Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (928)

Search Parameters:
Keywords = Electron backscatter diffraction (EBSD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8446 KB  
Article
Influence of Post-Processing Temperatures on Microstructure and Hardness of PBF-LB Ti-6Al-4V
by Trung Van Trinh, Trang Huyen Dang, Anh Hoang Pham, Gia Khanh Pham and Ulrich E. Klotz
Metals 2026, 16(1), 121; https://doi.org/10.3390/met16010121 - 20 Jan 2026
Abstract
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by [...] Read more.
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by aging (350–550 °C). Microstructural evolution was analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness testing. Results showed that the as-built sample exhibited high hardness (365.2 HV0.1) due to fine α′ martensite. Sub-β-transus annealing at 950 °C decomposed α′ into equilibrium α + 1.25% β (329 HV0.1), while super-β-transus annealing at 1010 °C formed coarse lamellar structures of α + 1.5% β, yielding the lowest hardness (319 HV0.1). Quenching from 1010 °C produced dominant α′ martensite with high hardness (371.6 HV0.1). Notably, aging samples quenched from 950 °C increased hardness, peaking at 382.6 HV0.1 at 450 °C due to precipitation, before decreasing to 364.4 HV0.1 at 550 °C due to coarsening. These findings demonstrate that optimizing heat treatment temperatures is critical for controlling phase transformations and tailoring mechanical properties in additively manufactured Ti-6Al-4V components. Full article
Show Figures

Graphical abstract

15 pages, 13171 KB  
Article
Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory
by Xin Li, Chunguo Liu and Yunfeng Bai
Materials 2026, 19(2), 390; https://doi.org/10.3390/ma19020390 - 18 Jan 2026
Viewed by 134
Abstract
Numerical simulations of the forming limit diagram (FLD) for SUS430/Al1050/TA1 laminated metal composites (LMCs) are conducted through the crystal plasticity finite element (CPFE) model integrated with the Marciniak–Kuczyński (M–K) theory. Representative volume elements (RVEs) that reconstruct the measured crystallographic texture, as characterized by [...] Read more.
Numerical simulations of the forming limit diagram (FLD) for SUS430/Al1050/TA1 laminated metal composites (LMCs) are conducted through the crystal plasticity finite element (CPFE) model integrated with the Marciniak–Kuczyński (M–K) theory. Representative volume elements (RVEs) that reconstruct the measured crystallographic texture, as characterized by electron backscatter diffraction (EBSD), are developed. The optimal grain number and mesh density for the RVE are calibrated through convergence analysis by curve-fitting simulated stress–strain responses to the uniaxial tensile data. The established multi-scale model successfully predicts the FLDs of the SUS430/Al1050/TA1 laminated sheet under two stacking sequences, namely, the SUS layer or the TA1 layer in contact with the die. The Nakazima test results validate the effectiveness of the proposed model as an efficient and accurate predictive tool. This study extends the CPFE–MK framework to multi-layer LMCs, overcoming the limitations of conventional single-layer models, which incorporate FCC, BCC, and HCP crystalline structures. Furthermore, the deformation-induced texture evolution under different loading paths is analyzed, establishing the relationship between micro-scale deformation mechanisms and the macro-scale forming behavior. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 10848 KB  
Article
Creep Deformation Estimation of Single Crystal Ni-Based Superalloy by Optimized Geometrically Necessary Dislocation Density Evaluation
by Cristina Motta, Francesco Mastromatteo, Niccolò Baldi, Elisabetta Gariboldi and Luca Bernardini
Metals 2026, 16(1), 107; https://doi.org/10.3390/met16010107 - 17 Jan 2026
Viewed by 127
Abstract
In the framework of high temperature components, the need to evaluate the accumulated creep damage during service life is fundamental to extend the life of components which are currently deemed as scrap as per design intent. Thus, the life assessment of Ni-based superalloys [...] Read more.
In the framework of high temperature components, the need to evaluate the accumulated creep damage during service life is fundamental to extend the life of components which are currently deemed as scrap as per design intent. Thus, the life assessment of Ni-based superalloys could be performed in relation to the accumulated creep deformation which represents the limiting factor for serviced components. Despite the different microstructural changes that occur in service life, this work focuses on the possibility to evaluate the material strain by means of electron backscattered diffraction (EBSD). The key point is the identification of the correlation between geometrically necessary dislocation (GND) density derived from EBSD analyses and the reached creep strain for a single crystal Ni-based superalloy. However, the results of GND density are affected by the settings’ parameters adopted to perform the analysis by the magnification level and the step size. These two parameters have been optimized by analyzing specimens from interrupted creep tests at strain levels between 0.5% and 10%, in the temperature range between 850 °C and 1000 °C. Full article
Show Figures

