Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (550)

Search Parameters:
Keywords = Eu ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3299 KiB  
Article
Insights into Complex Compounds of Ampicillin: Potentiometric and Spectroscopic Studies
by Justyna Frymark, Michał Zabiszak, Jakub Grajewski, Bartosz Tylkowski and Renata Jastrzab
Int. J. Mol. Sci. 2025, 26(15), 7605; https://doi.org/10.3390/ijms26157605 (registering DOI) - 6 Aug 2025
Abstract
Metal ions, including Mg(II), Ca(II), Sr(II), Co(II), Ni(II), Cu(II), Nd(III), Eu(III), and Tb(III), were investigated in binary systems alongside ampicillin at molar ratios of 1:1 and 1:2. These investigations were carried out in aqueous solutions, and the formation of complexes was verified through [...] Read more.
Metal ions, including Mg(II), Ca(II), Sr(II), Co(II), Ni(II), Cu(II), Nd(III), Eu(III), and Tb(III), were investigated in binary systems alongside ampicillin at molar ratios of 1:1 and 1:2. These investigations were carried out in aqueous solutions, and the formation of complexes was verified through meticulous computational analysis. Detailed stability constants for the formed complexes and equilibrium constants for the involved reactions were meticulously determined. Furthermore, a comprehensive examination of the impact of ligand concentration on the configuration of the central metal atom’s coordination sphere was conducted. This investigation was complemented by spectroscopic measurements, which effectively confirmed the observed changes in the coordination sphere of the metal ions. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

23 pages, 918 KiB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 (registering DOI) - 5 Aug 2025
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2315 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 (registering DOI) - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 318
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

19 pages, 7965 KiB  
Article
The Influence of Light Rare-Earth Substitution on Electronic and Magnetic Properties of CoFe2O4 Nanoparticles
by Rareș Bortnic, Adam Szatmari, Tiberiu Dragoiu, Radu George Hategan, Roman Atanasov, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Nanomaterials 2025, 15(15), 1152; https://doi.org/10.3390/nano15151152 - 25 Jul 2025
Viewed by 309
Abstract
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), and magnetic measurements. All compounds were found to be single phases adopting a cubic Fd-3m structure. EDS analysis confirmed the presence of Co, Fe, R, and oxygen in all cases. The XPS measurements reveal that the Co 2p core-level spectra are characteristic for Co3+ ions, as indicated by the 2p3/2 and 2p1/2 binding energies and spin–orbit splitting values. The analysis of the Fe 2p core-level spectra reveals the presence of both Fe3+ and Fe2+ ions in the investigated samples. The doped samples exhibit lower saturation magnetizations than the pristine sample. Very good agreement with the saturation magnetization values was obtained if we assumed that the light rare-earth ions occupy octahedral sites and their magnetic moments align parallel to those of the 3d transition metal ions. The ZFC-FC curves indicate that some nanoparticles remain superparamagnetic, while others exhibit ferrimagnetic ordering at room temperature, suggesting the presence of interparticle interactions. The Mr/Ms ratio at room temperature reflects the dominance of magnetostatic interactions. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

