Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers
Abstract
1. Introduction
2. Results and Discussion
2.1. Nanoparticles Based on Gd(III)-Ascorbate (Gd-Asc)
2.2. Gd(III)/Eu(III)-Ascorbate NPs
3. Materials and Methods
3.1. Synthetic Procedures
3.2. Characterization Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merbach, A.S.; Helm, L.; Tóth, É. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-50367-6. [Google Scholar]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Elst, L.V.; Muller, R.N. Comparative Study of the Physicochemical Properties of Six Clinical Low Molecular Weight Gadolinium Contrast Agents. Contrast Media Mol. Imaging 2006, 1, 128–137. [Google Scholar] [CrossRef]
- Ramalho, J.; Semelka, R.C.; Ramalho, M.; Nunes, R.H.; AlObaidy, M.; Castillo, M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. Am. J. Neuroradiol. 2016, 37, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Krefting, I.; Gorovets, A.; Marzella, L.; Kaiser, J.; Boucher, R.; Rieves, D. Nephrogenic Systemic Fibrosis and Class Labeling of Gadolinium-Based Contrast Agents by the Food and Drug Administration. Radiology 2012, 265, 248–253. [Google Scholar] [CrossRef]
- Malikova, H. Nephrogenic Systemic Fibrosis: The End of the Story? Quant. Imaging Med. Surg. 2019, 9, 1470–1474. [Google Scholar] [CrossRef] [PubMed]
- Layne, K.A.; Wood, D.M.; Dargan, P.I. Gadolinium-Based Contrast Agents—What Is the Evidence for ‘Gadolinium Deposition Disease’ and the Use of Chelation Therapy? Clin. Toxicol. 2020, 58, 151–160. [Google Scholar] [CrossRef]
- Rogowska, J.; Olkowska, E.; Ratajczyk, W.; Wolska, L. Gadolinium as a New Emerging Contaminant of Aquatic Environments. Environ. Toxicol. Chem. 2018, 37, 1523–1534. [Google Scholar] [CrossRef]
- Scarciglia, A.; Papi, C.; Romiti, C.; Leone, A.; Di Gregorio, E.; Ferrauto, G. Gadolinium-Based Contrast Agents (GBCAs) for MRI: A Benefit–Risk Balance Analysis from a Chemical, Biomedical, and Environmental Point of View. Glob. Chall. 2025, 9, 2400269. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environ. Sci. Technol. 2016, 50, 4159–4168. [Google Scholar] [CrossRef]
- Brünjes, R.; Hofmann, T. Anthropogenic Gadolinium in Freshwater and Drinking Water Systems. Water Res. 2020, 182, 115966. [Google Scholar] [CrossRef]
- Perrat, E.; Parant, M.; Py, J.-S.; Rosin, C.; Cossu-Leguille, C. Bioaccumulation of Gadolinium in Freshwater Bivalves. Environ. Sci. Pollut. Res. 2017, 24, 12405–12415. [Google Scholar] [CrossRef]
- Baranyai, Z.; Carniato, F.; Nucera, A.; Horváth, D.; Tei, L.; Platas-Iglesias, C.; Botta, M. Defining the Conditions for the Development of the Emerging Class of Fe III-Based MRI Contrast Agents. Chem. Sci. 2021, 12, 11138–11145. [Google Scholar] [CrossRef]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-Based MRI Contrast Agents: Past, Present, and Future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar] [CrossRef]
- Snyder, E.M.; Asik, D.; Abozeid, S.M.; Burgio, A.; Bateman, G.; Turowski, S.G.; Spernyak, J.A.; Morrow, J.R. A Class of FeIII Macrocyclic Complexes with Alcohol Donor Groups as Effective T1 MRI Contrast Agents. Angew. Chem. Int. Ed. 2020, 59, 2414–2419. [Google Scholar] [CrossRef]
