Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = Energy saving device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 4243 KB  
Review
AI-Powered Building Ecosystems: A Narrative Mapping Review on the Integration of Digital Twins and LLMs for Proactive Comfort, IEQ, and Energy Management
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Zhanel Baigarayeva, Nurdaulet Izmailov, Tolebi Riza, Abdulaziz Abdukarimov, Miras Mukazhan and Bakdaulet Zhumagulov
Sensors 2025, 25(17), 5265; https://doi.org/10.3390/s25175265 - 24 Aug 2025
Viewed by 518
Abstract
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis [...] Read more.
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis of the complete technological evolution from IoT sensors to generative AI. We uniquely frame this progression within a human-centric architecture that integrates digital twins of both the building (DT-B) and its occupants (DT-H), providing a forward-looking perspective on occupant comfort and energy management. We find that deep reinforcement learning (DRL) agents, often developed within physics-calibrated digital twins, reduce annual HVAC demand by 10–35% while maintaining an operative temperature within ±0.5 °C and CO2 below 800 ppm. These comfort and IAQ targets are consistent with ASHRAE Standard 55 (thermal environmental conditions) and ASHRAE Standard 62.1 (ventilation for acceptable indoor air quality); keeping the operative temperature within ±0.5 °C of the setpoint and indoor CO2 near or below ~800 ppm reflects commonly adopted control tolerances and per-person outdoor air supply objectives. Regarding energy impacts, simulation studies commonly report higher double-digit reductions, whereas real building deployments typically achieve single- to low-double-digit savings; we therefore report simulation and field results separately. Supervised learners, including gradient boosting and various neural networks, achieve 87–97% accuracy for short-term load, comfort, and fault forecasting. Furthermore, unsupervised models successfully mine large-scale telemetry for anomalies and occupancy patterns, enabling adaptive ventilation that can cut sick building complaints by 40%. Despite these gains, deployment is hindered by fragmented datasets, interoperability issues between legacy BAS and modern IoT devices, and the computer energy and privacy–security costs of large models. The key research priorities include (1) open, high-fidelity IEQ benchmarks; (2) energy-aware, on-device learning architectures; (3) privacy-preserving federated frameworks; (4) hybrid, physics-informed models to win operator trust. Addressing these challenges is pivotal for scaling AI from isolated pilots to trustworthy, human-centric building ecosystems. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

29 pages, 9911 KB  
Article
A Novel Integrated System for Coupling an Externally Compressed Air Separation Unit with Liquid Air Energy Storage and Its Performance Analysis
by Yunong Liu, Xiufen He, Zhongqi Zuo, Lifang Zheng and Li Wang
Energies 2025, 18(16), 4430; https://doi.org/10.3390/en18164430 - 20 Aug 2025
Viewed by 437
Abstract
Air separation units (ASUs) are power-intensive devices on the electricity demand side with significant potential for large-scale energy storage. Liquid air energy storage (LAES) is currently a highly promising large-scale energy storage technology. Coupling ASU with LAES equipment can not only reduce the [...] Read more.
Air separation units (ASUs) are power-intensive devices on the electricity demand side with significant potential for large-scale energy storage. Liquid air energy storage (LAES) is currently a highly promising large-scale energy storage technology. Coupling ASU with LAES equipment can not only reduce the initial investment for LAES, but also significantly lower the operating electricity costs of the ASU. This study proposes a novel modular-integrated process for coupling an externally compressed ASU (ECAS) with LAES. The core advantages of this integrated process are as follows: the liquefaction unit’s storage capacity is not constrained by the ASU surplus load capacity and it integrates cold, heat, electricity, and material utilization. Taking an integrated system with 40,000 Nm3/h oxygen production capacity as an example, under liquefaction pressure of 90 bar and discharge expansion pressure of 110 bar, the system achieves its highest electrical round trip efficiency of 55.3%. Its energy storage capacity reaches 31.32 MWh/104 Nm3 O2, exceeding the maximum capacity of existing energy storage systems of the ECAS by 1.7 times. Based on a peak-flat-valley electricity price ratio of 3.4:2:1, an optimal economic performance is attained at 100 bar liquefaction pressure, delivering a 7.21% in cost saving rate compared to conventional ASUs. The liquefaction unit’s payback period is 6.39 years—68.1% shorter than conventional LAES. This study aims to enhance both the energy storage capacity and economic performance of integrated systems combining ECAS with LAES. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

20 pages, 1300 KB  
Article
Techno-Economic Analysis and Power Take-Off Optimization of a Wave Energy Converter Adjacent to a Vertical Seawall
by Senthil Kumar Natarajan and Il Hyoung Cho
Energies 2025, 18(16), 4246; https://doi.org/10.3390/en18164246 - 9 Aug 2025
Viewed by 336
Abstract
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic [...] Read more.
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic analysis and power take-off (PTO) optimization for a vertical cylindrical WEC positioned adjacent to a vertical seawall under irregular wave conditions. The PTO system is connected via frames and hinges, with one end connected to the vertical seawall and the other end to the arm extending to the oscillating WEC. Hydrodynamic parameters were obtained from WAMIT, incorporating the seawall effect via the image method using linear potential theory. This analysis considers variations in WEC diameter, the lengths of frame segments supporting the PTO system, and the PTO damping. First, the geometric configuration is optimized. The results show that placing the WEC closer to the seawall and positioning the hinge joint of the PTO frame at the midpoint of the actuating arm significantly enhances power extraction, due to intensified hydrodynamic interactions near the seawall. A techno-economic analysis is then conducted using two techno-economic metrics, with one representing device cost and the other a newly introduced metric for PTO cost, combined through the weighted sum model (WSM) within a multi-criteria decision analysis (MCDA) framework. Our findings indicate that a smaller-diameter WEC is more cost-effective within a narrow range of PTO damping, while larger WECs, although requiring higher PTO damping capacity, become more cost-effective at higher PTO damping values, due to increased power absorption. Optimal PTO damping values were identified for each diameter of the WEC, demonstrating the trade-off between power output and system cost. These findings provide practical guidance for optimizing nearshore WEC designs to achieve a balance between performance and cost. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

45 pages, 2170 KB  
Article
EnergiQ: A Prescriptive Large Language Model-Driven Intelligent Platform for Interpreting Appliance Energy Consumption Patterns
by Christoforos Papaioannou, Ioannis Tzitzios, Alexios Papaioannou, Asimina Dimara, Christos-Nikolaos Anagnostopoulos and Stelios Krinidis
Sensors 2025, 25(16), 4911; https://doi.org/10.3390/s25164911 - 8 Aug 2025
Viewed by 324
Abstract
The increased usage of smart sensors has introduced both opportunities and complexities in managing residential energy consumption. Despite advancements in sensor data analytics and machine learning (ML), existing energy management systems (EMS) remain limited in interpretability, adaptability, and user engagement. This paper presents [...] Read more.
The increased usage of smart sensors has introduced both opportunities and complexities in managing residential energy consumption. Despite advancements in sensor data analytics and machine learning (ML), existing energy management systems (EMS) remain limited in interpretability, adaptability, and user engagement. This paper presents EnergiQ, an intelligent, end-to-end platform that leverages sensors and Large Language Models (LLMs) to bridge the gap between technical energy analytics and user comprehension. EnergiQ integrates smart plug-based IoT sensing, time-series ML for device profiling and anomaly detection, and an LLM reasoning layer to deliver personalized, natural language feedback. The system employs statistical feature-based XGBoost classifiers for appliance identification and hybrid CNN-LSTM autoencoders for anomaly detection. Through dynamic user feedback loops and instruction-tuned LLMs, EnergiQ generates context-aware, actionable recommendations that enhance energy efficiency and device management. Evaluations demonstrate high appliance classification accuracy (94%) using statistical feature-based XGBoost and effective anomaly detection across varied devices via a CNN-LSTM autoencoder. The LLM layer, instruction-tuned on a domain-specific dataset, achieved over 91% agreement with expert-written energy-saving recommendations in simulated feedback scenarios. By translating complex consumption data into intuitive insights, EnergiQ empowers consumers to engage with energy use more proactively, fostering sustainability and smarter home practices. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 6187 KB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Viewed by 275
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

