Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = Environmental Management (EM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

53 pages, 1950 KiB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Viewed by 324
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 17098 KiB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Viewed by 243
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

11 pages, 4201 KiB  
Proceeding Paper
Portable, Energy-Autonomous Electrochemical Impedance Spectroscopy (EIS) System Based on Python and Single-Board Computer
by Jhon Alvaro Cuastuza and Carlos Andrés Rosero-Zambrano
Eng. Proc. 2025, 87(1), 89; https://doi.org/10.3390/engproc2025087089 - 9 Jul 2025
Viewed by 241
Abstract
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager [...] Read more.
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager to power all components via a lithium-ion battery and solar panel. A commercial EmStat Pico Module and an amperometric biosensor with acetylcholinesterase (AChE) detect chlorpyrifos. Nine water samples with varying concentrations were tested using a 20 Hz–200 kHz frequency sweep and 15 mV excitation. Bode plots and statistical analyses confirmed statistically significant impedance variation as a function of chlorpyrifos concentration, validating the system as a portable, sensitive, and effective tool for environmental monitoring. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

19 pages, 2709 KiB  
Review
Enabling Sustainable Solar Energy Systems Through Electromagnetic Monitoring of Key Components Across Production, Usage, and Recycling: A Review
by Mahdieh Samimi and Hassan Hosseinlaghab
J. Manuf. Mater. Process. 2025, 9(7), 225; https://doi.org/10.3390/jmmp9070225 - 1 Jul 2025
Viewed by 492
Abstract
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and [...] Read more.
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and performance optimization throughout the solar lifecycle. During production, eddy current testing and impedance spectroscopy improve quality control while reducing waste. In operational phases, RFID-based monitoring enables continuous performance tracking and early fault detection of photovoltaic panels. For recycling, electrodynamic separation efficiently recovers materials, supporting circular economies. The analysis demonstrates the unique advantages of EM techniques in non-contact evaluation, real-time monitoring, and material-specific characterization, addressing critical sustainability challenges in photovoltaic systems. By examining capabilities and limitations, we highlight EM monitoring’s transformative potential for sustainable manufacturing, from production quality assurance to end-of-life material recovery. The frequency-based framework provides manufacturers with physics-guided solutions that enhance efficiency while minimizing environmental impact. This comprehensive assessment establishes EM technologies as vital tools for advancing solar energy systems, offering practical monitoring approaches that align with global sustainability goals. The review identifies current challenges and future opportunities in implementing these techniques, emphasizing their role in facilitating the renewable energy transition through improved resource efficiency and lifecycle management. Full article
Show Figures

Figure 1

39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 320
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy
by Sara Moscatelli, Simone Pesaresi, Martin Wikelski, Federico Maria Tardella, Andrea Catorci and Giacomo Quattrini
Geographies 2025, 5(2), 26; https://doi.org/10.3390/geographies5020026 - 16 Jun 2025
Viewed by 484
Abstract
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for [...] Read more.
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for improving grazing management and animal welfare and ensuring the sustainability of these systems. This study evaluated the movement patterns of sheep grazing on pastures with differing vegetation indices in the Sibillini Mountains. Twenty lactating ewes foraging on two different pastures were monitored from June to October 2023 using GPS collars and accelerometers. GPS tracks were segmented using the Expectation Maximization Binary Clustering (EmBC) method to characterize movement behaviors, such as foraging, traveling, and resting. The NDVI was used to characterize vegetation dynamics, showing notable differences between the two pastures and across the grazing season. Additive mixed models were used to analyze data, accounting for individual variability and temporal autocorrelation in the sample. The results suggest that variations in the NDVI influence grazing behavior, with sheep in areas of lower vegetation density exhibiting increased movement during foraging. These findings provide valuable insights for optimizing grazing practices and promoting sustainable land use. Full article
Show Figures