Figure 1

19 pages, 9647 KB  
Article
Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications
by Zeynep Tutku Ozen, Necip Unlu, Irem Yaren Siyah, Sonia Boczkal, Gorkem Ozcelik and Salim Aslanlar
Materials 2026, 19(2), 377; https://doi.org/10.3390/ma19020377 - 17 Jan 2026
Viewed by 115
Abstract
Recycling of 6xxx aluminum alloys, which are used extensively in the automotive industry, is important for ensuring a carbon-neutral future and the efficient use of resources on Earth. The sustainability of recycling in aluminum alloys is directly proportional to the correct classification of [...] Read more.
Recycling of 6xxx aluminum alloys, which are used extensively in the automotive industry, is important for ensuring a carbon-neutral future and the efficient use of resources on Earth. The sustainability of recycling in aluminum alloys is directly proportional to the correct classification of the scrap to be used. In this study, scrap stream from a novel scrap-sorting technology called MULTI-PICK has been used to validate. The 6063 and 6082 alloys produced with scrap stream, which are commonly used for structural parts in the automotive sector, are analyzed with hydrogen analysis and PREFIL. Cast billets are evaluated considering extrusion. After extrusion, microstructures of the profiles are investigated with scanning electron microscopy (SE), transmission electron microscopy (TE) and electron backscatter diffraction (EBSD). Their mechanical properties and anisotropic behaviors are investigated with tensile testing in different orientations. Additionally, an alternative alloy called 6111 has been studied to replace the target alloys with low critical raw material (CRM) content. According to the findings, highly recycled 6xxx alloys can be used in the automotive industry without losing their existing properties. Furthermore, using alternative feedstock and retrofitted systems can decrease carbon footprint below 4 kgCeq/kgAl. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Graphical abstract

21 pages, 10735 KB  
Article
Effect of Annealing Temperature on the Microstructure, Texture, and Properties of Hot-Rolled Ferritic Stainless Steel with Preferential α-Fiber Orientation
by Rongxun Piao, Jinhui Zhang, Gang Zhao and Junhai Wang
Materials 2026, 19(2), 293; https://doi.org/10.3390/ma19020293 - 11 Jan 2026
Viewed by 356
Abstract
For hot-rolled ferritic stainless steels with preferential α-fiber texture, the strong α-fiber texture is retained after annealing, greatly affecting the texture and plastic formability during the subsequent cold-rolling process. For optimizing the texture of hot-rolled steels toward the favorable γ-fiber type, it is [...] Read more.
For hot-rolled ferritic stainless steels with preferential α-fiber texture, the strong α-fiber texture is retained after annealing, greatly affecting the texture and plastic formability during the subsequent cold-rolling process. For optimizing the texture of hot-rolled steels toward the favorable γ-fiber type, it is essential to control the annealing temperature in the annealing process. To investigate the evolution of the microstructure, texture, and properties of hot-rolled ferritic stainless steel with preferential α-fiber orientation, a series of annealing tests was performed at the lab scale at 800, 840, 880, 910, 930, and 950 °C for 3 min. The microstructure, texture, and grain boundary characteristics of the tested samples were analyzed using optical microscopy (OM) and electron back-scattered diffraction (EBSD). The mechanical properties and plastic strain ratio (r-value) were determined through universal tensile testing. The results show that at temperatures above 840 °C, more than 93% of recrystallization occurs, leading to significant microstructural refinement. The α-fiber texture intensity typically diminishes with rising temperature, whereas the γ-fiber texture initially weakens during the early stages of recrystallization (below 840 °C) and subsequently exhibits a slight increase at higher temperatures. The improved formability of the material is mainly attributed to microstructural refinement and texture refinement, as reflected by the I(γ)/I(α) texture intensity ratio. At an annealing temperature of 930 °C, the I(γ)/I(α) ratio peaks at 0.85, static toughness is maximized, the strain-hardening exponent (n) reaches a high value of 0.28, and the maximum average plastic strain ratio (r¯) is 0.96. This result represents the optimum balance between mechanical properties and formability, making it suitable for subsequent cold-rolling. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

