Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = Eh–pH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3436 KiB  
Article
Peculiarities of 222Radon and 238Uranium Behavior in Mineral Waters of Highland Terrains
by George Chelnokov, Vasilii Lavrushin, Natalya Kharitonova, Andrey Pavlov and Farid Salikhov
Water 2025, 17(15), 2211; https://doi.org/10.3390/w17152211 - 24 Jul 2025
Viewed by 173
Abstract
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to [...] Read more.
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to assess the potential health risk associated with 238U and 222Rn. It was found that in mineral waters of the Pamir, the concentrations of 238U (0.004–13.3 µg/L) and activity of 222Rn (8–130 Bq/L) are higher than in the Elbrus area: 0.04–3.74 µg/L and 6–33 Bq/L, respectively. Results indicate that uranium mobility in water is strongly influenced by T, pH, and Eh, but is less affected by the age of host rocks or springs′ elevation, whereas radon activity in waters depends on the age of rocks, spring elevation, 238U content, and values of δ18O and δ2H in water. This study reveals fundamental geological distinctions governing uranium and radon sources in the mineral waters of these regions. Isotopic evidence (222Rn and 3He/4He) demonstrates crustal radon sources prevail in Pamir, whereas the Elbrus system suggests mantle-derived components. The U concentrations do not exceed 30 µg/L, and most water samples (94%) showed 222Rn activities below 100 Bq/L, complying with the drinking water exposure limits recommended by the World Health Organization and European Union Directive. However, in intermountain depressions of the Pamirs, at low absolute elevations (~2300 m), radon concentrations in water can increase significantly, which requires special attention and study. Full article
Show Figures

Figure 1

12 pages, 2267 KiB  
Article
Composite Polymer Electrolytes with Tailored Ion-Conductive Networks for High-Performance Sodium-Ion Batteries
by Caizhen Yang, Zongyou Li, Qiyao Yu and Jianguo Zhang
Materials 2025, 18(13), 3106; https://doi.org/10.3390/ma18133106 - 1 Jul 2025
Viewed by 314
Abstract
Gel-polymer electrolytes offer a promising route toward safer and more stable sodium-ion batteries, but conventional polymer systems often suffer from low ionic conductivity and limited voltage stability. In this study, we developed composite GPEs by embedding methylammonium lead chloride (CH3NH3 [...] Read more.
Gel-polymer electrolytes offer a promising route toward safer and more stable sodium-ion batteries, but conventional polymer systems often suffer from low ionic conductivity and limited voltage stability. In this study, we developed composite GPEs by embedding methylammonium lead chloride (CH3NH3PbCl3, MPCl) into a UV-crosslinked ethoxylated trimethylolpropane triacrylate (ETPTA) matrix, with sodium alginate (SA) as an ionic conduction enhancer. Three types of membranes—GPE-P, GPE-El, and GPE-Eh—were synthesized and systematically compared. Among them, the high-MPCl formulation (GPE-Eh) exhibited the best performance, achieving a high ionic conductivity of 2.14 × 10−3 S·cm−1, a sodium-ion transference number of 0.66, and a wide electrochemical window of approximately 4.9 V vs. Na+/Na. In symmetric Na|GPE|Na cells, GPE-Eh enabled stable sodium plating/stripping for over 600 h with low polarization. In Na|GPE|NVP cells, it delivered a high capacity retention of ~79% after 500 cycles and recovered ~89% of its initial capacity after high-rate cycling. These findings demonstrate that the perovskite–polymer composite structure significantly improves ion transport, interfacial stability, and electrochemical durability, offering a viable path for the development of next-generation quasi-solid-state sodium-ion batteries. Full article
Show Figures

