A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Soil Propertie
2.2. Synthesis of Acid Birnessite and Cryptomelane
2.2.1. Synthesis of Acid Birnessite
2.2.2. Synthesis of Cryptomelane
2.3. Structural Characterization and Surface Property Analysis of Manganese Oxide
2.3.1. X-Ray Diffraction (XRD)
2.3.2. Scanning Electron Microscope (SEM)
2.3.3. Transmission Electron Microscopy (TEM)
2.3.4. X-Ray Photoelectron Spectroscopy (XPS)
2.3.5. Brunauer–Emmett–Teller (BET)
2.3.6. Fourier Transform Infrared Spectroscopy Analysis (FTIR)
2.4. Analysis of Physical and Chemical Properties of Soil
2.5. Quality Control of the Analytical Data
2.6. Data Statistics and Analysis
3. Results
3.1. Characterization of Acid Birnessite and Cryptomelane
3.1.1. XRD Features
3.1.2. SEM/TEM Images
3.1.3. BET
3.1.4. XPS
3.1.5. FTIR Spectroscopy
3.2. Submergence Experiment
3.2.1. Effect of Submerged Soil on pH and Eh Changes
3.2.2. Effect of Submergence Condition on Cr(VI) Concentrations During the Submergence Phase
3.2.3. Effect of Submergence Condition on Cr(VI) Concentration in Soil
3.2.4. Effect of Submerged Soil on the Forms of Soil-Bound Cr
4. Discussion
5. Conclusions
- (1)
- In the material characterization experiments, the two materials were qualitatively analyzed using X-ray diffraction (XRD) and compared with standard cards to confirm the successful synthesis of the target materials, namely acid birnessite and cryptomelane. Morphological observations through SEM and TEM revealed that acid birnessite consists of lamellar crystals stacked into hydrangea-like shapes, while cryptomelane crystals are strip-shaped. XPS analysis of the Mn species in the samples showed that both acid birnessite and cryptomelane are Mn(IV) oxides. The specific surface areas of acid birnessite and cryptomelane are 103.76 m²/g and 95.92 m²/g, respectively.
- (2)
- In the submergence experiments, soil pH positively correlated with submergence duration, while soil Eh negatively correlated with submergence duration. The soil submergence experiments demonstrated that altering soil properties and adding manganese oxides can affect Cr stability. Under acidic conditions, especially in soil environments containing acid birnessite, the submergence Cr(VI) and soil hexavalent chromium concentrations are affected. Under submergence conditions, compared to the control group with added Cr(III), 1% acid birnessite increased the submergence Cr(VI) concentration by 2.4 times and the soil Cr(VI) concentration by 2.23 times. Soil amended with 1% cryptomelane exhibited a 2.9-fold increase in Cr(VI) concentration compared to the Cr-only control group on 60 Day. The reason for this is that cryptomelane is relatively stable in the soil. After 60 days, the soil Cr(VI) concentration remained at >5 mg/L, exceeding the safety thresholds stipulated by some ecological and human health standards. Therefore, soil containing acid birnessite components results in higher submergence Cr(VI) concentrations under submergence conditions, while soil containing cryptomelane components leads to higher soil Cr(VI) concentrations. Both materials pose potential hazards to the ecological environment.