15 pages, 9644 KB  
Article
Microstructure and Texture Evolution of Friction-Stir-Welded AA5052 and AA6061 Aluminum Alloys
by Luqman Hakim Ahmad Shah, Amirali Shamsolhodaei, Scott Walbridge and Adrian Gerlich
Metals 2026, 16(1), 73; https://doi.org/10.3390/met16010073 - 8 Jan 2026
Viewed by 163
Abstract
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across [...] Read more.
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across the weld thickness. Both alloys exhibited progressive grain refinement and increased high-angle grain boundary fractions from the top to the bottom of the stir zone due to combined thermal and strain gradients. The FSWed AA5052 displayed dominant {111}<110> and Y + γ fiber components at the upper and mid regions, whereas AA6061 showed more randomized textures. At the bottom region, both alloys developed rotated Goss {011}<01-1> and weak A ({112}<110>) and α fiber components. These results clarify how alloy strengthening mechanisms—solid-solution versus precipitation hardening—govern texture evolution under different strain-path and heat input conditions. The findings contribute to optimizing process parameters and material selection for structural-scale FSW aluminum joints in industrial applications such as bridge decks, transportation panels, and marine structures. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

21 pages, 10212 KB  
Article
Numerical Investigation of Material Flow and Defect Formation in FRAM-6061 Al Alloy Ring Component Using CEL Simulation
by Yan Ji and Bin Yang
Materials 2026, 19(2), 236; https://doi.org/10.3390/ma19020236 - 7 Jan 2026
Viewed by 108
Abstract
In this study, a novel and efficient solid-state additive manufacturing technique, friction rolling additive manufacturing (FRAM), was employed to fabricate an aluminum alloy ring component, significantly reducing process complexity and mitigating solidification defects typical of melt-based techniques. However, previous studies on FRAM have [...] Read more.
In this study, a novel and efficient solid-state additive manufacturing technique, friction rolling additive manufacturing (FRAM), was employed to fabricate an aluminum alloy ring component, significantly reducing process complexity and mitigating solidification defects typical of melt-based techniques. However, previous studies on FRAM have primarily focused on the microstructural characteristics and mechanical properties of flat components, with limited attention paid to ring-shaped components. Owing to the unique geometric constraints imposed during the forming process, ring components exhibit markedly different microstructural evolution and defect formation mechanisms compared with flat counterparts, and these mechanisms remain insufficiently and systematically understood. To address this knowledge gap, the coupled Eulerian–Lagrangian (CEL) method was introduced for the first time to numerically simulate the temperature distribution and residual stress evolution during the FRAM process of ring-shaped components. In addition, tracer particles were incorporated into the simulations to analyze the material flow behavior, thereby systematically elucidating the forming behavior and microstructural evolution characteristics under geometric constraint conditions. Moreover, scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were employed to systematically characterize the microstructural evolution and defect morphology. The CEL numerical simulations exhibited good consistency with the experimental observations, demonstrating the reliability and accuracy of the simulation method. The results showed that the peak temperatures were primarily concentrated at the advancing side of the rotation tool, and the temperature on the outer diameter side of the ring was consistently higher than that on the inner diameter side. The lack of shoulder friction on the inner side led to an increased heat dissipation rate, thereby resulting in higher residual stress compared to other regions. The particle analysis revealed that, due to ring geometry, material flow varied across radial regions, resulting in distinct microstructures. Further EBSD analysis revealed that, after the rotating tool passed, the material first developed a preferential orientation with {111} planes parallel to the shear direction, and with more layers, dynamic recrystallization produced an equiaxed grain structure. This study provides a theoretical basis and process reference for the application of the FRAM technique in the manufacturing of large ring components. Full article
Show Figures