Figure 1

22 pages, 5365 KiB  
Article
Machine Learning-Based Analysis of Heavy Metal Migration Under Acid Rain: Insights from the RF and SVM Algorithms
by Jie Yao, Jianping Qian and Dongru Ji
Minerals 2025, 15(6), 663; https://doi.org/10.3390/min15060663 - 19 Jun 2025
Viewed by 388
Abstract
Acid rain alters soil chemistry significantly and is a key driver of heavy metal pollution. This study investigates the environmental impact of acid rain-induced heavy metal migration in the Siding Lead–Zinc mining area in south China. Tailings, surrounding soils, and riverbed sediments were [...] Read more.
Acid rain alters soil chemistry significantly and is a key driver of heavy metal pollution. This study investigates the environmental impact of acid rain-induced heavy metal migration in the Siding Lead–Zinc mining area in south China. Tailings, surrounding soils, and riverbed sediments were examined through simulated acid rain soil column leaching experiments. Leachate parameters—including pH, redox potential (Eh), total dissolved solids (TDSs) and heavy metal concentrations—were used to develop machine learning models (Random Forest and Support Vector Machine) to quantify the influence of environmental factors on metal migration. The results showed that leachates were generally alkaline and reductive after leaching, with Cd, Pb, and Zn as the dominant migrating metals. Leachates from tailings and nearby soils exceeded safe drinking water standards, with significantly higher cumulative metal release than other samples. The RF model outperformed the SVM model in predicting heavy metal concentrations. Feature importance analysis revealed that, beyond sample characteristics, pH and Eh were critical factors driving metal migration. Zn and Cd showed strong sensitivity to these parameters, with pH and Eh contributing over 80% to their migration. The findings highlight that acid rain can enhance the solubility and migration of heavy metals, posing a serious threat to the quality of surrounding water and underscoring the requirement for effective mitigation strategies to protect the ecological environment in mining areas. Full article
Show Figures

Figure 1

15 pages, 2854 KiB  
Article
Effects of Biochar on the Temporal Dynamics and Vertical Distribution of Iron and Phosphorus Under Soil Submergence
by Ying-Ren Lai and Shan-Li Wang
Agronomy 2025, 15(6), 1394; https://doi.org/10.3390/agronomy15061394 - 5 Jun 2025
Viewed by 483
Abstract
Biochar is considered a promising amendment for improving phosphorus (P) availability in agricultural soils; however, its effects on the chemical transformation and long-term immobilization of P in submerged soils across soil depth and over time remain unclear. This study conducted a 98-day column [...] Read more.
Biochar is considered a promising amendment for improving phosphorus (P) availability in agricultural soils; however, its effects on the chemical transformation and long-term immobilization of P in submerged soils across soil depth and over time remain unclear. This study conducted a 98-day column incubation experiment to investigate the effects of rice straw biochar (RSB) on the spatial and temporal dynamics of iron (Fe) and P under soil submergence. Soils with and without biochar addition were mixed with water homogeneously and then added into each PVC column with an additional standing water layer above the soil surface. The results revealed a two-stage shift in soil redox potential (Eh), with more rapid changes observed at deeper depths. RSB addition accelerated the decline in Eh and increased the soil pH. The rise in pH by submergence and biochar addition promoted the release of soluble and exchangeable P from soil to pore water during incubation. Ca-associated P precipitation and re-adsorption resulted in relatively low phosphate concentrations in pore water. RSB addition increased P availability in the early stage by releasing soluble and exchangeable P and promoting phosphate desorption through pH elevation, which increased the negative surface charge of soil constituents, thereby reducing their affinity for phosphate and enhancing its release into the pore water. However, prolonged submergence led to the transformation of soluble and exchangeable P into more stable Ca-P precipitates, limiting long-term P availability. These findings provide new insights into the temporal and spatial dynamics of P in submerged soils and highlight the short-term benefits and long-term limitations of biochar for sustaining P availability in paddy rice systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 2534 KiB  
Article
Defects Induced by High-Temperature Neutron Irradiation in 250 µm-Thick 4H-SiC p-n Junction Detector
by Alfio Samuele Mancuso, Enrico Sangregorio, Annamaria Muoio, Saverio De Luca, Matteo Hakeem Kushoro, Erik Gallo, Silvia Vanellone, Eleonora Quadrivi, Antonio Trotta, Lucia Calcagno and Francesco La Via
Materials 2025, 18(11), 2413; https://doi.org/10.3390/ma18112413 - 22 May 2025
Viewed by 539
Abstract
The objective of the proposed work was to investigate the electrical performance of a 250 µm-thick 4H-SiC p-n junction detector after irradiation with DT neutrons (14.1 MeV energy) at high temperature (500 °C). The results showed that the current–voltage (I-V) characteristics of the [...] Read more.
The objective of the proposed work was to investigate the electrical performance of a 250 µm-thick 4H-SiC p-n junction detector after irradiation with DT neutrons (14.1 MeV energy) at high temperature (500 °C). The results showed that the current–voltage (I-V) characteristics of the unirradiated SiC detector were ideal, with an ideality factor close to 1.5. A high electron mobility (µn) and built-in voltage (Vbi) were also observed. Additionally, the leakage current remained very low in the temperature range of 298–523 K. High-temperature irradiation caused a deviation from ideal behaviour, leading to an increase in the ideality factor, decreases in the µn and Vbi values, and a significant rise in the leakage current. Studying the capacitance–voltage (C-V) characteristics, it was observed that neutron irradiation induced reductions in both Al-doped (p+-type) and N-doped (n-type) 4H-SiC carrier concentrations. A comprehensive investigation of the deep defect states and impurities was carried out using deep-level transient spectroscopy (DLTS) in the temperature range of 85–750 K. In particular, high-temperature neutron irradiation influenced the behaviours of both the Z1/2 and EH6/7 traps, which were related to carbon interstitials, silicon vacancies, or anti-site pairs. Full article
Show Figures