- (3)
- Due to its strong oxidizing capacity and good adsorption properties for heavy metals, acid birnessite necessitates caution, as this mineral can oxidize the existing Cr(III) in soil to the more toxic Cr(VI). The formation of Cr(VI) increases the mobility and toxicity of chromium in the environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, L.; Wang, Z.; Li, J. The Effect of Urbanization on Environmental Pollution in Rapidly Developing Urban Agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Dominika Piwowarska, E.K.; Jaszczyszyn, K. A Global Perspective on the Nature and Fate of Heavy Metals Polluting Water Ecosystems, and Their Impact and Remediation. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1436–1458. [Google Scholar] [CrossRef]
- Wang, C.-C.; Zhang, Q.-C.; Kang, S.-G.; Li, M.-Y.; Zhang, M.-Y.; Xu, W.-M.; Xiang, P.; Ma, L.Q. Heavy Metal(Loid)s in Agricultural Soil from Main Grain Production Regions of China: Bioaccessibility and Health Risks to Humans. Sci. Total Environ. 2023, 858, 159819. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Xu, X.-R.; Sun, Y.-X.; Liu, J.-L.; Li, H.-B. Heavy Metal Pollution in Coastal Areas of South China: A Review. Mar. Pollut. Bull. 2013, 76, 7–15. [Google Scholar] [CrossRef]
- Chai, L.; Huang, S.; Yang, Z.; Peng, B.; Huang, Y.; Chen, Y. Cr (VI) Remediation by Indigenous Bacteria in Soils Contaminated by Chromium-Containing Slag. J. Hazard. Mater. 2009, 167, 516–522. [Google Scholar] [CrossRef]
- Iyer, M.; Anand, U.; Thiruvenkataswamy, S.; Babu, H.W.S.; Narayanasamy, A.; Prajapati, V.K.; Tiwari, C.K.; Gopalakrishnan, A.V.; Bontempi, E.; Sonne, C.; et al. A Review of Chromium (Cr) Epigenetic Toxicity and Health Hazards. Sci. Total Environ. 2023, 882, 163483. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, L.; Cui, J.; Tong, W.; Zhao, H.; Wu, T.; Zhang, P.; Wang, X.; Gao, Y.; Su, J.; et al. Hexavalent Chromium Induces Neurotoxicity by Triggering Mitochondrial Dysfunction and ROS-Mediated Signals. Neurochem. Res. 2024, 49, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Monga, A.; Fulke, A.B.; Dasgupta, D. Recent Developments in Essentiality of Trivalent Chromium and Toxicity of Hexavalent Chromium: Implications on Human Health and Remediation Strategies. J. Hazard. Mater. Adv. 2022, 7, 100113. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Mishra, S. Hexavalent Chromium Reduction Potential of Cellulosimicrobium Sp. Isolated from Common Effluent Treatment Plant of Tannery Industries. Ecotoxicol. Environ. Saf. 2018, 147, 102–109. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Hu, H.; Zhao, K.; Li, H.; Yan, S.; Xiu, W.; Coyte, R.M.; Vengosh, A. High Hexavalent Chromium Concentration in Groundwater from a Deep Aquifer in the Baiyangdian Basin of the North China Plain. Environ. Sci. Technol. 2020, 54, 10068–10077. [Google Scholar] [CrossRef]
- Coetzee, J.J.; Bansal, N.; Chirwa, E.M.N. Chromium in Environment, Its Toxic Effect from Chromite-Mining and Ferrochrome Industries, and Its Possible Bioremediation. Expo. Health 2020, 12, 51–62. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, X.; Ai, Z.; Jia, F.; Zhang, L. Liquid Nitrogen Activation of Zero-Valent Iron and Its Enhanced Cr(VI) Removal Performance. Environ. Sci. Technol. 2019, 53, 8333–8341. [Google Scholar] [CrossRef]
