Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (628)

Search Parameters:
Keywords = European green deal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 267 KiB  
Article
Exploring Synergies Among European Universities, Government, Industry, and Civil Society on Promotion of Green Policies and Just Transition Facets: Empirical Evidence from Six European Countries
by Georgios A. Deirmentzoglou, Nikolaos Apostolopoulos, Sotiris Apostolopoulos, Eleni E. Anastasopoulou, Lefteris Topaloglou, Konstantinia Nikolaidou, Tsvetomira Penkova, Miguel Corbí Santamaría, Sandra Nieto-González, Dragana Radenkovic Jocic, Marina Stanojević and George Sklias
Sustainability 2025, 17(16), 7517; https://doi.org/10.3390/su17167517 - 20 Aug 2025
Viewed by 217
Abstract
This cross-country study examines how higher education institutions collaborate with government, industry, and civil society to promote the European Green Deal and Just Transition initiatives. Framed within the quadruple helix (QH) model, the research investigates emerging partnerships and the integration of green policies [...] Read more.
This cross-country study examines how higher education institutions collaborate with government, industry, and civil society to promote the European Green Deal and Just Transition initiatives. Framed within the quadruple helix (QH) model, the research investigates emerging partnerships and the integration of green policies across six European countries: Bulgaria, Cyprus, France, Greece, Serbia, and Spain. Special emphasis is placed on the strategic role of universities in advancing the environmental, social, and economic dimensions of sustainability through their initiatives. Drawing on 30 semi-structured interviews with key stakeholders, including local public officials, academics, entrepreneurs, students, and unemployed youth, the study uncovers a growing alignment between academic initiatives and national sustainability agendas. While the extent of policy integration and collaboration varies, the findings underscore the importance of universities in shaping environmental awareness, fostering green innovation, and advancing multi-actor partnerships. The study contributes to the theoretical discourse on the QH model by applying it to the field of green transition policy and offers practical recommendations for enhancing the role of universities in sustainability-oriented governance and education. Full article
21 pages, 1507 KiB  
Article
Assessment of the Impact of Renewable Energy Sources and Clean Coal Technologies on the Stability of Energy Systems in Poland and Sweden
by Aurelia Rybak, Aleksandra Rybak, Jarosław Joostberens and Spas D. Kolev
Energies 2025, 18(16), 4377; https://doi.org/10.3390/en18164377 - 17 Aug 2025
Viewed by 264
Abstract
Implementing the provisions related to energy transition, decarbonization, and, thus, the implementation of the Green Deal in the European Union requires increasing the share of renewable energy sources in the energy generation mix. On the one hand, this approach enables the acquisition of [...] Read more.
Implementing the provisions related to energy transition, decarbonization, and, thus, the implementation of the Green Deal in the European Union requires increasing the share of renewable energy sources in the energy generation mix. On the one hand, this approach enables the acquisition of clean energy, but, on the other hand, it can affect the stability of energy supply to consumers in terms of the time and quantity required. Therefore, in the presented research, the authors proposed and verified the following thesis: Innovative coal technologies can play a temporary but crucial role in building the stability of the energy system by developing an operational stability index for the energy system in Poland. To this end, they determined the energy system stability index (ESSI) level, verified its variability over time, and simulated changes in the index when clean coal technology was used. The proposed method is highly universal and can be applied to any country, and the program written specifically for this research fully automates the ESSI calculation process. It is an excellent tool for facilitating decision making and enables the creation of simulations and scenarios of the impact of potential energy development strategies on its operational stability. The set of indicators developed by the authors characterizes the operational stability of the energy system according to the four-dimensional energy security paradigm. This allows for the consideration of the entire spectrum of operational and structural indicators when analysing the stability of the energy system. The developed ESSI allows for the assessment of the system’s stability in a technical sense, but also its adaptability, power and energy balancing, and, ultimately, its independence. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