33 pages, 4686 KB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 392
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

37 pages, 1895 KB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Cited by 1 | Viewed by 1256
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 831 KB  
Article
An Interpretive Structural Modeling Approach for Biomedical Innovation Strategy Models with Sustainability
by Mu-Hsun Tseng, Jian-Yu Lian, An-Shun Liu and Peng-Ting Chen
Sustainability 2025, 17(15), 6740; https://doi.org/10.3390/su17156740 - 24 Jul 2025
Viewed by 388
Abstract
In recent years, the biomedical startup industry has flourished, and yet, it still faces challenges in adapting to changing market demands. Meanwhile, the widespread use of single-use medical devices generates significant waste, posing threats to environmental sustainability. Addressing this issue has become a [...] Read more.
In recent years, the biomedical startup industry has flourished, and yet, it still faces challenges in adapting to changing market demands. Meanwhile, the widespread use of single-use medical devices generates significant waste, posing threats to environmental sustainability. Addressing this issue has become a critical challenge for humanity today. The study aimed to delve into the specific difficulties faced by Taiwanese biomedical entrepreneurs during the innovation and development of medical devices from a sustainability perspective and to explore solutions. This study collected first-hand experiences and insights from Taiwanese biomedical entrepreneurs through a literature review and expert questionnaires. It employed Interpretive Structural Modeling to analyze the development stages and interrelationships of biomedical device startups for building sustainable biomedical innovation. The Clinical Needs Assessment is revealed as the most influential factor, shaping Regulatory Feasibility Evaluation, Clinical Trial Execution, and Market Access Compliance. Our findings provide a structured problem-solving framework to assist biomedical startups in overcoming challenges while incorporating energy-saving and carbon reduction processes to achieve environment sustainability goals. The results of this study show that biomedical innovation practitioners should prioritize integrating sustainability considerations directly into the earliest stage of a Clinical Needs Assessment. Full article
(This article belongs to the Special Issue Advances in Business Model Innovation and Corporate Sustainability)
Show Figures

Figure 1

23 pages, 5432 KB  
Article
Efficient Heating System Management Through IoT Smart Devices
by Álvaro de la Puente-Gil, Alberto González-Martínez, Enrique Rosales-Asensio, Ana-María Diez-Suárez and Jorge-Juan Blanes Peiró
Machines 2025, 13(8), 643; https://doi.org/10.3390/machines13080643 - 23 Jul 2025
Viewed by 367
Abstract
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer [...] Read more.
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer a favorable payback period, positioning the solution as both sustainable and economically viable. Efficient heating management is increasingly critical amid growing energy and environmental concerns. This strategy uses IoT devices to collect real-time data on prices, consumption, and user preferences. Based on this data, the system adjusts heating settings intelligently to balance comfort and cost savings. IoT connectivity manages continuous monitoring and dynamic optimization in response to changing conditions. This study includes a real-case comparison between a conventional central heating system and an IoT-managed electric radiator setup. By applying automation rules linked to energy pricing and user habits, the system enhances energy efficiency, especially in cold climates. The economic evaluation shows that using low-cost IoT devices yields meaningful savings and achieves equipment payback within approximately three years. The results demonstrate the system’s effectiveness, demonstrating that smart, adaptive heating solutions can cut energy expenses without sacrificing comfort, while offering environmental and financial benefits. Full article
Show Figures

Figure 1

20 pages, 8104 KB  
Article
Energy Consumption Analysis of Using Mashrabiya as a Retrofit Solution for a Residential Apartment in Al Ain Square, Al Ain, UAE
by Lindita Bande, Anwar Ahmad, Saada Al Mansoori, Waleed Ahmed, Amna Shibeika, Shama Anbrine and Abdul Rauf
Buildings 2025, 15(14), 2532; https://doi.org/10.3390/buildings15142532 - 18 Jul 2025
Viewed by 376
Abstract
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to [...] Read more.
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to live in mid-rise buildings. One of the central midrise areas is AL Ain Square. This study aims to investigate how an optimized mashrabiya pattern can impact the energy and the Predicted Mean Vote (PMV) in a 3-bedroom apartment, fully oriented to the south, of an expat family. The methodology is as follows: case study selection, Weather analysis, Modeling/Validation of the base case scenario, Optimization of the mashrabiya pattern, Simulation of various scenarios, and Results. Analyzing the selected case study is the initial step of the methodology. This analysis begins with the district, building typology, and the chosen apartment. The weather analysis is relevant for using the mashrabiya (screen device) and the need to improve energy consumption and thermal comfort. The modeling of the base case shall be performed in Rhino Grasshopper. The validation is based on a one-year electricity bill provided by the owner. The optimization of mashrabiya patterns is an innovative process, where various designs are compared and then optimized to select the most efficient pattern. The solutions to the selected scenarios will then yield the results of the optimal scenario. This study is relevant to industry, academia, and local authorities as an innovative approach to retrofitting buildings. Additionally, the research presents a creative vision that suggests optimized mashrabiya patterns can significantly enhance energy savings, with the hexagonal grid configuration demonstrating the highest efficiency. This finding highlights the potential for geometry-driven shading optimization tailored to specific climatic and building conditions. Contrasting earlier mashrabiya studies that assess one static pattern, we couple a geometry-agnostic evolutionary solver with a utility-calibrated EnergyPlus model to test thousands of square, hexagonal, and triangular permutations. This workflow uncovers a previously undocumented non-linear depth perforation interaction. It validates a hexagonal screen that reduces annual cooling energy by 12.3%, establishing a replicable, grid-specific retrofit method for hot-arid apartments. Full article
Show Figures

Figure 1

35 pages, 2895 KB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 1307
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

42 pages, 5715 KB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 629
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

27 pages, 5890 KB  
Article
Variable Structure Depth Controller for Energy Savings in an Underwater Device: Proof of Stability
by João Bravo Pinto, João Falcão Carneiro, Fernando Gomes de Almeida and Nuno A. Cruz
Actuators 2025, 14(7), 340; https://doi.org/10.3390/act14070340 - 8 Jul 2025
Viewed by 263
Abstract
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been [...] Read more.
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been proposed to enhance energy efficiency, including robust and optimal controllers, energy-optimal model predictive control, and disturbance-aware strategies. Recent work introduced a variable structure depth controller for a sensor platform with a variable buoyancy module, resulting in a 22% reduction in energy consumption. This paper extends that work by providing a formal stability proof for the proposed switching controller, ensuring safe and reliable operation in dynamic underwater environments. In contrast to the conventional approach used in controller stability proofs for switched systems—which typically relies on the existence of multiple Lyapunov functions—the method developed in this paper adopts a different strategy. Specifically, the stability proof is based on a novel analysis of the system’s trajectory in the net buoyancy force-versus-depth error plane. The findings were applied to a depth-controlled sensor platform previously developed by the authors, using a well-established system model and considering physical constraints. Despite adopting a conservative approach, the results demonstrate that the control law can be implemented while ensuring formal system stability. Moreover, the study highlights how stability regions are affected by different controller parameter choices and mission requirements, namely, by determining how these aspects affect the bounds of the switching control action. The results provide valuable guidance for selecting the appropriate controller parameters for specific mission scenarios. Full article
(This article belongs to the Special Issue Advanced Underwater Robotics)
Show Figures

Figure 1

16 pages, 695 KB  
Article
Dual Energy Management and an Energy-Saving Model for the Internet of Things Using Solar Energy Harvesting
by Nasser S. Albalawi, Jerzy W. Rozenblit, Pratik Satam and Janet Meiling Roveda
Energies 2025, 18(13), 3555; https://doi.org/10.3390/en18133555 - 5 Jul 2025
Viewed by 366
Abstract
The Internet of Things (IoT) is a fast-growing internet technology and has been incorporated into a wide range of fields. The optimal design of IoT systems has several challenges. The energy consumption of the devices is one of these IoT challenges, particularly for [...] Read more.
The Internet of Things (IoT) is a fast-growing internet technology and has been incorporated into a wide range of fields. The optimal design of IoT systems has several challenges. The energy consumption of the devices is one of these IoT challenges, particularly for open-air IoT applications. The major energy consumption takes place due to inefficient routing, which can be addressed by the energy-efficient clustering method. In addition, the energy-harvesting method can also play a significant role in increasing the overall lifetime of the network. Therefore, in the proposed work, a novel energy-efficient dual energy management and saving model is proposed to manage the energy consumption of IoT networks. This model uniquely integrates energy-efficient clustering with solar energy harvesting (SEH) to address IoT energy challenges. The dual elbow method is utilized for efficient clustering to ensure guaranteed quality of service (QoS), while SEH enhances energy sustainability. The proposed method is implemented for high-density sensor network applications. Simulation results demonstrate a 25% reduction in overall energy consumption and a 20% increase in network lifetime compared to existing methods. Our model will be able to manage energy consumption and increase the IoT network’s overall lifetime by optimizing IoT devices’ energy consumption. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 411 KB  
Article
Improving the Operation of Transmission Systems Based on Static Var Compensator
by Kelly M. Berdugo Sarmiento, Jorge Iván Silva-Ortega, Vladimir Sousa Santos, John E. Candelo-Becerra and Fredy E. Hoyos
Electricity 2025, 6(3), 40; https://doi.org/10.3390/electricity6030040 - 4 Jul 2025
Viewed by 542
Abstract
This study evaluates and compares centralized and distributed reactive power compensation strategies using Static Var Compensators (SVCs) to enhance the performance of a high-voltage transmission system in the Caribbean region of Colombia. The methodology comprises four stages: system characterization, assessment of the uncompensated [...] Read more.
This study evaluates and compares centralized and distributed reactive power compensation strategies using Static Var Compensators (SVCs) to enhance the performance of a high-voltage transmission system in the Caribbean region of Colombia. The methodology comprises four stages: system characterization, assessment of the uncompensated condition under peak demand, definition of four SVC-based scenarios, and steady-state analysis through power flow simulations using DIgSILENT PowerFactory. SVCs were modeled as Thyristor-Controlled Devices (“SVC Type 1”) operating as PV nodes for voltage regulation. The evaluated scenarios include centralized SVCs at the Slack node, node N4, and node N20, as well as a distributed scheme across load nodes N51 to N55. Node selection was guided by power flow analysis, identifying voltage drops below 0.9 pu and overloads above 125%. Technically, the distributed strategy outperformed the centralized alternatives, reducing active power losses by 37.5%, reactive power exchange by 46.1%, and improving node voltages from 0.71 pu to values above 0.92 pu while requiring only 437 MVAr of compensation compared to 600 MVAr in centralized cases. Economically, the distributed configuration achieved the highest annual energy savings (36 GWh), the greatest financial return (USD 5.94 M/year), and the shortest payback period (7.4 years), highlighting its cost-effectiveness. This study’s novelty lies in its system-level comparison of SVC deployment strategies under real operating constraints. The results demonstrate that distributed compensation not only improves technical performance but also provides a financially viable solution for enhancing grid reliability in infrastructure-limited transmission systems. Full article
Show Figures

Figure 1

Back to TopTop