Figure 1

38 pages, 7964 KiB  
Article
Skin Fibroblasts from Individuals Self-Diagnosed as Electrosensitive Reveal Two Distinct Subsets with Delayed Nucleoshuttling of the ATM Protein in Common
by Laurène Sonzogni, Joëlle Al-Choboq, Patrick Combemale, Amélie Massardier-Pilonchéry, Audrey Bouchet, Philippe May, Jean-François Doré, Jean-Claude Debouzy, Michel Bourguignon, Yves Le Dréan and Nicolas Foray
Int. J. Mol. Sci. 2025, 26(10), 4792; https://doi.org/10.3390/ijms26104792 - 16 May 2025
Viewed by 4219
Abstract
Electromagnetic hyper-sensitivity (EHS) and its causal link with radio-frequencies raise a major question of public health. In the frame of the clinical study DEMETER, 26 adult volunteers self-diagnosed as EHS-positive agreed to reply to a self-assessment questionnaire and to provide a skin biopsy [...] Read more.
Electromagnetic hyper-sensitivity (EHS) and its causal link with radio-frequencies raise a major question of public health. In the frame of the clinical study DEMETER, 26 adult volunteers self-diagnosed as EHS-positive agreed to reply to a self-assessment questionnaire and to provide a skin biopsy sampling to establish a primary fibroblast cell line. The questionnaire and the biological data revealed, independently, 2 subsets of donors associated each with a low background, highly responsive (LBHR) and a high background, lowly responsive (HBLR) phenotype. A couple of subsets based on questionnaire data and based on the yield of spontaneous DNA double-strand breaks were found to be composed of the same donors at 64% identity. After exposure to X-rays, and application of anti-γH2AX, pATM, and MRE11 immunofluorescence, all the DEMETER fibroblasts (26/26) elicited a delayed radiation-induced ATM nucleoshuttling (RIANS). The use of RIANS biomarkers showed that the 2 phenotypes described above corresponded to DEMETER donors with a high risk of cancer (LBHR) or high risk of accelerated aging (HBLR). By exposing DEMETER cells to H2O2 followed by an antioxidative agent, we confirmed that EHS may be related to the management of DNA strand breaks. A preliminary molecular model of EHS inspired by the RIANS model was proposed. Full article
(This article belongs to the Special Issue Advanced Research of Skin Inflammation and Related Diseases)
Show Figures