Figure 1

26 pages, 20340 KB  
Article
Laser Power-Dependent Microstructural Evolution and Fracture Mechanisms in Ti80 Titanium Alloy Welds: A Multi-Scale Investigation
by Chuanbo Zheng, Zhanwen Yang, Guo Yi, Liuyu Zhang, Xiaomeng Zhou and Xinyu Yao
Materials 2026, 19(1), 116; https://doi.org/10.3390/ma19010116 - 29 Dec 2025
Viewed by 198
Abstract
The laser welding of 4 mm thick Ti80 alloy under different powers was analyzed, and the weld morphology, microstructure, and mechanical properties were studied. A simulation model was established based on ABAQUS, and laser welding simulations were conducted using 2520 W and 3000 [...] Read more.
The laser welding of 4 mm thick Ti80 alloy under different powers was analyzed, and the weld morphology, microstructure, and mechanical properties were studied. A simulation model was established based on ABAQUS, and laser welding simulations were conducted using 2520 W and 3000 W laser welding power sources to analyze the temperature field and stress field, which were verified by experiments. The increase in power changed the weld morphology from Y-shaped to X-shaped and affected the number of pores in incomplete and complete penetration. The microstructure in the weld zone presented fine acicular α′ phase. Subsequently, grain boundary distribution maps, Kernel Average Misorientation (KAM) maps, and geometrically necessary dislocation (GND) density maps were generated through electron backscatter diffraction (EBSD) analysis. These comprehensive data visualizations enabled multi-dimensional investigation, establishing and analyzing correlations between laser welding parameters, microstructural evolution, and mechanical properties in Ti80 titanium laser welding. The hardness of the base material was 320 HV to 360 HV, and it increased from 420 HV to 460 HV in the weld zone. At 3000 W, the tensile strength reached 903.12 MPa, and the elongation was 10.40%, indicating ductile fracture. The simulation results accurately predicted the maximum longitudinal residual stress in the weld zone, with an error of 1.65% to 1.81% of the measured value. Full article
Show Figures

Graphical abstract

12 pages, 4829 KB  
Article
Improving Printability and Strength–Ductility Synergy in Additively Manufactured IN738 Alloy via Co Addition
by Sujun Lu, Yubi Gao, Huanhuan Wang, Jiayu Xu, Junling Duan and Yutian Ding
Metals 2026, 16(1), 27; https://doi.org/10.3390/met16010027 - 26 Dec 2025
Viewed by 157
Abstract
An IN738 alloy with a high Al and Ti contents induces a significant cracking tendency during laser powder bed fusion (LPBF) processing, leading to a mismatch between printability and mechanical properties. Modification of alloy compositions is an effective strategy to enhance the printability [...] Read more.
An IN738 alloy with a high Al and Ti contents induces a significant cracking tendency during laser powder bed fusion (LPBF) processing, leading to a mismatch between printability and mechanical properties. Modification of alloy compositions is an effective strategy to enhance the printability and mechanical properties of nickel-based superalloys via LPBF. In this study, the effects of adding 5 wt.%Co on the printability and mechanical properties of LPBF-fabricated IN738 were investigated by using three-dimensional high-resolution micro-computed tomography (micro-CT), electron backscatter diffraction (EBSD), and quasi-static room-temperature tensile tests. The results show that adding 5 wt.%Co can significantly reduce the defect rate and defect size of the LPBF-fabricated IN738 alloy, remarkably improve alloy densification, and optimize printability. Meanwhile, compared with the LPBF-fabricated IN738 alloy, the 5 wt.%Co-IN738 alloy exhibits an excellent balance of strength and ductility in horizontal and vertical directions, both LPBF-fabricated and heat-treated. These results are anticipated to offer valuable guidance for the development of LPBF-fabricated Ni-based superalloys that achieve a favorable balance between printability and mechanical properties. Full article
Show Figures