- Botta, M.; Carniato, F.; Esteban-Gómez, D.; Platas-Iglesias, C.; Tei, L. Mn(II) Compounds as an Alternative to Gd-Based MRI Probes. Future Med. Chem. 2019, 11, 1461–1483. [Google Scholar] [CrossRef]
- Botta, M.; Tei, L. Relaxivity Enhancement in Macromolecular and Nanosized GdIII-Based MRI Contrast Agents. Eur. J. Inorg. Chem. 2012, 2012, 1945–1960. [Google Scholar] [CrossRef]
- Leone, L.; Ferrauto, G.; Cossi, M.; Botta, M.; Tei, L. Optimizing the Relaxivity of MRI Probes at High Magnetic Field Strengths With Binuclear GdIII Complexes. Front. Chem. 2018, 6, 158. [Google Scholar] [CrossRef]
- Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in Magnetic Resonance Imaging: From Simple to Dual Contrast Agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar] [CrossRef]
- Fossheim, S.L.; Fahlvik, A.K.; Klaveness, J.; Muller, R.N. Paramagnetic Liposomes as MRI Contrast Agents: Influence of Liposomal Physicochemical Properties on the in Vitro Relaxivity. Magn. Reson. Imaging 1999, 17, 83–89. [Google Scholar] [CrossRef]
- Zhu, J.; Gale, E.M.; Atanasova, I.; Rietz, T.A.; Caravan, P. Hexameric MnII Dendrimer as MRI Contrast Agent. Chem. Eur. J. 2014, 20, 14507–14513. [Google Scholar] [CrossRef]
- Tei, L.; Gugliotta, G.; Gambino, G.; Fekete, M.; Botta, M. Developing High Field MRI Contrast Agents by Tuning the Rotational Dynamics: Bisaqua GdAAZTA-Based Dendrimers. Isr. J. Chem. 2017, 57, 887–895. [Google Scholar] [CrossRef]
- Nakamura, E.; Makino, K.; Okano, T.; Yamamoto, T.; Yokoyama, M. A Polymeric Micelle MRI Contrast Agent with Changeable Relaxivity. J. Control. Release 2006, 114, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. PEG-Based Micelles as Carriers of Contrast Agents for Different Imaging Modalities. Adv. Drug Deliv. Rev. 2002, 54, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M.; Carniato, F.; Tei, L.; Camorali, S.; Ferrauto, G.; Botta, M. Chitosan-Based Nanogels Containing Ln3+ Chelates (Ln=Gd, Dy) as T1 and T2 MRI Probes. Eur. J. Inorg. Chem. 2024, 27, e202300675. [Google Scholar] [CrossRef]
- Carniato, F.; Ricci, M.; Tei, L.; Garello, F.; Furlan, C.; Terreno, E.; Ravera, E.; Parigi, G.; Luchinat, C.; Botta, M. Novel Nanogels Loaded with Mn(II) Chelates as Effective and Biologically Stable MRI Probes. Small 2023, 19, 2302868. [Google Scholar] [CrossRef]
- Carniato, F.; Ricci, M.; Tei, L.; Garello, F.; Terreno, E.; Ravera, E.; Parigi, G.; Luchinat, C.; Botta, M. High Relaxivity with No Coordinated Waters: A Seemingly Paradoxical Behavior of [Gd(DOTP)]5− Embedded in Nanogels. Inorg. Chem. 2022, 61, 5380–5387. [Google Scholar] [CrossRef]
- Rigaux, G.; Gheran, C.V.; Callewaert, M.; Cadiou, C.; Voicu, S.N.; Dinischiotu, A.; Andry, M.C.; Vander Elst, L.; Laurent, S.; Muller, R.N.; et al. Characterization of Gd Loaded Chitosan-TPP Nanohydrogels by a Multi-Technique Approach Combining Dynamic Light Scattering (DLS), Asymetrical Flow-Field-Flow-Fractionation (AF4) and Atomic Force Microscopy (AFM) and Design of Positive Contrast Agents for Molecular Resonance Imaging (MRI). Nanotechnology 2017, 28, 055705. [Google Scholar] [CrossRef]