Figure 1

43 pages, 2907 KiB  
Systematic Review
A Systematic Review of Copper Heap Leaching: Key Operational Variables, Green Reagents, and Sustainable Engineering Strategies
by Fabian León, Luis Rojas, Vanesa Bazán, Yuniel Martínez, Alvaro Peña and José Garcia
Processes 2025, 13(5), 1513; https://doi.org/10.3390/pr13051513 - 15 May 2025
Viewed by 1785
Abstract
Heap leaching of copper is faced with a complex set of challenges, including mineral heterogeneity, the formation of passivating species, and the need to regulate critical variables such as pH, redox potential (Eh), oxidant concentration, and irrigation rate. If these factors are not [...] Read more.
Heap leaching of copper is faced with a complex set of challenges, including mineral heterogeneity, the formation of passivating species, and the need to regulate critical variables such as pH, redox potential (Eh), oxidant concentration, and irrigation rate. If these factors are not properly managed, copper recovery is reduced, and significant environmental impacts may be generated, highlighting the urgency for systematic and sustainable approaches. To address this challenge, a systematic literature review (SLR) was conducted, screening 2344 documents and selecting 106 primary sources to analyze operational drivers and environmental considerations. Statistical methodologies (factorial designs, response surface methodology), multiscale modeling, and laboratory column tests were used to validate key variables, including pH (1.5–2.0), Eh (600–750 mV), temperature (25–55 °C), irrigation rate (5–15 L/(h·m2)), acid concentration (0.5–2.0 M), and emerging “green” reagents (e.g., glycine, organic surfactants). Precise control of these factors was found to reduce passivation, minimize fine-particle migration, and improve copper extraction up to 90%. The incorporation of oxidizing agents (e.g., Fe3+, H2O2) further accelerated mineral dissolution while preventing unwanted precipitates. In parallel, bioleaching strategies maintained high recoveries with lower chemical demand. Reviews of pilot studies confirmed the scalability of these optimized conditions, emphasizing both sustainability and cost-effectiveness. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

24 pages, 4411 KiB  
Article
Characterization of Historical Tailings Dam Materials for Li-Sn Recovery and Potential Use in Silicate Products—A Case Study of the Bielatal Tailings Dam, Eastern Erzgebirge, Saxony, Germany
by Kofi Moro, Nils Hoth, Marco Roscher, Fabian Kaulfuss, Johanes Maria Vianney and Carsten Drebenstedt
Sustainability 2025, 17(10), 4469; https://doi.org/10.3390/su17104469 - 14 May 2025
Cited by 1 | Viewed by 615
Abstract
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. [...] Read more.
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. To evaluate the tailings resource potential, drill core sampling was conducted at multiple points at a depth of 7 m. Subsequent analyses included geochemical characterization using sodium peroxide fusion, lithium borate fusion, X-ray fluorescence (XRF), and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). Particle size distribution analysis via a laser particle size analyzer and wet sieving was conducted alongside milieu parameter (pH, Eh, EC) analysis. A theoretical assessment of the tailings’ potential for geopolymer applications was conducted by comparing them with other tailings used in geopolymer research and relevant European standards. The results indicated average concentrations of lithium (Li) of 0.1 wt%, primarily hosted in Li-mica phases, and concentrations of tin (Sn) of 0.12 wt%, predominantly occurring in cassiterite. Particle size analysis revealed that the tailings material is generally fine-grained, comprising approximately 60% silt, 32% fine sand, and 8% clay. These textural characteristics influenced the spatial distribution of elements, with Li and Sn enriched in fine-grained fractions predominantly concentrated in the dam’s central and western sections, while coarser material accumulated near injection points. Historical advancements in mineral processing, particularly flotation, had significantly influenced Sn distribution, with deeper layers showing higher Sn enrichment, except for the final operational years, which also exhibited elevated Sn concentrations. Due to the limitations of X-ray fluorescence (XRF) in detecting Li, a strong correlation between rubidium (Rb) and Li was established, allowing Li quantification via Rb measurements across varying particle sizes, redox conditions, and geological settings. This demonstrated that Rb can serve as a reliable proxy for Li quantification in diverse contexts. Geochemical and mineralogical analyses revealed a composition dominated by quartz, mica, topaz, and alkali feldspars. The weakly acidic to neutral conditions (pH 5.9–7.7) and reducing redox potential (Eh, 570 to 45 mV) of the tailings material indicated a minimal risk of acid mine drainage. Preliminary investigations into using Altenberg tailings as geopolymer materials suggested that their silicon-rich composition could serve as a substitute for coal fly ash in construction; however, pre-treatment would be needed to enhance reactivity. This study underscores the dual potential of tailings for element recovery and sustainable construction, emphasizing the importance of understanding historical processing techniques for informed resource utilization. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

