Assessment of the Impact of Renewable Energy Sources and Clean Coal Technologies on the Stability of Energy Systems in Poland and Sweden
Abstract
1. Introduction
- (I)
- Estimation of the share of RESs in the energy mix. The SVR machine learning method was used, with automatic parameter optimization, model error analysis, and residual analysis.
- (II)
- Estimation of a set of indicators characterizing the stability of the energy system. Each indicator was determined separately, identifying its impact on the state of the energy system. It was determined whether this impact was positive or negative, which was crucial in the next step.
- (III)
- Construction of a coherent indicator encompassing all the indicators estimated in Step (II) using the Hellwig method. At this stage, work began with normalizing and standardizing the data. Next, the method required determining the weights of the individual indicators calculated in Step (II). Information entropy was used for this purpose. The Hellwig method allowed for the determination of a benchmark, i.e., the best values of the analyzed features, in order to determine the distance of objects (countries) from this benchmark. These values allowed for the determination of the final ESSI index value—the closer to the benchmark, the higher the index value is.
2. Literature Review
- I.
- Availability—related to power resources and generation resources:Generation marginLoad factorOutages ratioActivated balancing energyAccepted balancing energyCoverage of peak demand by RESs and coal
- II.
- Accessibility—real access to power for consumers:Cross-border physical flowPower importPower exportNet positionImport dependencySingle-supplier dependency ratio
- III.
- Affordability—are consumers willing to accept energy prices?Congestion cost ratio
- IV.
- Acceptability—is the method of power distribution and production socially acceptable?Power volatility ratioImport volatility ratio
3. Methods
3.1. SVR Model
3.2. Energy System Stability Index (ESSI)
3.2.1. Balancing Index
3.2.2. Congestion Cost Ratio (CCR)
3.2.3. Load Factor (LF)
3.2.4. Outages Ratio (OR)
3.2.5. Power Volatility Ratio (PVR)
3.2.6. Generation Margin (GM)
3.2.7. Covering Peak Demand with Energy from a Selected Source (PD)
3.2.8. Power Import (PI)
3.2.9. Power Export (PE)
3.2.10. Import Dependency (ID)
3.2.11. Net Position (NP)
3.2.12. Import Volatility Ratio (IVR)
3.2.13. Single-Supplier Dependency Ratio (SSI)
3.3. Hellwig’s Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delbeke, J.; Runge-Metzger, A.; Slingenberg, Y.; Werksman, J. The Paris Agreement. In Towards a Climate-Neutral Europe; Routledge: London, UK, 2019; pp. 24–45. [Google Scholar]
- European Commission. The European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 20 July 2025).
- Gupta, A.; Davis, M.; Kumar, A. An Integrated Assessment Framework for the Decarbonization of the Electricity Generation Sector. Appl. Energy 2021, 288, 116634. [Google Scholar] [CrossRef]
- European Union. Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=CELEX:32009L0028 (accessed on 20 July 2025).
- Schindler, D.; Behr, H.D.; Jung, C. On the Spatiotemporal Variability and Potential of Complementarity of Wind and Solar Resources. Energy Convers. Manag. 2020, 218, 113016. [Google Scholar] [CrossRef]
- Sims, R.E. Renewable Energy: A Response to Climate Change. Sol. Energy 2004, 76, 9–17. [Google Scholar] [CrossRef]
- Mayyas, A.; Chadly, A.; Amer, S.T.; Azar, E. Economics of the Li-Ion Batteries and Reversible Fuel Cells as Energy Storage Systems When Coupled with Dynamic Electricity Pricing Schemes. Energy 2022, 239, 121941. [Google Scholar] [CrossRef]
- Energy Institute. Statistical Review of World Energy 2025; Energy Institute: London, UK, 2025. [Google Scholar]
- Bird, L.; Lew, D.; Milligan, M.; Carlini, E.M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Holttinen, H.; Menemenlis, N.; Orths, A.; et al. Wind and Solar Energy Curtailment: A Review of International Experience. Renew. Sustain. Energy Rev. 2016, 65, 577–586. [Google Scholar] [CrossRef]
- Saleh, A.M.; Vokony, I.; Waseem, M.; Khan, M.A.; Al-Areqi, A. Power System Stability with High Integration of RESs and EVs: Benefits, Challenges, Tools, and Solutions. Energy Rep. 2025, 13, 2637–2663. [Google Scholar] [CrossRef]
- Roszkowska, E. A Comprehensive Exploration of Hellwig’s Taxonomic Measure of Development and Its Modifications—A Systematic Review of Algorithms and Applications. Appl. Sci. 2024, 14, 10029. [Google Scholar] [CrossRef]
- Smith, O.; Cattell, O.; Farcot, E.; O’Dea, R.D.; Hopcraft, K.I. The effect of renewable energy incorporation on power grid stability and resilience. Sci. Adv. 2022, 8, eabj6734. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.; Paudel, R.; Adhikary, B.; Bista, A.; Sharma, S.; Shrestha, A. Transient stability in renewable energy penetrated power systems: A review. In Proceedings of the RESSD 2020 International Conference on Role of Energy for Sustainable Social Development in ‘New Normal’ Era, Kathmandu, Nepal, 28–29 December 2020; pp. 28–29. [Google Scholar]
- Paravantis, J.A.; Kontoulis, N. Energy security and renewable energy: A geopolitical perspective. In Renewable Energy-Resources, Challenges and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Yang, W.; Tu, C.; Xiao, F.; Yu, J. A Method to Improve Both Frequency Stability and Transient Stability of Virtual Synchronous Generators during Grid Faults. Sustainability 2024, 16, 1769. [Google Scholar] [CrossRef]
- Agora Energiewende. System Stability in a Renewables-Based Power System; Agora Energiewende: Berlin, Germany, 2020. [Google Scholar]
- Rahman, T.K.A.; Jasmon, G.B. A New Technique for Voltage Stability Analysis in a Power System. In Proceedings of the 1995 International Conference on Energy Management and Power Delivery EMPD ’95, Singapore, 21–23 November 1995. [Google Scholar]
- Moghavvemi, M.; Omar, F.M. Technique for Contingency Monitoring and Voltage Collapse Prediction. IEE Proc. Gener. Transm. Distrib. 1998, 145, 634–640. [Google Scholar] [CrossRef]
- Valuva, C.; Chinnamuthu, S.; Khurshaid, T.; Kim, K.-C. A Comprehensive Review on the Modeling and Significance of Stability Indices in Power System Instability Problems. Energies 2023, 16, 6718. [Google Scholar] [CrossRef]
- Wang, Y.; Ravishankar, J.; Phung, T. A Study on Critical Clearing Time (CCT) of Micro-Grids under Fault Conditions. Renew. Energy 2016, 95, 381–395. [Google Scholar] [CrossRef]
- Vittal, E.; O’Malley, M.; Keane, A. Rotor Angle Stability with High Penetrations of Wind Generation. IEEE Trans. Power Syst. 2011, 27, 353–362. [Google Scholar] [CrossRef]