Graphical abstract

19 pages, 2851 KiB  
Article
Estimating Energy Consumption During Soil Cultivation Using Geophysical Scanning and Machine Learning Methods
by Jasper Tembeck Mbah, Katarzyna Pentoś, Krzysztof S. Pieczarka and Tomasz Wojciechowski
Agriculture 2025, 15(12), 1263; https://doi.org/10.3390/agriculture15121263 - 11 Jun 2025
Viewed by 1080
Abstract
The agricultural sector is one of the most significant sectors of the global economy, yet it is concurrently a highly energy-intensive industry. The issue of optimizing field operations in terms of energy consumption is therefore a key consideration for sustainable agriculture, and the [...] Read more.
The agricultural sector is one of the most significant sectors of the global economy, yet it is concurrently a highly energy-intensive industry. The issue of optimizing field operations in terms of energy consumption is therefore a key consideration for sustainable agriculture, and the solution to this issue leads to both environmental and financial benefits. The aim of this study was to estimate energy consumption during soil cultivation using geophysical scanning data and machine learning (ML) algorithms. This included determining the optimal set of independent variables and the most suitable ML method. Soil parameters such as electrical conductivity, magnetic susceptibility, and soil reflectance in infrared spectra were mapped using data from Geonics EM-38 and Veris 3100 scanners. These data, along with soil texture, served as inputs for predicting fuel consumption and field productivity. Three machine learning algorithms were tested: support vector machines (SVMs), multilayer perceptron (MLP), and radial basis function (RBF) neural networks. Among these, SVM achieved the best performance, showing a MAPE of 4% and a strong correlation (R = 0.97) between predicted and actual productivity values. For fuel consumption, the optimal method was MLP (MAPE = 4% and R = 0.63). The findings demonstrate the viability of geophysical scanning and machine learning for accurately predicting energy use in tillage operations. This approach supports more sustainable agriculture by enabling optimized fuel use and reducing environmental impact through data-driven field management. Further research is needed to obtain training data for different soil parameters and agrotechnical treatments in order to develop more universal models. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 2583 KiB  
Article
Assessment of Carbon Neutrality Performance of Buildings Using EPD-Certified Korean Construction Materials
by Seongjo Wang and Sungho Tae
Appl. Sci. 2025, 15(12), 6533; https://doi.org/10.3390/app15126533 - 10 Jun 2025
Viewed by 426
Abstract
Achieving carbon neutrality in the building sector is essential for addressing the global climate crisis. However, the production stage—which contributes to over 29% of a building’s life cycle carbon emissions (CE)—poses significant challenges for consistent carbon performance assessment due to the diversity of [...] Read more.
Achieving carbon neutrality in the building sector is essential for addressing the global climate crisis. However, the production stage—which contributes to over 29% of a building’s life cycle carbon emissions (CE)—poses significant challenges for consistent carbon performance assessment due to the diversity of building materials and the uniqueness of individual building projects. These factors often lead to inconsistent evaluation results across assessors and the fragmented management of carbon data at the project level. This study proposes the Zero Carbon Building Index (ZCBI), a quantitative assessment method that incorporates embodied carbon from raw material extraction, transportation, and manufacturing. ZCBI enables the evaluation of carbon neutrality performance at the material level and supports the identification of reduction potentials in the production stage. A classification system was developed to evaluate CE during production, creating reference buildings for residential and non-residential purposes. Additionally, a Korean Environmental Product Declaration (EPD) database was established by incorporating CE data from 797 EPD-certified materials. Carbon reduction (CR) and ZCBI values were analyzed by categorizing CE variations across manufacturers into the lowest, average, and highest values. The results showed that CR for apartment complexes ranged from 42.1 to 311 kgCO2e/m2, with ZCBI values between 8.84% and 65.30%, and those for business facilities ranged from 40.9 to 264 kgCO2e/m2, with ZCBI values from 8.59% and 55.43. The proposed ZCBI framework provides a basis for optimizing material selection to reduce emissions and may evolve into a comprehensive carbon neutrality assessment covering the entire construction process. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