13 pages, 2674 KiB  
Article
Biochar Influences the Transformation and Translocation of Antimony in the Rhizosphere–Rice System
by Qiuxiang Huang, Fande Meng, Wenzhe Chen, Yongbing Cai and Enzong Xiao
Toxics 2025, 13(5), 389; https://doi.org/10.3390/toxics13050389 - 13 May 2025
Viewed by 577
Abstract
The rhizosphere is a crucial interface that connects the soil and the roots of plants, playing a critical role in regulating soil biochemical functions and processes. Biochar, an increasingly common soil amendment, can directly or indirectly affect the redistribution behavior of heavy metal(loid)s. [...] Read more.
The rhizosphere is a crucial interface that connects the soil and the roots of plants, playing a critical role in regulating soil biochemical functions and processes. Biochar, an increasingly common soil amendment, can directly or indirectly affect the redistribution behavior of heavy metal(loid)s. Our study used a rice pot experiment to investigate the redistribution behavior of antimony (Sb) in the rhizosphere–rice system during the four key rice growth stages and analyze the effects of biochar (BC). Biochar increased pH, soil organic matter (SOM), and dissolved organic carbon (DOC) but decreased Eh, affecting Sb redistribution in the rhizosphere–rice system. The Sb fractions were altered with rice growth and the addition of BC. For example, bioavailable Sb increased by 1.57–32.97% in the presence of BC across all rice growth stages. Biochar reduced the BCF and TFR-S of Sb but elevated the TFS-G, indicating that biochar reduced Sb migration from the soil to the rice roots and the rice roots to shoots but increased Sb migration from rice shoots to grains. This study highlights the potential use of biochar as a reclamation agent in remediating Sb-contaminated soils and protecting human health from Sb through the food chain. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