24 pages, 4373 KiB  
Review
Upcycling Arundo donax Biomass: A Systematic Review of Applications, Materials, and Environmental Benefits for Greener Construction
by Rosanna Leone, Luisa Lombardo, Federica Marchese Ragona, Tiziana Campisi and Manfredi Saeli
Sustainability 2025, 17(16), 7402; https://doi.org/10.3390/su17167402 - 15 Aug 2025
Viewed by 243
Abstract
This study presents a systematic literature review on the reuse of Arundo donax as a secondary renewable raw material for sustainable construction. Originally classified as a dangerously invasive species by the International Union for Conservation of Nature (IUCN), Arundo donax has recently gained [...] Read more.
This study presents a systematic literature review on the reuse of Arundo donax as a secondary renewable raw material for sustainable construction. Originally classified as a dangerously invasive species by the International Union for Conservation of Nature (IUCN), Arundo donax has recently gained recognition as a non-conventional promising biomass resource, particularly in the context of green innovation and circular economy strategies in light of the European Green Deal and the New European Bauhaus initiatives. This review combines bibliometric mapping and full-text analysis, leading to the selection of 20 peer-reviewed studies, thematically clustered into two main application areas: the development of panels and composites with improved mechanical, thermal, and acoustic performance; and the use of this species in geotechnical or low-tech solutions, such as earth construction and erosion control. While most contributions are recent and technically oriented, this review highlights several critical gaps, such as the lack of standardized testing protocols, the limited number of environmental assessments, and the absence of long-term performance evaluations. Despite these limitations, the considered biomass shows significant potential to support regenerative design strategies for the built environment. Future research should prioritize comparative LCA studies, industrial scalability, and the formulation of guidelines to integrate Arundo donax-based materials into sustainable construction practices. Full article
Show Figures

Figure 1

17 pages, 599 KiB  
Review
Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste
by Ioannis Stavrakakis, Paraschos Melidis, Nektarios Kavroulakis, Michael Goliomytis, Panagiotis Simitzis and Spyridon Ntougias
Microorganisms 2025, 13(8), 1891; https://doi.org/10.3390/microorganisms13081891 - 13 Aug 2025
Viewed by 309
Abstract
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting [...] Read more.
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting the EU’s commitment to fostering circularity. Biotreatment of citrus processing waste, including bioconversion into biomethane, biohydrogen, bioethanol and biodiesel, has been applied to valorize biomass for energy recovery. It can also be composted into a valuable soil conditioners and fertilizers, while raw and fermented citrus residues may exhibit phytoprotective activity. Citrus-derived residues can be converted into materials such as nanoparticles with adsorptive capacity for heavy metals and recalcitrant organic pollutants, and materials with antimicrobial properties against various microbial pathogens, or the potential to remove antibiotic-resistance genes (ARGs) from wastewater. Indeed, citrus residues are an ideal source of industrial biomolecules, like pectin, and the recovery of bioactive compounds with added value in food processing industry. Citrus processing waste can also serve as a source for isolating specialized microbial starter cultures or as a substrate for the growth of bioplastic-producing microorganisms. Solid-state fermentation of citrus residues can enhance the production of hydrolytic enzymes, with applications in food and environmental technology, as well as in animal feed. Certain fermented products also exhibit antioxidant properties. Citrus processing waste may be used as alternative feedstuff that potentially improves the oxidative stability and quality of animal products. Full article
(This article belongs to the Special Issue Earth Systems: Shaped by Microbial Life)
Show Figures

Figure 1

32 pages, 3134 KiB  
Article
Examining Sustainable Mobility Planning and Design for Smart Urban Development in Metropolitan Areas
by Anthony Jnr. Bokolo
Urban Sci. 2025, 9(8), 314; https://doi.org/10.3390/urbansci9080314 - 12 Aug 2025
Viewed by 343
Abstract
Meeting the European Green Deal’s goal of climate neutrality by 2050 calls for a 90 percent decrease in emissions from the transportation sector. Thus, there is need to accelerate the shift to more sustainable mobility for integrated and smarter multimodal and intermodal mobility. [...] Read more.
Meeting the European Green Deal’s goal of climate neutrality by 2050 calls for a 90 percent decrease in emissions from the transportation sector. Thus, there is need to accelerate the shift to more sustainable mobility for integrated and smarter multimodal and intermodal mobility. In European countries, more than 70% of the inhabitants live in metropolitan areas. Achieving low-carbon and more sustainable mobility is important to ensuring sustainable urban infrastructure. However, current mobility planning frameworks do not consider the key factors and strategies that encourage residents to choose sustainable transport modes. Hence, there is a need to identify the most efficient actions that should be employed either in the short or long term to achieve accessible, safe, cost-effective, and green transport systems specifically through the development of sustainable public transportation. Moreover, a paradigm shift is needed to explore the synergy between transportation and its relationship to the city. Accordingly, this article presents an action plan as an approach to assess key strategies needed to foster sustainable and smart mobility planning and design by deploying effective strategies and design solutions that support different green means of transportation for smart urban development. Qualitative data on sustainable mobility planning and design strategies was collected via secondary sources from the literature, and descriptive data analysis was carried out. Findings from this study identify internal and external factors required to promote sustainable multimodal and intermodal mobility based on the city’s transport policies and actions. Implications from this study provide a use case for the technological requirements required for electric mobility planning, design, and system operation for the actualization of sustainable public transportation to improve smart urban development. Full article
Show Figures

Figure 1

24 pages, 1286 KiB  
Article
Sustainable Development as a Transformative Axis of the European Union’s Trade Policy
by Christian Arias and José Varela-Aldás
Sustainability 2025, 17(15), 7151; https://doi.org/10.3390/su17157151 - 7 Aug 2025
Viewed by 745
Abstract
This study analyzes the strategic and institutional frameworks that precede the formulation of trade agreements, with a focus on the European Union’s external action and its link to the Sustainable Development Goals. Based on a documentary research design, this study examines official documents [...] Read more.
This study analyzes the strategic and institutional frameworks that precede the formulation of trade agreements, with a focus on the European Union’s external action and its link to the Sustainable Development Goals. Based on a documentary research design, this study examines official documents from the EU and the United Nations, as well as the academic literature indexed in Scopus and Web of Science. The methodological process involved four phases: systematic search, selection and classification, inductive content coding, and interpretative analysis. Through this process, this study identifies discursive patterns, normative tensions, and policy orientations that reveal the EU’s evolving approach to sustainable trade governance. The findings highlight the existence of a growing institutional alignment between trade policy and sustainable development frameworks, yet also expose persistent gaps in coherence and implementation. This article contributes to the academic debate by offering a critical and structured analytical lens to understand how trade agreements are politically and institutionally prefigured before their negotiation phase. Full article
Show Figures

Figure 1

31 pages, 1698 KiB  
Article
Green Energy Fuelling Stations in Road Transport: Poland in the European and Global Context
by Tomasz Neumann
Energies 2025, 18(15), 4110; https://doi.org/10.3390/en18154110 - 2 Aug 2025
Viewed by 286
Abstract
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, [...] Read more.
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, across EU countries with a focus on Poland. It combines a policy and technology overview with a quantitative scientific analysis, offering a multidimensional perspective on green infrastructure deployment. A Pearson correlation analysis reveals significant links between charging station density and both GDP per capita and the share of renewable energy. The study introduces an original Infrastructure Accessibility Index (IAI) to compare infrastructure availability across EU member states and models Poland’s EV charging station demand up to 2030 under multiple growth scenarios. Furthermore, the article provides a comprehensive overview of biofuels, including first-, second-, and third-generation technologies, and highlights recent advances in hydrogen and renewable electricity integration. Emphasis is placed on life cycle considerations, energy source sustainability, and economic implications. The findings support policy development toward zero-emission mobility and the decarbonisation of transport systems, offering recommendations for infrastructure expansion and energy diversification strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 6141 KiB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 - 1 Aug 2025
Viewed by 265
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
Show Figures

Figure 1

33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 - 1 Aug 2025
Viewed by 511
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