23 pages, 4398 KiB  
Article
Modelling of Energy Management Strategies in a PV-Based Renewable Energy Community with Electric Vehicles
by Shoaib Ahmed, Amjad Ali, Sikandar Abdul Qadir, Domenico Ramunno and Antonio D’Angola
World Electr. Veh. J. 2025, 16(6), 302; https://doi.org/10.3390/wevj16060302 - 29 May 2025
Viewed by 547
Abstract
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles [...] Read more.
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles (EVs). EVs offer opportunities for distributed RESs, such as photovoltaic (PV) systems, which can be economically advantageous for RECs whose members own EVs and charge them within the community. This article focuses on the integration of PV systems and the management of energy loads for different participants—consumers and prosumers—along with a small EV charging setup in the REC. A REC consisting of a multi-unit building is examined through a mathematical and numerical model. In the model, hourly PV generation data are obtained from the PVGIS tool, while residential load data are modeled by converting monthly electricity bills, including peak and off-peak details, into hourly profiles. Finally, EV hourly load data are obtained after converting the data of voltage and current data from the charging monitoring portal into power profiles. These data are then used in our mathematical model to evaluate energy fluxes and to calculate self-consumed, exported, and shared energy within the REC based on energy balance criteria. In the model, an energy management system (EMS) is included within the REC to analyze EV charging behavior and optimize it in order to increase self-consumption and shared energy. Following the EMS, it is also suggested that the number of EVs to be charged should be evaluated in light of energy-sharing incentives. Numerical results have been reported for different seasons, showing the possibility for the owners of EVs to charge their vehicles within the community to optimize self-consumption and shared energy. Full article
Show Figures

Figure 1

18 pages, 5771 KiB  
Article
Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm
by Houssam Eddine Ghadbane and Ahmed F. Mohamed
Mathematics 2025, 13(9), 1504; https://doi.org/10.3390/math13091504 - 2 May 2025
Cited by 1 | Viewed by 610
Abstract
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various [...] Read more.
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various energy sources. This method addresses concerns regarding hydrogen utilization and efficiency. The Arithmetic Optimization Algorithm is employed in the proposed energy management system to enhance the strategy of maximizing external energy, leading to decreased hydrogen consumption and increased system efficiency. The performance of the proposed EMS is evaluated using the Federal Test Procedure (FTP-75) to replicate city driving situations and is compared with existing algorithms through a comparison co-simulation. The co-simulation findings indicate that the suggested EMS surpasses current approaches in reducing fuel consumption, potentially decreasing it by 59.28%. The proposed energy management strategy demonstrates an 8.43% improvement in system efficiency. This enhancement may reduce dependence on fossil fuels and mitigate the adverse environmental effects associated with automobile emissions. To assess the feasibility and effectiveness of the proposed EMS, the system is tested within a Processor-in-the-Loop (PIL) co-simulation environment using the C2000 launchxl-f28379d Digital Signal Processing (DSP) board. Full article
(This article belongs to the Special Issue Intelligence Optimization Algorithms and Applications)
Show Figures

Figure 1

24 pages, 6999 KiB  
Article
Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks
by Liwen Yang, Xionghui Zha, Jin Huang, Zhengming Liu, Jiaqi Chen and Chaozhou Mou
Smart Cities 2025, 8(2), 71; https://doi.org/10.3390/smartcities8020071 - 20 Apr 2025
Viewed by 826
Abstract
With urbanization and population growth, waste management has become a pressing issue. Intelligent detection systems using deep learning algorithms to monitor garbage bin overflow in real time have emerged as a key solution. However, these systems often face challenges such as lack of [...] Read more.
With urbanization and population growth, waste management has become a pressing issue. Intelligent detection systems using deep learning algorithms to monitor garbage bin overflow in real time have emerged as a key solution. However, these systems often face challenges such as lack of dataset diversity and high energy consumption due to the extensive use of IoT devices. To address these challenges, we developed the Garbage Bin Status (GBS) dataset, which includes 16,771 images. Among them, 8408 images were generated using the Stable Diffusion model, depicting garbage bins under diverse weather and lighting scenarios. This enriched dataset enhances the generalization of garbage bin overflow detection models across various environmental conditions. We also created an energy-efficient model called HERD-YOLO based on Spiking Neural Networks. HERD-YOLO reduces energy consumption by 89.2% compared to artificial neural networks and outperforms the state-of-the-art EMS-YOLO in both energy efficiency and detection performance. This makes HERD-YOLO a promising solution for sustainable and efficient urban waste management, contributing to a better urban environment. Full article
Show Figures