14 pages, 5914 KiB  
Article
Effect of Microplastics on the Bioavailability of (Semi-)Metals in the Soil Earthworm Eisenia fetida
by Xue Xiao, Jia-Ling Li, Wan-Li Rao, Chun-Mei Zhao, Er-Kai He, Ye-Tao Tang, Hua-Yi Chen and Rong-Liang Qiu
Agronomy 2025, 15(5), 1052; https://doi.org/10.3390/agronomy15051052 - 27 Apr 2025
Viewed by 704
Abstract
Microplastics have a large surface area and hydrophobic characteristics, which helps them to easily adsorb organic matter and trace metals in soil. This interaction has the potential to alter soil physicochemical properties, affect the bioavailability of metals, and finally influence the toxicity of [...] Read more.
Microplastics have a large surface area and hydrophobic characteristics, which helps them to easily adsorb organic matter and trace metals in soil. This interaction has the potential to alter soil physicochemical properties, affect the bioavailability of metals, and finally influence the toxicity of organisms. In the present study, we exposed Cd or As (Cd/As) to the earthworm Eisenia fetida (Savigny, 1826) in uncontaminated paddy soil, both in the presence and absence of polystyrene (PS) MPs (100~300 μm). The results show that MPs exhibit a significant influence on the physicochemical properties of As-contaminated soil, notably reducing the pH while increasing the electrical conductivity (EC), redox potential (Eh), and dissolved organic carbon (DOC), relative to single As treatment. At a Cd concentration of 40 mg·kg−1, the addition of MPs substantially altered the soil properties, decreasing the pH while increasing the EC and DOC. The effect of MPs on the bioavailable Cd content in soil was associated with Cd concentration. Specifically, MPs significantly increased the content of DGT (diffusion gradient technology)-Cd at a Cd concentration of 60 mg·kg−1. Regarding the bioavailable As content in the soil, MPs led to an increase at a high As concentration (40 mg·kg−1). Moreover, the addition of MPs amplified the uptake rate constants (ku) of DGT-Cd/As at various exposure concentrations, expediting the uptake of Cd/As by earthworms. In addition, compared to Cd treatment, the growth inhibition of earthworms in the As-treatment group was more significant due to microplastics. The results show that MPs in terrestrial environments magnify the negative effects of (semi-)metals, a phenomenon intricately tied to the degree of contamination by (semi-)metals. The interaction between MPs and metals may induce higher ecological risks for organisms. Full article
Show Figures

Graphical abstract

20 pages, 5003 KiB  
Article
Assessment of Mercury Contamination in the Chalk Aquifer of the Pays de Caux and Its Implications for Public Health (France)
by Lahcen Zouhri, Jacques Delépine and Lockman Zouhri
Water 2025, 17(7), 1087; https://doi.org/10.3390/w17071087 - 5 Apr 2025
Viewed by 600
Abstract
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the [...] Read more.
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the detection of mercury anomalies during groundwater quality monitoring at the Pays de Caux study site (France), a comprehensive multidisciplinary research effort was initiated. This included geological and hydrogeological studies aimed at tracking mercury concentrations in piezometric wells and identifying the sources of these anomalies. This study seeks to assess the groundwater quality and characteristics from ten hydrogeological wells. The evaluation will focus on key hydrogeological parameters, including pH, redox potential (Eh), suspended solids, and groundwater levels, as well as a detailed geochemical analysis of elements such as Hg, Fe, Mn, Zn, Pb, and Cu. The mobilization of mercury and other metallic traces elements is strongly governed by environmental factors. Hydrochemical analyses highlight the complex interplay of various parameters that influence the chemical forms and behavior of mercury in both soil and groundwater. The results from the piezometric measurement campaigns (Pz1 to Pz7) have provided crucial insights, enabling the development of hypotheses about mercury’s behavior in the chalk aquifer. It is hypothesized that impermeable areas may trap groundwater for extended periods, leading to the accumulation and abnormal concentration of mercury. This could cause mercury to be intermittently released, potentially affecting the surrounding environment. Mercury concentrations in groundwater are highly sensitive to pH and redox potential (Eh), with low pH and reducing conditions promoting mercury mobilization and the formation of toxic methylated species. The study suggests the chalk aquifer is generally in equilibrium with mercury, but fluctuations in mercury levels between Pz7 and Pz4 are likely due to the heterogeneity of the clay and geological factors such as mineral composition and fracturing. This research provides insights into mercury transfer in heterogeneous environments and emphasizes the need for continuous hydrogeological monitoring, including piezometer readings, to manage mercury dispersion in the aquifer. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 6291 KiB  
Article
A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane
by Wei Zhang, Huan Yang, Shaohong You, Xia Zhong, Pingping Jiang, Xudong Lan and Rui Ma
Toxics 2025, 13(4), 262; https://doi.org/10.3390/toxics13040262 - 31 Mar 2025
Viewed by 518
Abstract
Current research focuses more on redox of toxic Cr(VI), with less attention to Cr(III) changes in flooded soil. First, the structure of acid birnessite and cryptomelane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other test [...] Read more.
Current research focuses more on redox of toxic Cr(VI), with less attention to Cr(III) changes in flooded soil. First, the structure of acid birnessite and cryptomelane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other test methods. This study investigated farmland soil in Yuxi, Yunnan Province, under flooding stress induced by the addition of two distinct concentrations of manganese oxides. Throughout the experiment, key physicochemical properties of the soil—including pH, redox potential (Eh), Cr(VI) concentration, and chromium speciation—were systematically measured and analyzed. Structural characterization demonstrated distinct morphological and surface area properties. Specifically, acid birnessite, with petal-like stacked spheres, has a specific surface area of 103.76 m2/g, while cryptomelane, strip-shaped, has an area of 95.92 m2/g. The submergence experiment yielded the following phenomena: (1) During the 60-day flooding experiment, soil amended with 0.5% or 1% acid birnessite or cryptomelane exhibited an increase in Eh compared to the control group. (2) At the end of the 60-day submergence period, the Cr(VI) concentration in the soil treated with 1% acid birnessite increased by 2.4 times compared to the control group. In addition, after 60 days, Cr(VI) concentrations in the soil exceeded 5 mg/L in soils with manganese oxide added to them. This study evaluates how manganese oxides oxidize Cr(III), aiding in assessing their environmental risks and long-term impacts on metal transformation. The findings help predict chromium behavior in farm soils and guide remediation strategies. Full article
Show Figures