23 pages, 4192 KiB  
Article
Efficacy of Various Complexing Agents for Displacing Biologically Important Ligands from Eu(III) and Cm(III) Complexes in Artificial Body Fluids—An In Vitro Decorporation Study
by Sebastian Friedrich, Antoine Barberon, Ahmadabdurahman Shamoun, Björn Drobot, Katharina Müller, Thorsten Stumpf, Jerome Kretzschmar and Astrid Barkleit
Int. J. Mol. Sci. 2025, 26(15), 7112; https://doi.org/10.3390/ijms26157112 - 23 Jul 2025
Cited by 1 | Viewed by 339
Abstract
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids [...] Read more.
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids by various complexing agents, i.e., ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), and spermine-based hydroxypyridonate chelator 3,4,3-LI(1,2-HOPO) (HOPO). Utilizing a modified unified bioaccessibility method (UBM) to simulate gastrointestinal conditions, we conducted concentration-dependent displacement experiments at both room and body temperatures. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) supported by 2H nuclear magnetic resonance (NMR) spectroscopy and thermodynamic modelling revealed the complexation efficacy of the agents under physiological conditions. Results demonstrate that high affinity, governed by complex stability constants and ligand pKa values, is critical to overcome cation and anion competition and leads to effective decorporation. Additionally, there is evidence that cyclic ligands are inferior to linear ligands for this application. HOPO and DTPA exhibited superior displacement efficacy, particularly in the complete gastrointestinal tract simulation. This study highlights the utility of in vitro workflows for evaluating decorporation agents and emphasizes the need for ligands with optimal binding characteristics for enhanced chelation therapies. Full article
(This article belongs to the Special Issue Toxicity of Heavy Metal Compounds)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 378
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 603
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

26 pages, 17130 KiB  
Article
Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau
by Chao Hui, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Haoran Li, Jianfeng Qiao, Tao Tian, Renyi Song, Desheng Dou, Shouye Dong and Xiangyu Lu
Minerals 2025, 15(7), 685; https://doi.org/10.3390/min15070685 - 27 Jun 2025
Viewed by 346
Abstract
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to [...] Read more.
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to address these controversies. LA-ICP-MS zircon U-Pb dating constrains the emplacement age of the MG to 247.1 ± 1.5 Ma. The MG exhibits a peraluminous and low Na2O A2-type granite affinity, characterized by high K2O (4.69–6.80 wt.%) and Zr + Nb + Ce + Y (>350 ppm) concentrations, coupled with high Y/Nb (>1.2) and A/CNK ratios (1.54–2.46). It also displays low FeOT, MnO, TiO2, P2O5, and Mg# values (26–49), alongside pronounced negative Eu anomalies (Eu/Eu* = 0.37–0.49) and moderately fractionated rare earth element (REE) patterns ((La/Yb)N = 3.30–5.11). The MG exhibits enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; such as Sr and Ba), and depletion in high field strength elements (HFSEs; such as Nb, Ta, and Ti), collectively indicating an arc magmatic affinity. Zircon saturation temperatures (TZr = 868–934 °C) and geochemical discriminators suggest that the MG was generated under high-temperature, low-pressure, relatively dry conditions. Combined with positive zircon εHf(t) (1.8 to 4.7) values, it is suggested that the MG was derived from partial melting of juvenile crust. Synthesizing regional data, this study suggests that the Xingshugou MG was formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

13 pages, 2453 KiB  
Article
Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers
by Marco Ricci and Fabio Carniato
Molecules 2025, 30(13), 2689; https://doi.org/10.3390/molecules30132689 - 21 Jun 2025
Viewed by 329
Abstract
Gadolinium-based contrast agents (GBCAs) are the gold standard as MRI probes but are nowadays facing medical limitations and environmental concerns. To address these issues, novel strategies focus on the optimization of Gd(III)-based probes. One promising approach involves incorporating Gd(III) into nanoparticles, particularly coordination [...] Read more.
Gadolinium-based contrast agents (GBCAs) are the gold standard as MRI probes but are nowadays facing medical limitations and environmental concerns. To address these issues, novel strategies focus on the optimization of Gd(III)-based probes. One promising approach involves incorporating Gd(III) into nanoparticles, particularly coordination polymers, which offer improved relaxivity. In this study, we explore the self-assembly of Gd(III) ions with ascorbate ligand, forming extended coordination polymer architectures. Our investigation focuses on understanding the impact of nanoparticles’ growth and aggregation on their relaxivity properties. Notably, the controlled aggregation process leads to a different distribution of the Gd(III) in the surface and in the bulk of the nanoparticles, mainly responsible for their longitudinal relaxivity. Additionally, the introduction of Eu(III) into the network enables the development of a dual-modal probe with paramagnetic and optical features. Full article
(This article belongs to the Special Issue Metal Complexes for Optical and Electronics Applications)
Show Figures

Graphical abstract

24 pages, 2073 KiB  
Article
Global Supply of Secondary Lithium from Lithium-Ion Battery Recycling
by Carolin Kresse, Britta Bookhagen, Laura Buarque Andrade and Max Frenzel
Recycling 2025, 10(4), 122; https://doi.org/10.3390/recycling10040122 - 20 Jun 2025
Viewed by 877
Abstract
The recycling of lithium-ion batteries is picking up rather slowly, although recent rapid growth in consumption and increasing prevalence of battery electric vehicles have increased the quantity of recoverable material from past years of production. Yet, the diversity of different product types i.e., [...] Read more.
The recycling of lithium-ion batteries is picking up rather slowly, although recent rapid growth in consumption and increasing prevalence of battery electric vehicles have increased the quantity of recoverable material from past years of production. Yet, the diversity of different product types i.e., chemistries and product life spans complicates the recovery of raw materials. At present, large-scale industrial recycling of lithium-ion batteries employs (1) pyrometallurgy, with downstream hydrometallurgy for recovery of refined metals/salts; and (2) hydrometallurgy, requiring upstream mechanical shredding of cells and/or modules. Regulatory requirements, especially in Europe, and the high industry concentration along the lithium-ion battery value chain drive recycling efforts forward. The present study aims to quantify the potential contribution of 2nd lithium from recycling to battery production on a global and European scale up to 2050. The overall recycling output of lithium in any given year depends on the interactions between several different factors, including past production, battery lifetime distributions, and recovery rates, all of which are uncertain. The simplest way to propagate input uncertainties to the final results is to use Monte Carlo-type simulations. Calculations were done separately for EVs and portable batteries. The overall supply of lithium from recycling is the sum of the contributions from EVs and portable electronics from both the EU and the RoW in each battery production scenario. Results show a total global supply of recycled lithium below 20% in each scenario until 2050. On the EU level, the contribution of recycled lithium may reach up to 50% due to the high collection and recovery rate targets. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

18 pages, 6412 KiB  
Article
Geochemistry and Zircon U-Pb Chronology of West Kendewula Late Paleozoic A-Type Granites in the East Kunlun Orogenic Belt: Implications for Post-Collision Extension
by Bang-Shi Dong, Wen-Qin Wang, Gen-Hou Wang, Pei-Lie Zhang, Peng-Sheng Li, Zhao-Lei Ding, Ze-Jun He, Pu Zhao, Jing-Qi Zhang and Chao Bo
Appl. Sci. 2025, 15(12), 6661; https://doi.org/10.3390/app15126661 - 13 Jun 2025
Viewed by 498
Abstract
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites [...] Read more.
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites in the western Kendewula area. The granites, dated between 413.7 Ma and 417.7 Ma, indicate emplacement during the Early Devonian period. The granite is characterized by high silicon content (72.45–78.96 wt%), high and alkali content (7.59–9.35 wt%), high 10,000 × Ga/Al values, and low Al2O3 (11.29–13.32 wt%), CaO (0.07–0.31 wt%), and MgO contents (0.16–0.94 wt%). The rocks exhibit enrichment in large-ion lithophile element (LILE) content and high-field-strength element (HFSE) content, in addition to strong losses, showing significant depletion in Ba, Sr, P and Eu. These geochemical characteristics correspond to A2-type granites. The values of Rb/N and Ba/La and the higher zircon saturation temperature (800~900 °C) indicate that the magma source is mainly crustal, with the participation of mantle materials, although limited. In addition, the zircon εHf(t) values (−4.3–3.69) also support this view. In summary, the A2-type granite exposed in the western Kendewula region formed against a post-collisional extensional setting background, suggesting that the Southern Kunlun Terrane (SKT) entered a post-orogenic extensional phase in the evolution stage since the Early Devonian. The upwelling of the asthenospheric mantle of the crust, triggered by crustal detachment and partial melting, likely contributed to the flare-up of A2-type granite during this period. By studying the nature of granite produced during orogeny, the evolution process of the formation of orogenic belts is discussed, and our understanding of orogenic is enhanced. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