- Phadke, A.G.; Thorp, J.S.; Adamiak, M.G. A New Measurement Technique for Tracking Voltage Phasors, Local System Frequency, and Rate of Change of Frequency. IEEE Trans. Power Appar. Syst. 2007, PAS-102, 1025–1038. [Google Scholar] [CrossRef]
- Chamorro, H.R.; Orjuela-Cañón, A.D.; Ganger, D.; Persson, M.; Gonzalez-Longatt, F.; Sood, V.K.; Martinez, W. Nadir Frequency Estimation in Low-Inertia Power Systems. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 918–922. [Google Scholar]
- Chen, G.; Liu, L.; Song, P.; Du, Y. Chaotic Improved PSO-Based Multi-Objective Optimization for Minimization of Power Losses and L Index. Energy Convers. Manag. 2014, 86, 548–560. [Google Scholar] [CrossRef]
- Barquin, J.; Gomez, T.; Pagola, F.L. Estimating the Loading Limit Margin Considering Voltage Collapse Areas. IEEE Trans. Power Syst. 1995, 10, 1952–1962. [Google Scholar] [CrossRef]
- Li, Z.; Sun, H.; Xue, Y.; Li, Z.; Jin, X.; Wang, P. Resilience-Oriented Asynchronous Decentralized Restoration Considering Building and E-Bus Co-Response in Electricity-Transportation Networks. IEEE Trans. Transp. Electrif. 2025. [Google Scholar] [CrossRef]
- Gjorgiev, B.; Stankovski, A.; Wengler, J.; Sencan, S.; Sansavini, G. Availability of the European Power System Assets: What Do We Learn from Data? Reliab. Eng. Syst. Saf. 2025, 258, 110887. [Google Scholar] [CrossRef]
- Hirth, L.; Mühlenpfordt, J.; Bulkeley, M. The ENTSO-E Transparency Platform–A Review of Europe’s Most Ambitious Electricity Data Platform. Appl. Energy 2018, 225, 1054–1067. [Google Scholar] [CrossRef]
- Ilić, M.D.; Bachovchin, K.D.; Lewis, A.S. Costs and Benefits of Transmission Congestion Management. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–7. [Google Scholar]
- Allan, R.N. Reliability Evaluation of Power Systems; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Majchrzak, H.; Kozioł, M. Analysis of Various Options for Balancing Power Systems’ Peak Load. Energies 2021, 14, 513. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Senjyu, T.; Danish, S.M.S.; Sabory, N.R.; Mandal, P. A Recap of Voltage Stability Indices in the Past Three Decades. Energies 2019, 12, 1544. [Google Scholar] [CrossRef]
- Lee, J.C.; Fields, M.J.; Lundquist, J.K. Assessing Variability of Wind Speed: Comparison and Validation of 27 Methodologies. Wind Energy Sci. 2018, 3, 845–868. [Google Scholar] [CrossRef]
- Better Energy. Q&A: Blackout Risks and Grid Investment Needs. Available online: https://betterenergy.org/blog/qa-blackout-risks-underscore-resilience-reliability-investment-needs-for-us-power-grid/ (accessed on 20 July 2025).
- ENTSO-E Transparency Platform Dashboard. Available online: https://transparency.entsoe.eu/dashboard/show (accessed on 20 July 2025).
- Asia Pacific Energy Research Center (APERC). A Quest for Energy Security in the 21st Century; APERC: Tokyo, Japan, 2007. [Google Scholar]
- Lubell, H. Security of Supply and Energy Policy in Western Europe. World Politics 1961, 13, 400–422. [Google Scholar] [CrossRef]
- Deese, D.A. Energy: Economics, Politics, and Security. Int. Secur. 1979, 4, 140. [Google Scholar] [CrossRef]
- IEA Energy Security; Energy Technology Systems Analysis Programme: Paris, France, 2014; Available online: http://www.iea.org/topics/energy-security/ (accessed on 20 July 2025).
- World Energy Council. Energy for Tomorrow’s World—Acting Now; WEC: London, UK, 2000. [Google Scholar]