Graphical abstract

24 pages, 6117 KiB  
Article
Functional Differentiation and Regulatory Mechanisms of Ferrochelatases HemH1 and HemH2 in Bacillus thuringiensis Under Iron and Oxidative Stress
by Jianghan Wang, Yi Luo, Tian Jiao, Shizhen Liu, Ting Liang, Huiting Mei, Shuang Cheng, Qian Yang, Jin He and Jianmei Su
Int. J. Mol. Sci. 2025, 26(7), 2911; https://doi.org/10.3390/ijms26072911 - 23 Mar 2025
Viewed by 561
Abstract
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to [...] Read more.
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to the promoters of hemH1 and hemH2, with Fe2+ or Fe3+ enhancing this binding. Heterologous expression of HemH1 and HemH2 in Escherichia coli showed that pEH2/BL grew better than pEH1/BL under different 2,2′-Bipyridyl, Fe2+, and Fe3+ concentrations. Under iron limitation, the heme precursor ALA production decreased significantly in both strains. The heme production of pEH2/BL decreased sharply under iron-limited conditions, while that of pEH1/BL decreased significantly under iron-rich conditions. The H2O2 sensitivity experiment revealed that E. coli pEH1/BL was more tolerant to H2O2 than pEH2/BL. In Bt, ΔhemH2 was most sensitive to H2O2 stress, but complementation of hemH1 or hemH2 partially restored H2O2 resistance, with the overexpressed strain pHH2/Bt being most tolerant. β-galactosidase assays indicated that Fur positively regulated hemH1 and negatively regulated hemH2 under normal conditions, but this regulation reversed with 2.5 mM Fe3+. qRT-PCR showed upregulation of genes related to heme synthesis, oxidative stress, and ferrous iron transport. This study reveals the functional differentiation of HemH1 and HemH2 under the joint regulation of Fur and environmental factors, highlighting their synergistic roles in heme synthesis, heavy metal detoxification, and oxidative stress resistance to maintain bacterial physiological homeostasis. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