18 pages, 6276 KiB  
Article
Geochemical Survey of Stream Sediments and Stream Water for Ion-Adsorption Type Rare Earth Deposits (IAREDs): A Pilot Study in Jiaping IARED, Guangxi, South China
by Junhong Liu, Zhixuan Han, Chunfang Dong, Xiaocheng Wei and Yingnan Chen
Minerals 2025, 15(6), 642; https://doi.org/10.3390/min15060642 - 13 Jun 2025
Viewed by 426
Abstract
Rare earth elements (REEs) are critical mineral resources that play a pivotal role in modern technology and industry. Currently, the global supply of light rare earth elements (LREEs) remains adequate. However, the supply of heavy rare earth elements (HREEs) is associated with substantial [...] Read more.
Rare earth elements (REEs) are critical mineral resources that play a pivotal role in modern technology and industry. Currently, the global supply of light rare earth elements (LREEs) remains adequate. However, the supply of heavy rare earth elements (HREEs) is associated with substantial risks due to their limited availability. Ion-adsorption type rare earth deposits (IAREDs), which represent the predominant source of HREEs, have become a focal point for exploration activities, with a notable increase in global interest in recent years. This study systematically collected stream sediments and stream water samples from the Jiaping IARED in Guangxi, as well as from adjacent granitic and carbonate background areas, to investigate the exploration significance of geochemical surveys for IAREDs. Additionally, mineralized soil layers, non-mineralized soil layers, and bedrock samples from the weathering crust of the Jiaping deposit were analyzed. The results indicate that stream sediments originating from the Jiaping IARED and granite-hosted background regions display substantially elevated REE concentrations relative to those from carbonate-hosted background areas. Moreover, δEu values in stream sediments can serve as an effective indicator for differentiating weathering products derived from granitic and carbonate lithologies. Within the mining area, three coarse-grained fractions of stream sediments (i.e., +20 mesh, 20–60 mesh, and 60–150 mesh) exhibit REE concentrations comparable to those observed in both granite-hosted and carbonate-hosted background regions. However, the HREEs content in the finer -150-mesh stream sediments from Jiaping IARED is markedly higher than that in the two background regions. The (La/Sm)N versus (La/Yb)N ratios of -150-mesh stream sediments in the Jiaping IARED may reflect the mixing processes involving HREE-enriched ore layer, non-mineralized layer, and LREE-enriched ore layer. This observation implies that fine-grained (-150-mesh) stream sediments can partially inherit the REE characteristics of mineralized layers within IAREDs. Scanning electron microscopy (SEM) observations indicate that the enrichment of REEs in fine-grained stream sediments primarily originates from REE-rich accessory minerals derived from parent rocks and mineralized weathering crusts. A comparative analysis reveals that the concentrations of REEs in stream water collected during the rainy season are significantly higher than those collected during the dry season. Moreover, the levels of REEs, especially HREE, in stream water from the Jiaping IARED substantially exceed those in background areas. Collectively, these findings suggest that the geochemical signatures of REEs in rainy season stream water possess diagnostic potential for identifying IAREDs. In conclusion, the integrated application of geochemical surveys of stream water and -150-mesh stream sediments can effectively delineate exploration targets for IAREDs. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

22 pages, 6644 KiB  
Article
Geochronology, Geochemistry, and Tectonic Significance of Early Carboniferous Volcanic Rocks from the Ulanhot Region in the Central Great Xing’an Range
by Yanqing Zang, Tao Qin, Cheng Qian, Chao Zhang, Jingsheng Chen and Wei Sun
Minerals 2025, 15(6), 610; https://doi.org/10.3390/min15060610 - 5 Jun 2025
Viewed by 392
Abstract
The attributes of Late Paleozoic magmatic events are of paramount significance in elucidating the tectonic evolution of the Ulanhot region, which is located in the middle of the Hegenshan–Heihe tectonic belt (HHTB). This study undertook a comprehensive investigation of the petrography, LA–ICP–MS zircon [...] Read more.
The attributes of Late Paleozoic magmatic events are of paramount significance in elucidating the tectonic evolution of the Ulanhot region, which is located in the middle of the Hegenshan–Heihe tectonic belt (HHTB). This study undertook a comprehensive investigation of the petrography, LA–ICP–MS zircon U–Pb dating, whole rock geochemistry, and zircon Hf isotopes of the Early Carboniferous volcanic rocks. The volcanic rocks are predominantly composed of andesite, schist (which protolith is rhyolitic tuff), and rhyolitic tuff. The results of zircon U–Pb dating reveal that the formation ages of volcanic rocks are Early Carboniferous (343–347.4 Ma). Geochemical characteristics indicate that the andesites possess a comparatively elevated concentration of Al2O3, alongside diminished levels of MgO and TiO2, belonging to the high-K calc-alkaline series. The zircon εHf(t) of the andesites range from −13 to 9.4, while the two-stage Hf model ages span from 697 to 1937 Ma. The felsic volcanic rocks have high contents of SiO2 and Na2O + K2O, low contents of MgO and TiO2, and belong to high-K to normal calc-alkaline series. The zircon εHf(t) values of the felsic volcanic rocks range from −12.8 to 10, while the two-stage Hf model ages span from 693 to 2158 Ma. The Early Carboniferous volcanic rocks exhibit a notable enrichment in large ion lithophile elements (LILEs, such as Rb, K, Ba) and light rare earth elements (LREEs), depletion in high-field-strength elements (HFSEs, including Nb, Ta, Ti, Hf), as well as heavy rare earth elements (HREEs). The distribution patterns of the rare earth elements (REEs) demonstrate a conspicuous right-leaning tendency, accompanied by weak negative Eu anomalies. These characteristics indicate that the andesites represent products of multistage mixing and interaction between crustal and mantle materials in a subduction zone setting. The felsic volcanic rocks originated from the partial melting of crustal materials. Early Carboniferous igneous rocks formed in a volcanic arc setting are characteristic of an active continental margin. The identification of Early Carboniferous arc volcanic rocks in the Central Great Xing’an Range suggests that this region was under the subduction background of the oceanic plate subduction before the collision and amalgamation of the Erguna–Xing’an Block and the Songnen Block in the Early Carboniferous. Full article
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Synthesis, Characterization, and Biological Activities of Rare Earth Metal Complexes with Gallic Acid
by Nguyen Thi Hien Lan, Hoang Phu Hiep, Dinh Cong Trinh and Pham Van Khang
Inorganics 2025, 13(6), 180; https://doi.org/10.3390/inorganics13060180 - 28 May 2025
Viewed by 550
Abstract
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 [...] Read more.
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 °C, pH 4–5) and characterized using the Ln3+ elemental content method, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mass spectrometry (MS), and fluorescence spectroscopy. IR spectra confirmed the coordination of rare earth ions (Ln3+) with gallic acid through carboxylate oxygen atoms. TGA revealed the thermal decomposition pathways, while MS identified the molecular ion peaks and fragmentation patterns. All complexes exhibited strong luminescence under UV excitation, with emission peaks corresponding to characteristic transitions of Sm3+, Eu3+, Tb3+, and Dy3+. Biological assays demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, with Dy(Gal)3·4H2O showing the highest efficacy. Additionally, the complexes displayed inhibitory effects on MCF7 breast cancer cells, with Tb(Gal)3·4H2O exhibiting the lowest IC50 value (11.3 µM). These findings suggest that rare earth metal complexes with gallic acid have potential applications in biomedical fields, particularly as antimicrobial and anticancer agents. Full article
Show Figures

Figure 1

Back to TopTop