2024, 96, 16842–16853. [Google Scholar] [CrossRef]
- Sheng, J.; Gao, H.; Zhang, M.; Xu, D. Simultaneous detection of five mycotoxins in traditional Chinese medicines (TCMs) by visual protein microarray. J. Pharm. Biomed. Anal. 2024, 249, 116333. [Google Scholar] [CrossRef]
- Leeman, D.; Allan, A.B.; Cameron, H.; Donelly, C.; Tramaseur, A.; Stratton, J.; MacDonald, S.J. Validation of the 11+ Myco MS-PREP® method for determination of aflatoxins, fumonisins, deoxynivalenol, ochratoxin A, zearalenone, HT-2, and T-2 toxins in cereals, baby food, spices, and animal feed by immunoaffinity column with LC-MS/MS: AOAC performance tested methodSM 112401. J. AOAC Int. 2025, 108, 207–252. [Google Scholar] [CrossRef]
- Andronaco, P.; Di Sanzo, R.; Ioppolo, F.; Ligato, F.; Alberto, S.; Galluccio, M.A.; Carabetta, S.; Russo, M. An Innovative analytical approach for multi-mycotoxin detection in craft beer using freeze-dried samples, IAC column and HPLC/ESI-MS/MS. Foods 2025, 14, 956. [Google Scholar] [CrossRef]
- Chu, F.S.; Chang, F.C.; Hinsdill, R.D. Production of antibody against ochratoxin A. Appl. Environ. Microbiol. 1976, 31, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyösi-Horváth, A.; Barna-Vetró, I.; Solti, L. A new monoclonal antibody detecting ochratoxin A at the picogram level. Lett. Appl. Microbiol. 1996, 22, 103–105. [Google Scholar] [CrossRef]
- Mao, F.; He, Z.; Sun, Z.; Zhang, S.; Cao, H.; Liu, X. Plasmonic enzyme immunoassay via nanobody-driven controllable aggregation of gold nanoparticles for detection of ochratoxin A in pepper. Food Chem. 2024, 453, 139623. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Sun, Z.; Zhang, S.; Liu, X. Genetic engineering-powered dual-mode lateral flow immunosensor for colorimetric and fluorescent detection of ochratoxin A in pepper. J. Hazard. Mater. 2025, 489, 137636. [Google Scholar] [CrossRef]
- Chen, X.; Gao, D.; Sun, F.; Li, Z.; Wang, Y.; Qiu, C.; He, K.; Wang, J. Nanomaterial-based aptamer biosensors for ochratoxin A detection: A review. Anal. Bioanal. Chem. 2022, 414, 2953–2969. [Google Scholar] [CrossRef]
- Huang, H.; Ouyang, W.; Feng, K.; Camarada, M.B.; Liao, T.; Tang, X.; Liu, R.; Hou, D.; Liao, X. Rational design of molecularly imprinted electrochemical sensor based on Nb2C-MWCNTs heterostructures for highly sensitive and selective detection of Ochratoxin a. Food Chem. 2024, 456, 140007. [Google Scholar] [CrossRef]
- Duncan, H.; Agulló, C.; Mercader, J.V.; Abad-Somovilla, A.; Abad-Fuentes, A. Harnessing the intrinsic chemical reactivity of the mycotoxin patulin for immunosensing. Anal. Chem. 2024, 96, 12370–12377. [Google Scholar] [CrossRef]
- Duncan, H.; Mercader, J.V.; Agulló, C.; Gil-Sepulcre, M.; Abad-Somovilla, A.; Abad-Fuentes, A. Chemical strategies for triggering the immune response to the mycotoxin patulin. Sci. Rep. 2021, 11, 23438. [Google Scholar] [CrossRef]
- Ceballos-Alcantarilla, E.; Abad-Somovilla, A.; Agulló, C.; Abad-Fuentes, A.; Mercader, J.V. Protein-free hapten-carbon nanotube constructs induce the secondary immune response. Bioconjug. Chem. 2017, 28, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 2016, 22, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Fields, G.B.; Noble, R.L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161–214. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Vasylieva, N.; Barnych, B.; Rand, A.; Inceoglu, B.; Gee, S.J.; Hammock, B.D. Sensitive immunoassay for detection and quantification of the neurotoxin, tetramethylenedisulfotetramine (TETS). Anal. Chem. 2017, 89, 5612–5619. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, C.E.; Koukouvinos, G.; Zisis, G.; Kizis, D.; Krystalli, E.; Siragakis, G.; Goustouridis, D.; Kakabakos, S.; Petrou, P.; Livaniou, E.; et al. Fast and accurate determination of minute ochratoxin A levels in cereal flours and wine with the label-free white light reflectance spectroscopy biosensing platform. Biosensors 2022, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Koukouvinos, G.; Karachaliou, C.-E.; Kanioura, A.; Tsougeni, K.; Livaniou, E.; Kakabakos, S.E.; Petrou, P.S. Fluorescence enhancement on silver-plated plasma micro-nanostructured 3D polymeric microarray substrates for multiplex mycotoxin detection. Processes 2021, 9, 392. [Google Scholar] [CrossRef]
- López-Puertollano, D.; Agulló, C.; Mercader, J.V.; Abad-Somovilla, A.; Abad-Fuentes, A. Click chemistry-assisted bioconjugates for hapten immunodiagnostics. Bioconjug. Chem. 2020, 31, 956–964. [Google Scholar] [CrossRef]
- López-Puertollano, D.; Mercader, J.V.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Novel haptens and monoclonal antibodies with subnanomolar affinity for a classical analytical target, ochratoxin A. Sci. Rep. 2018, 8, 9761. [Google Scholar] [CrossRef]
- Papasarantos, I.; Klimentzou, P.; Koutrafouri, V.; Anagnostouli, M.; Zikos, C.; Paravatou-Petsotas, M.; Livaniou, E. Solid-phase synthesis of a biotin derivative and its application to the development of anti-biotin antibodies. Appl. Biochem. Biotechnol. 2010, 162, 221–232. [Google Scholar] [CrossRef]
- Sauceda-Friebe, J.C.; Karsunke, X.Y.; Vazac, S.; Biselli, S.; Niessner, R.; Knopp, D. Regenerable immuno-biochip for screening ochratoxin A in green coffee extract using an automated microarray chip reader with chemiluminescence detection. Anal. Chim. Acta 2011, 689, 234–242. [Google Scholar] [CrossRef]
- Cagnasso, I.; Tonachini, G.; Berto, S.; Giacomino, A.; Mandrile, L.; Maranzana, A.; Durbiano, F. Comprehensive study on the degradation of ochratoxin A in water by spectroscopic techniques and DFT calculations. RSC Adv. 2019, 9, 19844–19854. [Google Scholar] [CrossRef]
- Sueck, F.; Hemp, V.; Specht, J.; Torres, O.; Cramer, B.; Humpf, H.U. Occurrence of the ochratoxin A degradation product 2′R-ochratoxin A in coffee and other food: An update. Toxins 2019, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Zapaśnik, A.; Bryła, M.; Waśkiewicz, A.; Ksieniewicz-Woźniak, E.; Podolska, G. Ochratoxin A and 2′R-ochratoxin A in selected foodstuffs and dietary risk assessment. Molecules 2021, 27, 188. [Google Scholar] [CrossRef] [PubMed]
- Bittner, A.; Cramer, B.; Harrer, H.; Humpf, H.U. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A. Mycotoxin Res. 2015, 31, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Duengo, S.; Muhajir, M.I.; Hidayat, A.T.; Musa, W.J.A.; Maharani, R. Epimerisation in peptide synthesis. Molecules 2023, 28, 8017. [Google Scholar] [CrossRef]
- Brenna, E.; Dalla Santa, F.; Gatti, F.G.; Gatti, G.; Tessaro, D. Exploiting the vicinal disubstituent effect on the diastereoselective synthesis of γ and δ lactones. Org. Biomol. Chem. 2019, 17, 813–821. [Google Scholar] [CrossRef]
- Baig, M.A.; Banthorpe, D.V.; Carr, G.; Whittaker, D. Reactions of some cyclic ethers in superacids. J. Chem. Soc. Perkin Trans. 2 1989, 12, 1981–1986. [Google Scholar] [CrossRef]
- Bouisseau, A.; Roland, A.; Reillon, F.; Schneider, R.; Cavelier, F. First synthesis of a stable isotope of Ochratoxin A metabolite for a reliable detoxification monitoring. Org. Lett. 2013, 15, 3888–3890. [Google Scholar] [CrossRef]
- Gillman, I.G.; Clark, T.N.; Manderville, R.A. Oxidation of ochratoxin A by an Fe-porphyrin system: Model for enzymatic activation and DNA cleavage. Chem. Res. Toxicol. 1999, 12, 1066–1076. [Google Scholar] [CrossRef]
- Sanders, M.; Guo, Y.; Iyer, A.; García, Y.R.; Galvita, A.; Heyerick, A.; Deforce, D.; Risseeuw, M.D.; Van Calenbergh, S.; Bracke, M.; et al. An immunogen synthesis strategy for the development of specific anti-deoxynivalenol monoclonal antibodies. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1751–1759. [Google Scholar] [CrossRef]
- Subirós-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Oxyma: An efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry 2009, 15, 9394–9403. [Google Scholar] [CrossRef]
- Sarin, V.K.; Kent, S.B.; Tam, J.P.; Merrifield, R.B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem. 1981, 117, 147–157. [Google Scholar] [CrossRef]
- Vaitukaitis, J.L. Production of antisera with small doses of immunogen: Multiple intradermal injections. Methods Enzymol. 1981, 73 Pt B, 46–52. [Google Scholar] [CrossRef]
Assay Parameter | Value |
---|---|
Assay time 1 | 4 h |
LoD | 0.1 ng/mL in assay buffer 1 ng/mL in white and red wine |
Accuracy | 86.3–115.1% in white and red wine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karachaliou, C.-E.; Zikos, C.; Liolios, C.; Pelecanou, M.; Livaniou, E. Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten. Toxins 2025, 17, 415. https://doi.org/10.3390/toxins17080415
Karachaliou C-E, Zikos C, Liolios C, Pelecanou M, Livaniou E. Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten. Toxins. 2025; 17(8):415. https://doi.org/10.3390/toxins17080415
Chicago/Turabian StyleKarachaliou, Chrysoula-Evangelia, Christos Zikos, Christos Liolios, Maria Pelecanou, and Evangelia Livaniou. 2025. "Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten" Toxins 17, no. 8: 415. https://doi.org/10.3390/toxins17080415
APA StyleKarachaliou, C.-E., Zikos, C., Liolios, C., Pelecanou, M., & Livaniou, E. (2025). Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten. Toxins, 17(8), 415. https://doi.org/10.3390/toxins17080415