15 pages, 2411 KiB  
Article
Thermodynamic Study Proposal of Processing By-Product Containing Au, Ag, Cu and Fe Sulfides from Antimony Ore Treatment
by Dušan Oráč, Martina Laubertová, František Molnár, Jakub Klimko, Vladimír Marcinov and Jana Pirošková
Processes 2025, 13(3), 842; https://doi.org/10.3390/pr13030842 - 13 Mar 2025
Viewed by 628
Abstract
A possible thermodynamic study of processing Cu (Ag, Au) and Fe sulfide concentrate as a by-product after the processing of tetrahedrite concentrate, applying pyrometallurgical and hydrometallurgical methods, was studied. The sample of sulfide concentrate, 34.7 wt. % Cu, 21.4% Fe, 12 g/t Au, [...] Read more.
A possible thermodynamic study of processing Cu (Ag, Au) and Fe sulfide concentrate as a by-product after the processing of tetrahedrite concentrate, applying pyrometallurgical and hydrometallurgical methods, was studied. The sample of sulfide concentrate, 34.7 wt. % Cu, 21.4% Fe, 12 g/t Au, and 7.317 g/t Ag was contained. Analytical technique AAS was used to analyze the sample before conducting a thermodynamic study of the leaching of sulfide concentrate by applying Pourbaix Eh–pH diagrams. The outcome of this thermodynamic research will provide essential data to support recent hydrometallurgical technologies. If its correctness can be verified experimentally, this result will be promoted to developing a new alternative copper-production technology. The minor components Sb, As, Hg, and Bi are also present in the concentrate in the form of sulfides Sb2S3, As2S3, Bi2S3, and HgS. This theoretical proposed hydrometallurgical technology shows that it is possible to obtain Fe in the form of Fe(OH)3, and after its thermal decomposition, it can be prepared as Fe2O3 as a marketable product. In any case, the most economically advantageous would be complete hydrometallurgical processing, i.e., also Cu(Ag,Au)Fe sulfide concentrate, with the possibility of valorizing Cu, Ag, and Au in metallic form. Full article
(This article belongs to the Special Issue Non-ferrous Metal Metallurgy and Its Cleaner Production)
Show Figures

Figure 1

19 pages, 17888 KiB  
Article
Carbon Dioxide and Methane Emission into the Atmosphere and Its Relationship with Chemogenic Sedimentation in the Hypersaline Lake Baskunchak (Russia)
by Dmitry Gar’kusha, Yury Fedorov, Asya Ovsepyan, Yury Popov, Yury Andreev, Boris Talpa, Natalya Tambieva and Igor’ Myakinnikov
Water 2025, 17(5), 738; https://doi.org/10.3390/w17050738 - 3 Mar 2025
Viewed by 1181
Abstract
Baskunchak is a large drainless, highly saline lake located in the Caspian lowland. The chemical and gas composition of water (brine) and bottom sediments lying under a 10 cm layer of salt in the lake has been studied; specific fluxes of CH4 [...] Read more.
Baskunchak is a large drainless, highly saline lake located in the Caspian lowland. The chemical and gas composition of water (brine) and bottom sediments lying under a 10 cm layer of salt in the lake has been studied; specific fluxes of CH4 and CO2 at the water–atmosphere interface have been measured. The lake’s sodium chloride brine is characterized by high mineralization (313.5–334.7 g/L) and a slightly acidic–neutral pH (5.75–6.80). Bottom sediments are characterized by a slightly acid–neutral pH (6.27–6.64) and a reducing condition (Eh from −104.7 to +22.0 mV). Specific fluxes of CH4 into the atmosphere were low (0.11–0.12 mg CH4/(m2 h)) due to its low concentrations in the brine of the lake (0.91–2.66 µL/L). The appearance of an excess of HCO3 during the anaerobic oxidation of CH4 in the bottom sediments of the lake contributes to the formation of autigenic gypsum and calcite. Specific CO2 fluxes into the atmosphere ranged from 12.2 to 73.1 mg CO2/(m2 h). The probable source of CO2 in the brine of the lake and its emission into the atmosphere, in addition to the process of organic matter cycling and uptake by microorganisms, is the chemogenic precipitation of sulfates and calcium carbonates. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop