Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks
Abstract
:Highlights
- What are the main findings?
- This paper presents HERD-YOLO, a detection model for garbage bin overflow based on Spiking Neural Network s (SNNs). It not only achieves high accuracy in object detection but also significantly reduces energy consumption compared to traditional approaches based on artificial neural networks (ANNs).
- It also introduces the extensive Garbage Bin Status (GBS) dataset, comprising 16,771 images generated and augmented using techniques such as Stable Diffusion. This diverse dataset significantly enhances the model’s ability to generalize across various environmental conditions, including different weather and lighting scenarios.
- What is the implication of the main findings?
- The energy-efficient design of HERD-YOLO enables its deployment on resourceconstrained IoT devices, thereby making real-time waste management in smart cities more sustainable and cost effective.
- Enhanced with improved robustness and generalization capabilities, the model can accurately and promptly detect overflowing garbage bins under a wide range of realworld conditions. This ultimately facilitates smarter urban waste management and contributes to creating cleaner, healthier urban environments.
Abstract
1. Introduction
2. Related Works
3. Methods
3.1. Garbage Bin Status Dataset
3.1.1. Overview
3.1.2. Base Dataset
3.1.3. Introduction to the SD Model
3.1.4. Data Expansion with the SD Model
- Subject distortion: The garbage bins appear deformed, distorted, or blended with other objects (e.g., flower pots or lockers), making them difficult to recognize.
- Subject absence: The garbage bins in the image are either too small or entirely missing.
- Unrealistic appearance: The images exhibit overly fantastical or cartoonish styles or include phenomena that violate physical laws.
3.1.5. Data Augmentation
3.2. Proposed Garbage Bin Overflow Detection Model
3.2.1. Introduction to SNNs
Algorithm 1 Integrate-and-Fire neuron model simulation algorithm. | ||
1: | Parameters Initialization: | |
2: | ▹ Resting potential (e.g., −70 mV) | |
3: | ▹ Membrane time constant (ms) | |
4: | ▹ Membrane resistance | |
5: | ▹ Threshold potential (e.g., −55 mV) | |
6: | ▹ Reset potential (mV) | |
7: | ▹ Time step (ms) | |
8: | Initialize | ▹ Initial membrane potential |
9: | ||
10: | for each time step t do | |
11: | ▹ Input current from presynaptic neurons or stimuli | |
12: | ||
13: | ||
14: | if then | |
15: | emit_spike() | ▹ Emit a spike |
16: | ▹ Reset the membrane potential | |
17: | end if | |
18: | end for |
3.2.2. Energy Consumption of SNNs and ANNs
3.2.3. HERD-YOLO
4. Results and Discussion
4.1. Model Validation Experiment
4.2. Validation of Data Augmentation Strategies
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catania, V.; Ventura, D. An Approch for Monitoring and Smart Planning of Urban Solid Waste Management Using Smart-M3 Platform. In Proceedings of the 15th Conference of Open Innovations Association FRUCT, St. Petersburg, Russia, 21–25 April 2014; pp. 24–31. [Google Scholar] [CrossRef]
- Abba, S.; Light, C.I. IoT-Based Framework for Smart Waste Monitoring and Control System: A Case Study for Smart Cities. Eng. Proc. 2020, 2, 90. [Google Scholar] [CrossRef]
- Birara, E.; Kassahun, T. Assessment of solid waste management practices in Bahir Dar City, Ethiopia. Pollution 2018, 4, 251–261. [Google Scholar]
- Derhab, N.; Elkhwesky, Z. A systematic and critical review of waste management in micro, small and medium-sized enterprises: Future directions for theory and practice. Environ. Sci. Pollut. Res. 2023, 30, 13920–13944. [Google Scholar] [CrossRef]
- Ram, M.; Bracci, E. Waste Management, Waste Indicators and the Relationship with Sustainable Development Goals (SDGs): A Systematic Literature Review. Sustainability 2024, 16, 8486. [Google Scholar] [CrossRef]
- Lokhande, P.; Pawar, M. A review: Garbage collection management system. Int. J. Res. Eng. Technol. 2016, 5, 79–82. [Google Scholar]
- Fauziah; Bakri, I. Esthetic, integrated, smart and green trash bin for public space: A review. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 012240. [Google Scholar] [CrossRef]