Figure 1

14 pages, 4032 KB  
Article
Microstructure Evolution and Property Enhancement of Hot-Rolled 5083 Aluminum Alloy During Homogenization Annealing
by Shanquan Deng, Wenyu Yang, Junwei Zhu, Nannan Wang and Youbin Wang
Crystals 2026, 16(1), 5; https://doi.org/10.3390/cryst16010005 - 22 Dec 2025
Viewed by 218
Abstract
The 5083 aluminum alloy is widely used in marine engineering due to its excellent corrosion resistance and weldability. To address microstructural defects that may arise during hot rolling, homogenization annealing is employed as a critical post-processing step to enhance mechanical and processing properties. [...] Read more.
The 5083 aluminum alloy is widely used in marine engineering due to its excellent corrosion resistance and weldability. To address microstructural defects that may arise during hot rolling, homogenization annealing is employed as a critical post-processing step to enhance mechanical and processing properties. This study systematically investigates the effects of different homogenization annealing temperatures (held for 1 h) on the microstructure, corrosion behavior, and mechanical properties of hot-rolled 5083 aluminum alloy. The microstructural characteristics, phase composition, and corrosion morphology were characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), polarized light microscopy (POM), electron backscatter diffraction (EBSD), and electrochemical tests. Microhardness was measured using a Vickers hardness tester. The results indicate that the annealing temperature markedly influences the type, morphology, and distribution of precipitated secondary phases and significantly affects grain refinement. The alloy treated at 350 °C (5083–350 °C) exhibited optimal corrosion resistance, as evidenced by electrochemical impedance spectroscopy showing the highest charge transfer resistance and surface morphology analysis revealing minimal and shallow corrosion pits. Simultaneously, this treatment achieved significant stress relief and secondary phase precipitation strengthening, resulting in a peak microhardness of 78.8 HV. The study demonstrates that 350 °C homogenization annealing synergistically improves both the corrosion resistance and mechanical properties of hot-rolled 5083 aluminum alloy, providing valuable insights for optimizing its heat treatment process. Full article
(This article belongs to the Special Issue Innovative Insights into Deformation and Failure of Metallic Alloys)
Show Figures

Figure 1

13 pages, 9752 KB  
Article
Mechanism Governing the Effect of Roller Straightening of a Pure Magnesium Strip on the Tensile Stress–Strain Curve Shape
by Stanislav O. Rogachev, Viacheslav E. Bazhenov, Eugene S. Statnik, Vladimir A. Andreev, Anatoly E. Shelest and Nikita A. Ershov
J. Manuf. Mater. Process. 2025, 9(12), 413; https://doi.org/10.3390/jmmp9120413 - 17 Dec 2025
Viewed by 356
Abstract
A roller straightening process of a pure magnesium strip, accompanied by alternating elastic-plastic deformation, was performed through one and three passes, where one pass corresponded to 19 bending events. It was discovered that roller straightening leads to the appearance of a kink in [...] Read more.
A roller straightening process of a pure magnesium strip, accompanied by alternating elastic-plastic deformation, was performed through one and three passes, where one pass corresponded to 19 bending events. It was discovered that roller straightening leads to the appearance of a kink in the specimen’s tensile stress–strain curve as well as an almost twofold decrease in the yield stress. This effect was observed only on longitudinal specimens. The conducted EBSD analysis confirmed the previously stated hypothesis about the influence of twinning on the change in the shape of the roller-straightened magnesium alloy specimen’s stress–strain curve. The tensile twins {101¯2} formed during roller straightening facilitate the detwinning process during subsequent tensile deformation, which, along with the basal sliding, is the reason for the decrease in yield stress. The scaling factor of the tensile specimens was investigated. Full article
Show Figures