Figure 1

24 pages, 4171 KiB  
Article
Energy Management of a 1 MW Photovoltaic Power-to-Electricity and Power-to-Gas for Green Hydrogen Storage Station
by Dalila Hidouri, Ines Ben Omrane, Kassmi Khalil and Adnen Cherif
World Electr. Veh. J. 2025, 16(4), 227; https://doi.org/10.3390/wevj16040227 - 11 Apr 2025
Viewed by 838
Abstract
Green hydrogen is increasingly recognized as a sustainable energy vector, offering significant potential for the industrial sector, buildings, and sustainable transport. As countries work to establish infrastructure for hydrogen production, transport, and energy storage, they face several challenges, including high costs, infrastructure complexity, [...] Read more.
Green hydrogen is increasingly recognized as a sustainable energy vector, offering significant potential for the industrial sector, buildings, and sustainable transport. As countries work to establish infrastructure for hydrogen production, transport, and energy storage, they face several challenges, including high costs, infrastructure complexity, security concerns, maintenance requirements, and the need for public acceptance. To explore these challenges and their environmental impact, this study proposes a hybrid sustainable infrastructure that integrates photovoltaic solar energy for the production and storage of green hydrogen, with PEMFC fuel cells and a hybrid Power-to-Electricity (PtE) and Power-to-Gas (PtG) configurations. The proposed system architecture is governed by an innovative energy optimization and management (EMS) algorithm, allowing forecasting, control, and supervision of various PV–hydrogen–Grid transfer scenarios. Additionally, comprehensive daily and seasonal simulations were performed to evaluate power sharing, energy transfer, hydrogen production, and storage capabilities. Dynamic performance assessments were conducted under different conditions of solar radiation, temperature, and load, demonstrating the system’s adaptability. The results indicate an overall efficiency of 62%, with greenhouse gas emissions reduced to 1% and a daily production of hydrogen of around 250 kg equivalent to 8350 KWh/day. Full article
Show Figures

Figure 1

35 pages, 9007 KiB  
Article
AI-Driven Predictive Control for Dynamic Energy Optimization in Flying Cars
by Mohammed Gronfula and Khairy Sayed
Energies 2025, 18(7), 1781; https://doi.org/10.3390/en18071781 - 2 Apr 2025
Cited by 1 | Viewed by 1150
Abstract
This study presents an AI-driven energy management system (EMS) for a hybrid electric flying car, integrating multiple power sources—including solid-state batteries, Li-ion batteries, fuel cells, solar panels, and wind turbines—to optimize power distribution across various flight phases. The proposed EMS dynamically adjusts power [...] Read more.
This study presents an AI-driven energy management system (EMS) for a hybrid electric flying car, integrating multiple power sources—including solid-state batteries, Li-ion batteries, fuel cells, solar panels, and wind turbines—to optimize power distribution across various flight phases. The proposed EMS dynamically adjusts power allocation during takeoff, cruise, landing, and ground operations, ensuring optimal energy utilization while minimizing losses. A MATLAB-based simulation framework is developed to evaluate key performance metrics, including power demand, state of charge (SOC), system efficiency, and energy recovery through regenerative braking. The findings show that by optimizing renewable energy collecting, minimizing battery depletion, and dynamically controlling power sources, AI-based predictive control dramatically improves energy efficiency. While carbon footprint assessment emphasizes the environmental advantages of using renewable energy sources, SOC analysis demonstrates that regenerative braking prolongs battery life and lowers overall energy use. AI-optimized energy distribution also lowers overall operating costs while increasing reliability, according to life-cycle cost assessment (LCA), which assesses the economic sustainability of important components. Sensitivity analysis under sensor noise and environmental disturbances further validates system robustness, demonstrating that efficiency remains above 84% even under adverse conditions. These findings suggest that AI-enhanced hybrid propulsion can significantly improve the sustainability, economic feasibility, and real-world performance of future flying car systems, paving the way for intelligent, low-emission aerial transportation. Full article
(This article belongs to the Special Issue Electric Vehicles for Sustainable Transport and Energy: 2nd Edition)
Show Figures

Figure 1

Back to TopTop