22 pages, 2575 KiB  
Article
European Green Deal Objective: Potential Expansion of Organic Farming Areas
by Aina Muska, Irina Pilvere, Ants-Hannes Viira, Kristaps Muska and Aleksejs Nipers
Agriculture 2025, 15(15), 1633; https://doi.org/10.3390/agriculture15151633 - 28 Jul 2025
Viewed by 571
Abstract
Organic farming represents a paradigm that emphasises a balance between production and environmental sustainability. In the European Union (EU), organic farming has evolved into a global production system with harmonised standards and increasing market demand. Compared with conventional agriculture, it produces greater environmental [...] Read more.
Organic farming represents a paradigm that emphasises a balance between production and environmental sustainability. In the European Union (EU), organic farming has evolved into a global production system with harmonised standards and increasing market demand. Compared with conventional agriculture, it produces greater environmental benefits. The European Green Deal and the Farm to Fork (F2F) strategy highlight the role of organic farming in achieving the EU’s climate and environmental goals, aiming to use at least 25% of the total agricultural area for organic farming by 2030. This research assesses the contributions of Member States towards achieving the objectives of the European Green Deal and F2F strategy and increasing the number of organic farming areas in the future. The research assessed the performance of EU Member States during the period of 2018–2022 and for the projected period up to 2030, using indicators outlined in the Common Agricultural Policy (CAP) Strategic Plan. EU Member States were classified by their historical growth in organic farming areas and their required future performance to meet targets. The results showed that the increase in organic farming areas across the EU is a sign of a shift towards more sustainable farming, although performance varied among Member States. Overall, performance tended to improve in seventeen Member States, remained stable in nine, and declined in only one. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 521
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 348
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 8482 KiB  
Article
Waste Heat Recovery in the Energy-Saving Technology of Stretch Film Production
by Krzysztof Górnicki, Paweł Obstawski and Krzysztof Tomczuk
Energies 2025, 18(15), 3957; https://doi.org/10.3390/en18153957 - 24 Jul 2025
Viewed by 448
Abstract
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first [...] Read more.
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first calender roller). To solidify the liquid raw material, the calendar must be cooled. The low-temperature heat, treated as waste heat, has dissipated in the atmosphere. Technological innovations were proposed: (a) the raw material comprises raw material (primary) and up to 80% recyclate (waste originating mainly from agriculture), (b) the use of low-temperature waste heat (the cooling of FCR in the process of foil stretch production). A heat recovery line based on two compressor heat pumps (HP, hydraulically coupled) was designed. The waste heat (by low-temperature HP) was transformed into high-temperature heat (by high-temperature HP) and used to prepare the raw material. The proposed technological line enables the management of difficult-to-manage post-production waste (i.e., agriculture and other economic sectors). It reduces energy consumption and raw materials from non-renewable sources (CO2 and other greenhouse gas emissions are reducing). It implements a closed-loop economy based on renewable energy sources (according to the European Green Deal). Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 380
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

16 pages, 1856 KiB  
Article
Gas in Transition: An ARDL Analysis of Economic and Fuel Drivers in the European Union
by Olena Pavlova, Kostiantyn Pavlov, Oksana Liashenko, Andrzej Jamróz and Sławomir Kopeć
Energies 2025, 18(14), 3876; https://doi.org/10.3390/en18143876 - 21 Jul 2025
Viewed by 604
Abstract
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed [...] Read more.
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed integration orders, allowing valid ARDL estimation. The results reveal a statistically significant long-run relationship (cointegration) between gas consumption and the energy–economic system. In the short run, the use of liquid fuel exerts a strong positive influence on gas demand, while the effects of GDP materialise only after a two-year lag. Solid fuels show a delayed substitutive impact, reflecting the ongoing transition from coal. An error correction model confirms rapid convergence to equilibrium, with 77% of deviations corrected within one period. Recursive residual and CUSUM tests indicate structural stability over time. These findings highlight the responsiveness of EU gas demand to both economic and policy signals, offering valuable insights for energy modelling and strategic planning under the European Green Deal. Full article
Show Figures

Figure 1

Back to TopTop