Figure 1

22 pages, 22239 KB  
Article
Computational Modeling of Multiple-Phase Transformations in API X70 and X80 Steels
by Ry Karl, Jonas Valloton, Chad Cathcart, Tihe Zhou, Fateh Fazeli, J. Barry Wiskel and Hani Henein
Metals 2025, 15(12), 1379; https://doi.org/10.3390/met15121379 - 16 Dec 2025
Viewed by 337
Abstract
Continuous cooling transformation (CCT) diagrams for two thermo-mechanically controlled processed (TMCP) steels were produced using a modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, which accounted for the simultaneous transformation of multiple phases under non-isothermal conditions. A basin hopping algorithm was used to sequentially optimize the model [...] Read more.
Continuous cooling transformation (CCT) diagrams for two thermo-mechanically controlled processed (TMCP) steels were produced using a modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, which accounted for the simultaneous transformation of multiple phases under non-isothermal conditions. A basin hopping algorithm was used to sequentially optimize the model parameters for each phase. Samples were prepared using a dilatometer which replicated the deformation and cooling rates experienced during TMCP. Scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) were used to identify and quantify the phases present in each steel. CCT diagrams illustrating the start and stop temperatures of each phase were constructed for both steel samples. Through inclusion of the stop temperatures of each phase transformation, the utility of the CCT diagrams were expanded. This was done by introducing the possibility of applying the Scheil additive principle with respect to the beginning and end of each phase transformation. With this modification, the CCT diagrams are now more appropriately suited to predict the phase transformations that occur on the ROT, where non-continuous cooling occurs. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

18 pages, 10785 KB  
Article
Microstructure, Texture, and Mechanical Properties of 6N Ultra-High-Purity Copper Processed by Cryorolling for Advanced Sputtering Targets
by Wenpeng Yuan, Shifeng Liu, Hang Zhao, Linyu Lu, Qiuyan Xie and Xinggui Lei
Metals 2025, 15(12), 1369; https://doi.org/10.3390/met15121369 - 12 Dec 2025
Viewed by 346
Abstract
The performance of ultra-high-purity copper sputtering targets is critical for nanoscale integrated circuit fabrication, yet challenges such as dynamic recovery and recrystallization hinder grain refinement and texture control. In the present work, cryogenic deformation was introduced to address these issues. Through electron backscatter [...] Read more.
The performance of ultra-high-purity copper sputtering targets is critical for nanoscale integrated circuit fabrication, yet challenges such as dynamic recovery and recrystallization hinder grain refinement and texture control. In the present work, cryogenic deformation was introduced to address these issues. Through electron backscatter diffraction (EBSD), X-ray diffraction (XRD), and mechanical testing, the microstructure, texture, and mechanical properties of 6N ultra-high-purity copper processed by room-temperature rolling (RTR) and cryorolling (CR) were comparatively investigated. Results reveal that RTR deformation is dominated by slip mechanisms; the RTR sample with 90% reduction exhibits obvious dynamic recrystallization (DRX) and forms a bimodal structure dominated by Copper ({112}⟨111⟩) and S ({123}⟨634⟩) textures. In contrast, CR suppresses thermal activation processes, enabling deformation mechanisms suggestive of twinning activity, leading to ultrafine fibrous structures, while shifting texture components toward Brass ({110}⟨112⟩) and S. Compared to RTR-processed samples, CR-processed samples possess superior mechanical performance. The CR sample with 90% reduction exhibits: a microhardness of 164.60 HV, a yield strength of 385.61 MPa, and a tensile strength of 648.02 MPa, which are, respectively, 33.2%, 91.7%, and 84.6% higher than those of RTR counterparts. Williamson–Hall analysis confirms that the CR sample with 90% reduction achieves finer substructure sizes (~133 nm) and higher stored energy (~22 J·mol−1) by suppressing dynamic recovery, providing a robust driving force for subsequent annealing. This work demonstrates that cryorolling optimizes microstructure and texture through twin-dislocation synergy, providing a fundamental basis for the development of advanced sputtering targets. Full article
Show Figures

Figure 1

17 pages, 10396 KB  
Article
Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity
by Emanuele Ghio, Lorenzo Curti, Daniele Carosi, Alessandro Morri and Emanuela Cerri
Metals 2025, 15(12), 1364; https://doi.org/10.3390/met15121364 - 11 Dec 2025
Viewed by 439
Abstract
This study investigates the microstructural evolution, porosity characteristics, and mechanical behavior of LPBF-manufactured Scalmalloy®, which were investigated in the as-built conditions and after long-term exposure to direct aging of 275, 325, and 400 °C. Optical microscopy, and electron backscatter diffraction (EBSD) [...] Read more.
This study investigates the microstructural evolution, porosity characteristics, and mechanical behavior of LPBF-manufactured Scalmalloy®, which were investigated in the as-built conditions and after long-term exposure to direct aging of 275, 325, and 400 °C. Optical microscopy, and electron backscatter diffraction (EBSD) analyses were employed to examine the grain morphology, pore distribution, and defect characteristics. In the as-built state, the microstructure displayed the typical fish-scale melt pool morphology with columnar grains in the melt pool centers and fine equiaxed grains along their boundaries, combined with a small number of gas pores and lack-of-fusion defects. After direct aging, coarsening of grains was revealed, accompanied by partial spheroidization of pores, though the global density remained above 99.7%, ensuring structural integrity. Grain orientation analyses revealed a reduction in crystallographic texture and local misorientation after direct aging, suggesting stress relaxation and a more homogeneous microstructure. The hardness distribution reflected this transition: in the as-built state, higher hardness values were found at melt pool edges, while coarser central grains exhibited lower hardness. After direct aging, the hardness differences between these regions decreased, and the average hardness increased from (104 ± 7) HV0.025 to (170 ± 10) HV0.025 due to precipitation of Al3(Sc,Zr) phases. Long-term aging studies confirmed the stability of mechanical performance at 325 °C, whereas aging at 400 °C induced overaging and hardness loss due to precipitate coarsening. Electrical conductivities increased monotonically at all tested temperatures from ~11.7 MS/m, highlighting the interplay between solute depletion and precipitate evolution. Full article
(This article belongs to the Special Issue Recent Advances in Powder-Based Additive Manufacturing of Metals)
Show Figures

Figure 1

18 pages, 23145 KB  
Article
Study of the Forming Process of Thin-Walled 5A02 Aluminum Alloy T-Tube Formed by Rotary Drawing Type Without Mold
by Longqi Wang, Xuefeng Xu, Jun Xie, Wenjie Zhu and Xiang Zeng
Coatings 2025, 15(12), 1464; https://doi.org/10.3390/coatings15121464 - 10 Dec 2025
Viewed by 262
Abstract
To address the issues of low efficiency and poor reliability associated with current manufacturing processes like welding for T-shaped tubes in aircraft, this study proposes a die-less rotary drawing forming process for T-shaped tubes. Finite element simulations combined with experiments were conducted to [...] Read more.
To address the issues of low efficiency and poor reliability associated with current manufacturing processes like welding for T-shaped tubes in aircraft, this study proposes a die-less rotary drawing forming process for T-shaped tubes. Finite element simulations combined with experiments were conducted to investigate the influence of four key process parameters-pre-hole size, preheating temperature, feed rate, and rotary drawing speed-on the rotary drawing forming of thin-walled 5A02 aluminum alloy T-shaped tubes. Variations in the effective branch height and wall thickness reduction ratio under different combinations of process parameters were explored. The optimal combination of process parameters was determined based on simulated orthogonal experiments. The optimized results were experimentally validated, and their pressure resistance limit was analyzed through pressure tests. Finally, the microstructural changes in the rotary-drawn material were analyzed using Electron Backscatter Diffraction (EBSD) tests. The results demonstrate that the proposed die-less rotary drawing forming process enables the local integrated forming of thin-walled 5A02 aluminum alloy T-shaped tubes. A branch height exceeding 3.5 mm and a maximum wall thickness reduction ratio of approximately 18% were achieved. The pressure withstand limit reaches 7 MPa, satisfying the engineering requirement of 6.4 MPa. Full article
Show Figures

Figure 1

Back to TopTop