- Courant, T.; Roullin, V.G.; Cadiou, C.; Callewaert, M.; Andry, M.C.; Portefaix, C.; Hoeffel, C.; de Goltstein, M.C.; Port, M.; Laurent, S.; et al. Hydrogels Incorporating GdDOTA: Towards Highly Efficient Dual T1/T2 MRI Contrast Agents. Angew. Chem. Int. Ed. 2012, 51, 9119–9122. [Google Scholar] [CrossRef]
- Callewaert, M.; Roullin, V.G.; Cadiou, C.; Millart, E.; Gulik, L.V.; Andry, M.C.; Portefaix, C.; Hoeffel, C.; Laurent, S.; Elst, L.V.; et al. Tuning the Composition of Biocompatible Gd Nanohydrogels to Achieve Hypersensitive Dual T1/T2 MRI Contrast Agents. J. Mater. Chem. B 2014, 2, 6397–6405. [Google Scholar] [CrossRef]
- Carniato, F.; Tei, L.; Botta, M. Gd-Based Mesoporous Silica Nanoparticles as MRI Probes. Eur. J. Inorg. Chem. 2018, 2018, 4936–4954. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Davies, G.-L.; Davis, J.J. High Signal Contrast Gating with Biomodified Gd Doped Mesoporous Nanoparticles. Chem. Commun. 2013, 49, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M.; Carniato, F.; Corrado, A.; Ferrauto, G.; Di Gregorio, E.; Giovenzana, G.B.; Botta, M. Comprehensive Relaxometric Analysis of Fe (III) Coordination Polymer Nanoparticles for T 1-MRI: Unravelling the Impact of Coating on Contrast Enhancement. Nanoscale Adv. 2025, 7, 3792–3802. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Yan, C.; Tian, Q.; Lin, J.; Yang, S. BSA-Assisted Synthesis of Ultrasmall Gallic Acid–Fe(III) Coordination Polymer Nanoparticles for Cancer Theranostics. Int. J. Nanomed. 2017, 12, 7207–7223. [Google Scholar] [CrossRef] [PubMed]
- Trovarelli, L.; Mirarchi, A.; Arcuri, C.; Bruscoli, S.; Bereshchenko, O.; Febo, M.; Carniato, F.; Costantino, F. Relaxometric Properties and Biocompatibility of a Novel Nanostructured Fluorinated Gadolinium Metal–Organic Framework. Dalton Trans. 2024, 53, 15937–15945. [Google Scholar] [CrossRef]
- Dey, U.; Chattopadhyay, A. The Potential of Gadolinium Ascorbate Nanoparticles as a Safer Contrast Agent. J. Phys. Chem. B 2023, 127, 346–358. [Google Scholar] [CrossRef]
- Pierre, V.C.; Allen, M.J. Contrast Agents for MRI: Experimental Methods; Royal Society of Chemistry: London, UK, 2017; ISBN 978-1-78801-254-6. [Google Scholar]
- Bao, H.; Bihr, T.; Smith, A.-S.; Taylor, R.N.K. Facile Colloidal Coating of Polystyrene Nanospheres with Tunable Gold Dendritic Patches. Nanoscale 2014, 6, 3954–3966. [Google Scholar] [CrossRef]
- Carniato, F.; Thangavel, K.; Tei, L.; Botta, M. Structure and Dynamics of the Hydration Shells of Citrate-Coated GdF3 Nanoparticles. J. Mater. Chem. B 2013, 1, 2442–2446. [Google Scholar] [CrossRef]
- Bloembergen, N.; Morgan, L.O. Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation. J. Chem. Phys. 1961, 34, 842–850. [Google Scholar] [CrossRef]
- Lipari, G.; Szabo, A. Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity. J. Am. Chem. Soc. 1982, 104, 4546–4559. [Google Scholar] [CrossRef]
- Bloembergen, N. Proton Relaxation Times in Paramagnetic Solutions. J. Chem. Phys. 1957, 27, 572–573. [Google Scholar] [CrossRef]
- Solomon, I. Relaxation Processes in a System of Two Spins. Phys. Rev. 1955, 99, 559–565. [Google Scholar] [CrossRef]
- Freed, J.H. Dynamic Effects of Pair Correlation Functions on Spin Relaxation by Translational Diffusion in Liquids. II. Finite Jumps and Independent T1 Processes. J. Chem. Phys. 1978, 68, 4034–4037. [Google Scholar] [CrossRef]
- Marchesi, S.; Bisio, C.; Lalli, D.; Marchese, L.; Platas-Iglesias, C.; Carniato, F. Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd3+ and Eu3+ Ions in the Saponite Framework. Inorg. Chem. 2021, 60, 10749–10756. [Google Scholar] [CrossRef] [PubMed]
- Kostyukov, A.I.; Snytnikov, V.N.; Snytnikov, V.N.; Rakhmanova, M.I.; Kostyukova, N.Y.; Ishchenko, A.V.; Cherepanova, S.V.; Krylov, A.S.; Aleksandrovsky, A.S. Synthesis, Structure and Photoluminescent Properties of Eu:Gd2O3 Nanophosphor Synthesized by Cw CO2 Laser Vaporization. J. Lumin. 2021, 235, 118050. [Google Scholar] [CrossRef]
- Vicentini, G.; Zinner, L.B.; Zukerman-Schpector, J.; Zinner, K. Luminescence and Structure of Europium Compounds. Coord. Chem. Rev. 2000, 196, 353–382. [Google Scholar] [CrossRef]
- Wegh, R.T.; Meijerinkx, A. First Observation of Visible Luminescence from Trivalent Gadolinium. Acta Phys. Pol. A 1996, 90, 333–337. [Google Scholar] [CrossRef]
- Szpikowska-Sroka, B.; Żądło, M.; Czoik, R.; Żur, L.; Pisarski, W.A. Energy Transfer from Gd3+ to Eu3+ in Silica Xerogels. J. Lumin. 2014, 154, 290–293. [Google Scholar] [CrossRef]
- Reisfeld, R. Spectra and Energy Transfer of Rare Earths in Inorganic Glasses. In Proceedings of the Rare Earths; Springer: Berlin/Heidelberg, Germany, 1973; pp. 53–98. [Google Scholar]
- Tang, S.; Babai, A.; Mudring, A.-V. Europium-Based Ionic Liquids as Luminescent Soft Materials. Angew. Chem. Int. Ed. 2008, 47, 7631–7634. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Liu, H.; Chen, Y. Preparation and Luminescence of Europium(III) Terpyridine Complex-Bridged Polysilsesquioxanes. J. Mater. Chem. 2011, 21, 18462–18466. [Google Scholar] [CrossRef]
- Basu, S.; Hajra, A.; Chattopadhyay, A. An Ambient Complexation Reaction of Zinc Acetate and Ascorbic Acid Leads to a New Form of Nanoscale Particles with Emergent Optical Properties. Nanoscale Adv. 2021, 3, 3298–3305. [Google Scholar] [CrossRef]
Gd-Asc-24 | Gd-Asc-100 | |
---|---|---|
Amount of solid (mg/mL) | 1.0 ± 0.1 | 6.2 ± 0.1 |
Gd(III) concentration (mM) | 1.6 ± 0.1 | 8.2 ± 0.3 |
Hydrodynamic diameter (nm) | 80 ± 7 | 955 ± 103 |
Z-potential at pH 7.4 (mV) | −10 ± 4 | −20 ± 6 |
Gd/Eu-Asc_1 | Gd/Eu-Asc_2 | |
---|---|---|
[Gd(III)]/mM | 1.60 ± 0.10 | 0.75 ± 0.06 |
[Eu(III)]/mM | 0.20 ± 0.03 | 0.38 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, M.; Carniato, F. Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers. Molecules 2025, 30, 2689. https://doi.org/10.3390/molecules30132689
Ricci M, Carniato F. Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers. Molecules. 2025; 30(13):2689. https://doi.org/10.3390/molecules30132689
Chicago/Turabian StyleRicci, Marco, and Fabio Carniato. 2025. "Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers" Molecules 30, no. 13: 2689. https://doi.org/10.3390/molecules30132689
APA StyleRicci, M., & Carniato, F. (2025). Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers. Molecules, 30(13), 2689. https://doi.org/10.3390/molecules30132689