- Ye, X.; Milanovic, J.V. Composite Index for Comprehensive Assessment of Power System Transient Stability. IEEE Trans. Power Syst. 2021, 37, 2847–2857. [Google Scholar] [CrossRef]
- Jadid, S.; Jalilzadeh, S. Effective Transient Stability Assessment Based on Composite Indices. Int. J. Electr. Power Energy Syst. 2005, 27, 525–532. [Google Scholar]
- Simões, T.A.; Borges, C.L.; Mitra, J. Use of Performance Indices for Contingency Screening. IET Gener. Transm. Distrib. 2020, 14, 3896–3904. [Google Scholar] [CrossRef]
- Roszkowska, E.; Filipowicz-Chomko, M. Measuring Sustainable Development Using an Extended Hellwig Method. Soc. Indic. Res. 2021, 153, 299–322. [Google Scholar] [CrossRef]
- Ho, C.H.; Lin, C.J. Large-Scale Linear Support Vector Regression. J. Mach. Learn. Res. 2012, 13, 3323–3348. [Google Scholar]
- Liu, Y.; Wang, L.; Gu, K. Dynamic Load Identification Using SVR under Interval Uncertainties. Appl. Soft Comput. 2021, 110, 107599. [Google Scholar] [CrossRef]
- Zeng, J.; Qiao, W. Short-Term Solar Power Prediction Using Support Vector Machine. Renew. Energy 2013, 52, 118–127. [Google Scholar] [CrossRef]
- Baumes, L.A.; Serra, J.M.; Serna, P.; Corma, A. SVM for Predictive Modeling in Heterogeneous Catalysis. J. Comb. Chem. 2006, 8, 583–596. [Google Scholar] [CrossRef]
- Parveen, N.; Zaidi, S.; Danish, M. SVR Model for Predicting Sorption Capacity of Lead (II). Perspect. Sci. 2016, 8, 629–631. [Google Scholar] [CrossRef]
- Sen, A.; Srivastava, M. Multiple Regression. In Regression Analysis: Theory, Methods and Applications; Wiley: New York, NY, USA, 1990; pp. 28–59. [Google Scholar]
- Abdelhedi, M.; Jabbar, R.; Said, A.B.; Fetais, N.; Abbes, C. Prediction of Compressive Strength in Carbonate Rocks Using ML. Earth Sci. Inform. 2023, 16, 1473–1487. [Google Scholar] [CrossRef]
- Vivas, E.; Allende-Cid, H.; Salas, R. Review of ML Methods for Power Forecasting. Entropy 2020, 22, 1412. [Google Scholar] [CrossRef]
- Burns, P. Robustness of the Ljung-Box Test and Its Rank Equivalent; SSRN: Rochester, NY, USA, 2002. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Hellwig, Z. Application of the Taxonomic Method. Przegl. Stat. 1968, 4, 307–326. [Google Scholar]
- Jędrzejczak-Gas, J.; Barska, A.; Wyrwa, J. Economic Development of the European Union in the Relation of Sustainable Development—Taxonomic Analysis. Energies 2021, 14, 7488. [Google Scholar] [CrossRef]
- Łogwiniuk, A. Taxonomic Analysis of ICT Access in Polish Schools. Econ. Manag. 2011, 3, 7–23. [Google Scholar]
- Kukuła, K. Zero Unitarization Method; PWN: Warsaw, Poland, 2000. [Google Scholar]
- Busu, C.; Busu, M. Circular Economy Processes at the EU Level Using Shannon Entropy. Processes 2018, 6, 225. [Google Scholar] [CrossRef]
- Karaca, Y.; Moonis, M. Shannon entropy-based complexity quantification of nonlinear stochastic process: Diagnostic and predictive spatiotemporal uncertainty of multiple sclerosis subgroups. In Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems; Academic Press: Cambridge, MA, USA, 2022; pp. 231–245. [Google Scholar]
- Kacprzak, D. Fuzzy SAW Method with Fuzzy Entropy-Based Weights. Stat. Rev. 2018, 65, 25–40. [Google Scholar] [CrossRef]
- Dziechciarz, J. Econometric Methods, Examples, Tasks; WUE Publishing: Wrocław, Poland, 2003. [Google Scholar]
- Kasztelan, A. Evaluation of Green Growth in OECD Using Hellwig Model. In Proceedings of the 29th International-Business-Information-Management-Association, Vienna, Austria, 3–4 May 2017; pp. 3–4. [Google Scholar]
- Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification. J. Mark. Res. 1973, 10, 444–446. [Google Scholar] [CrossRef]
- Du, Y.; Xue, Y.; Wu, W.; Shahidehpour, M.; Shen, X.; Wang, B.; Sun, H. Coordinated planning of integrated electric and heating system considering the optimal reconfiguration of district heating network. IEEE Trans. Power Syst. 2023, 39, 794–808. [Google Scholar] [CrossRef]
Number | Indicator | Poland 2018 | Poland 2024 | Sweden 2018 | Sweden 2024 |
---|---|---|---|---|---|
1 | 0.998 | 0.999 | 0.999 | 1.000 | |
2 | 0.970 | 0.988 | 1.000 | 1.000 | |
3 | 0.995 | 0.999 | 0.999 | 1.000 | |
4 | 0.970 | 0.932 | 1.000 | 1.000 | |
5 | CCR | 0.002 | 0.002 | 0.012 | 0.055 |
6 | LF | 0.760 | 0.868 | 1.005 | 1.160 |
7 | OR | 0.250 | 0.282 | 0.752 | 0.842 |
8 | PVR | ||||
A | Coal | 0.185 | 0.279 | - | - |
B | Solar | 0.000 | 1.493 | 0.000 | 1.801 |
C | Wind | 0.819 | 0.824 | 0.634 | 0.615 |
D | Water | 0.180 | 0.540 | 0.400 | 0.331 |
E | Nuclear | - | - | 0.149 | 0.147 |
9 | PI | 13,359,495.000 | 12,732,722.000 | 12,235,076.000 | 5,602,504.000 |
10 | PE | 7,774,277.000 | 15,675,042.000 | 29,205,513.000 | 39,140,886.000 |
11 | NP | −5,585,218.000 | 2,942,320.000 | 16,970,437.000 | 33,538,382.000 |
12 | ID | 0.078 | 0.030 | 0.089 | 0.042 |
13 | IVR | 1.121 | 1.823 | 2.409 | 3.168 |
14 | LF solar | 0.006 | 0.008 | 0.011 | 0.010 |
15 | LF wind | 0.001 | 0.017 | 0.001 | 0.003 |
16 | GM | ||||
A | total | 0.501 | 1.316 | 0.678 | 1.315 |
B | Solar | −0.991 | −0.446 | 0.009 | 0.011 |
C | Wind | −0.785 | −0.637 | −0.729 | −0.222 |
D | Coal | 0.064 | 0.0004 | - | - |
E | Water | −0.983 | −0.988 | −0.308 | −0.241 |
F | Nuclear | - | - | −0.627 | −0.679 |
17 | SSI | 0.400 | 0.870 | 0.670 | 0.400 |
18 | PDRES | 0.085 | 0.280 | 0.510 | 0.665 |
19 | PDC | 0.840 | 0.530 | - | - |
C | Indicator | Libra |
---|---|---|
1 | 0.037 | |
2 | 0.048 | |
3 | 0.047 | |
4 | 0.048 | |
5 | CCR | 0.058 |
6 | LF | 0.034 |
7 | OR | 0.047 |
8 | PVR solar | 0.048 |
9 | PVR wind | 0.054 |
10 | PVR water | 0.031 |
11 | PI | 0.041 |
12 | PE | 0.035 |
13 | NP | 0.037 |
14 | ID | 0.040 |
15 | IVR | 0.033 |
16 | LF solar | 0.036 |
17 | LF wind | 0.049 |
18 | GM total | 0.047 |
19 | GM solar | 0.047 |
20 | GM wind | 0.036 |
21 | GM water | 0.057 |
22 | SSI | 0.046 |
23 | PDRES | 0.035 |
Object | 2018 | 2024 |
---|---|---|
Poland | 0.11 | 0.31 |
Sweden | 0.40 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, A.; Rybak, A.; Joostberens, J.; Kolev, S.D. Assessment of the Impact of Renewable Energy Sources and Clean Coal Technologies on the Stability of Energy Systems in Poland and Sweden. Energies 2025, 18, 4377. https://doi.org/10.3390/en18164377
Rybak A, Rybak A, Joostberens J, Kolev SD. Assessment of the Impact of Renewable Energy Sources and Clean Coal Technologies on the Stability of Energy Systems in Poland and Sweden. Energies. 2025; 18(16):4377. https://doi.org/10.3390/en18164377
Chicago/Turabian StyleRybak, Aurelia, Aleksandra Rybak, Jarosław Joostberens, and Spas D. Kolev. 2025. "Assessment of the Impact of Renewable Energy Sources and Clean Coal Technologies on the Stability of Energy Systems in Poland and Sweden" Energies 18, no. 16: 4377. https://doi.org/10.3390/en18164377
APA StyleRybak, A., Rybak, A., Joostberens, J., & Kolev, S. D. (2025). Assessment of the Impact of Renewable Energy Sources and Clean Coal Technologies on the Stability of Energy Systems in Poland and Sweden. Energies, 18(16), 4377. https://doi.org/10.3390/en18164377