- Joshi, A.; Deshmukh, A.; Auti, A. The Future of Smart Waste Management in Urban Areas: A Holistic Review. In Proceedings of the 2023 International Conference on Next Generation Electronics (NEleX), Vellore, India, 14–16 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Sohag, M.U.; Podder, A.K. Smart garbage management system for a sustainable urban life: An IoT based application. Internet Things 2020, 11, 100255. [Google Scholar] [CrossRef]
- Sosunova, I.; Porras, J. IoT-Enabled Smart Waste Management Systems for Smart Cities: A Systematic Review. IEEE Access 2022, 10, 73326–73363. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Mao, C.; Zhang, J.; Ke, X. Deep Learning-based Multi-task Network for Intelligent Management of Garbage Deposit Points. In Proceedings of the 2021 11th International Conference on Information Technology in Medicine and Education (ITME), Wuyishan, China, 19–21 November 2021; pp. 251–256. [Google Scholar] [CrossRef]
- Wahyutama, A.B.; Hwang, M. YOLO-Based Object Detection for Separate Collection of Recyclables and Capacity Monitoring of Trash Bins. Electronics 2022, 11, 1323. [Google Scholar] [CrossRef]
- Wang, Y.; Muthu, B.; Anbarasan, M. Research on Intelligent Trash Can Garbage Classification Scheme Based on Improved YOLOv3 Target Detection Algorithm. J. Interconnect. Networks 2022, 22, 2144004. [Google Scholar] [CrossRef]
- Sharma, R.K.; Mogha, N.; Saini, M.; Kumar, A. Garbage Bin Status Indicator Based on Multilayer Convolutional Neural Networks. 2023. Available online: https://colab.ws/articles/10.2139%2Fssrn.4489022 (accessed on 20 May 2024).
- Oğuz, A.; Ertuğrul, Ö.F. Determining the fullness of garbage containers by deep learning. Expert Syst. Appl. 2023, 217, 119544. [Google Scholar] [CrossRef]
- Ramson, S.R.J.; Moni, D.J.; Vishnu, S.; Anagnostopoulos, T.; Kirubaraj, A.A.; Fan, X. An IoT-based bin level monitoring system for solid waste management. J. Mater. Cycles Waste Manag. 2021, 23, 516–525. [Google Scholar] [CrossRef]
- Arthur, M.P.; Shoba, S.; Pandey, A. A survey of smart dustbin systems using the IoT and deep learning. Artif. Intell. Rev. 2024, 57, 56. [Google Scholar] [CrossRef]
- Su, H.; Gao, H.; Wang, X.; Fang, X.; Liu, Q.; Huang, G.; Li, X.; Cao, Q. Object Detection in Adverse Weather for Autonomous Vehicles Based on Sensor Fusion and Incremental Learning. IEEE Trans. Instrum. Meas. 2024, 73, 2535510. [Google Scholar] [CrossRef]
- Kumari, S.; Srivastava, M. An Energy Efficient System for IoT Enabled Smart Applications: Research Challenges and Open Issues. In Proceedings of the 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 22–24 November 2023; pp. 570–575. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. arXiv 2020, arXiv:2006.11239. [Google Scholar] [CrossRef]
- Kaur, P.; Khehra, B.S.; Mavi, E.B.S. Data Augmentation for Object Detection: A Review. In Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021; pp. 537–543. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef]
- Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the 2017 24th IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Deng, J.; Guo, J.; Niannan, X.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the CVPR, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Ramalingam, B.; Hayat, A.A.; Elara, M.R.; Félix Gómez, B.; Yi, L.; Pathmakumar, T.; Rayguru, M.M.; Subramanian, S. Deep Learning Based Pavement Inspection Using Self-Reconfigurable Robot. Sensors 2021, 21, 2595. [Google Scholar] [CrossRef]
- Gómez, B.F.; Yi, L.; Ramalingam, B.; Rayguru, M.M.; Hayat, A.A.; Thejus, P.; Leong, K.; Elara, M.R. Deep Learning based Litter Identification and Adaptive Cleaning using Self-reconfigurable Pavement Sweeping Robot. In Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico, 20–24 August 2022; pp. 2301–2306. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems; Morgan-Kaufmann: San Francisco, CA, USA, 1989; Volume 2. [Google Scholar]
- Laguna, R. Clean Dirty Containers in Montevideo. Available online: https://www.kaggle.com/rodrigolaguna/clean-dirty-containers-in-montevideo (accessed on 16 April 2025).
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Kausar, M.A.; Dhaka, V.; Singh, S.K.; de Kunder, M. Web Crawler: A Review. Int. J. Comput. Appl. 2013, 63, 31–36. [Google Scholar] [CrossRef]
- Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data imbalance in classification: Experimental evaluation. Inf. Sci. 2020, 513, 429–441. [Google Scholar] [CrossRef]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-Resolution Image Synthesis With Latent Diffusion Models. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar] [CrossRef]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; Volume 139, pp. 8748–8763. [Google Scholar]
- Karras, T.; Aittala, M.; Aila, T.; Laine, S. Elucidating the Design Space of Diffusion-Based Generative Models. arXiv 2022, arXiv:2206.00364. [Google Scholar] [CrossRef]
- Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; Zhu, J. DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models. arXiv 2023, arXiv:2211.01095. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017, arXiv:1712.04621. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Wu, Y.C.; Feng, J.W. Development and Application of Artificial Neural Network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671. [Google Scholar] [CrossRef]
- Malcolm, K.; Casco-Rodriguez, J. A Comprehensive Review of Spiking Neural Networks: Interpretation, Optimization, Efficiency, and Best Practices. arXiv 2023, arXiv:2303.10780. [Google Scholar] [CrossRef]
- Sai Kumar, M.; Kumar, D.A.; Samundiswary, P. Design and performance analysis of Multiply-Accumulate (MAC) unit. In Proceedings of the 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], Nagercoil, India, 20–21 March 2014; pp. 1084–1089. [Google Scholar] [CrossRef]
- Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 10–14. [Google Scholar] [CrossRef]
- Su, Q.; Chou, Y.; Hu, Y.; Li, J.; Mei, S.; Zhang, Z.; Li, G. Deep directly-trained spiking neural networks for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 6555–6565. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
Category | Prompts | |
---|---|---|
Positive prompts | Basic prompts | outdoors, no humans, masterpiece, best quality, extremely detailed CG, 8k wallpaper, photograph, photorealistic, trash can, trash, garbage, garbage bin, photorealistic |
Environmental prompts | morning, clean community, around corner, corner, around against wall, trash, snow, snowing, haze, dorothy haze, night, dark, water drop, rain, drizzle, sunset, scenery, city, city lights, building, cityscape, probably noon, sunlight | |
Negative prompts | NSFW, worst quality, low quality, normal quality, lowres, normal quality, monochrome grayscale, blurry, bad proportions, extra digit, distorted trash bin |
Image Set | Number of Images | Average NIQE Value |
---|---|---|
Real-world photos | 100 | 3.5001 |
Web-scraped photos | 1000 | 4.4819 |
Stable Diffusion enhanced photos | 1000 | 3.5548 |
Augmentation Methods | Numbers |
---|---|
Horizontal flipping | 1673 |
Horizontal scaling | 1665 |
Brightness adjustment | 1676 |
Total | 5014 |
Model | EMS-YOLO | HERD-YOLO | EMS-YOLO | HERD-YOLO |
---|---|---|---|---|
Architecture | ANN (Baseline) | ANN (Ours) | SNN (Baseline) | SNN (Ours) |
Parameters | 25.27 | 24.76 | 25.27 | 24.76 |
Time step | ∖ | ∖ | 3 | 3 |
mAP@0.5 | 0.950 | 0.954 | 0.948 | 0.953 |
mAP@0.5:0.95 | 0.821 | 0.827 | 0.764 | 0.773 |
Firing rate | ∖ | ∖ | 18.36% | 16.17% |
Energy cost | 1 | 0.7291 | 0.0786 |
Metric | Baseline Training Set | GBS Training Set |
---|---|---|
mAP@0.5 | 0.737 | 0.870 |
mAP@0.5:0.95 | 0.469 | 0.575 |
Recall | 0.777 | 0.872 |
Precision | 0.734 | 0.794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zha, X.; Huang, J.; Liu, Z.; Chen, J.; Mou, C. Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks. Smart Cities 2025, 8, 71. https://doi.org/10.3390/smartcities8020071
Yang L, Zha X, Huang J, Liu Z, Chen J, Mou C. Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks. Smart Cities. 2025; 8(2):71. https://doi.org/10.3390/smartcities8020071
Chicago/Turabian StyleYang, Liwen, Xionghui Zha, Jin Huang, Zhengming Liu, Jiaqi Chen, and Chaozhou Mou. 2025. "Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks" Smart Cities 8, no. 2: 71. https://doi.org/10.3390/smartcities8020071
APA StyleYang, L., Zha, X., Huang, J., Liu, Z., Chen, J., & Mou, C. (2025). Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks. Smart Cities, 8(2), 71. https://doi.org/10.3390/smartcities8020071