- Pooja, S.K.P.; Surendra, P.S.; Tong, Y.W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A Review of the Formation of Cr(VI) via Cr(III) Oxidation in Soils and Groundwater. Sci. Total Environ. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Dermatas, D.; Panagiotakis, I.; Mpouras, T.; Tettas, K. The Origin of Hexavalent Chromium as a Critical Parameter for Remediation of Contaminated Aquifers. Bull. Environ. Contam. Toxicol. 2017, 98, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiao, Z.; Pan, D.; Li, Z.; Wu, M.; Shek, C.-H.; Wu, C.M.L.; Lai, J.K.L. Recent Advances in Manganese Oxide Nanocrystals: Fabrication, Characterization, and Microstructure. Chem. Rev. 2012, 112, 3833–3855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, P.; Zhu, M. Structural Transformation of Birnessite by Fulvic Acid under Anoxic Conditions. Environ. Sci. Technol. 2018, 52, 1844–1853. [Google Scholar] [CrossRef]
- Weaver, R.M.; Hochella, M.F., Jr. The Reactivity of Seven Mn-Oxides with Cr3+aq: A Comparative Analysis of a Complex, Environmentally Important Redox Reaction. Am. Mineral. 2003, 88, 2016–2027. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, A.; Liu, L.; Duan, X.; Ge, W.; Liu, C.; Qiu, G. Enhanced Remediation of Cadmium-Polluted Soil and Water Using Facilely Prepared MnO2-Coated Rice Husk Biomass. Chem. Eng. J. 2023, 457, 141311. [Google Scholar] [CrossRef]
- Li, M.; Kang, Y.; Ma, H.; Dong, J.; Wang, Y.; Kuang, S. Efficient Removal of Heavy Metals from Aqueous Solutions Using Mn-Doped FeOOH: Performance and Mechanisms. Environ. Res. 2023, 231, 116161. [Google Scholar] [CrossRef]
- Feng, X.H.; Zhai, L.M.; Tan, W.F.; Liu, F.; He, J.Z. Adsorption and Redox Reactions of Heavy Metals on Synthesized Mn Oxide Minerals. Environ. Pollut. 2007, 147, 366–373. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Xu, X.; Liu, Y.; Li, Y.; Ding, H.; Chen, N.; Yin, H.; Lin, H.; Wang, C.; et al. Influence of Heavy Metal Sorption Pathway on the Structure of Biogenic Birnessite: Insight from the Band Structure and Photostability. Geochim. Cosmochim. Acta 2019, 256, 116–134. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, M.; Li, W.; Elzinga, E.J.; Villalobos, M.; Liu, F.; Zhang, J.; Feng, X.; Sparks, D.L. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry. Environ. Sci. Technol. 2016, 50, 1750–1758. [Google Scholar] [CrossRef]
- Webb, S.M. Structural Characterization of Biogenic Mn Oxides Produced in Seawater by the Marine bacillus Sp. Strain SG-1. Am. Mineral. 2005, 90, 1342–1357. [Google Scholar] [CrossRef]
- Ge, C.; Wang, X.; Yu, F.; Chen, H.; Fang, G.; Wang, Y.; Gao, J. Mechanistic Insight into Manganese Oxidation Induced by Sulfite under Aerobic Condition: Implication of Triclosan Degradation. Sep. Purif. Technol. 2023, 306, 122583. [Google Scholar] [CrossRef]
- Post, J.E. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yin, H.; Zhu, T.; Zhuang, W. Understanding the Role of Manganese Oxides in Retaining Harmful Metals: Insights into Oxidation and Adsorption Mechanisms at Microstructure Level. Eco. Environ. Health 2024, 3, 89–106. [Google Scholar] [CrossRef]
- Liu, P.; Kong, Y.; Wei, G.; Liang, X.; Liao, Y.; Wang, C.; Ren, Q.; Li, T.; Fu, M.; Suib, S.L.; et al. Different Reactivity of Birnessite and Cryptomelane toward Isoprene: Effect of Structure, Morphology, and Exposed Faces. J. Phys. Chem. C 2022, 126, 21558–21567. [Google Scholar] [CrossRef]
- Li, H.; Atkins, B.; Williams, S.; Yin, H.; Reinhart, B.; Herndon, E. Sorption and Oxidative Degradation of Small Organic Molecules on Mn-Oxides—Effects of pH and Mineral Structures. ACS Earth Space Chem. 2024, 8, 2067–2077. [Google Scholar] [CrossRef]
- HJ 889-2017; Soil Quality—Determination of Cation Exchange Capacity—Co (NH3)6]Cl3 Extraction/Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2017.
- HJ 1082-2019; Soil and Sediment—Determination of Hexavalent Chromium—Alkaline Digestion/Flame Atomic Absorption Spectrophotometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2019.
- Kartal, Ş.; Aydın, Z.; Tokalıoğlu, Ş. Fractionation of Metals in Street Sediment Samples by Using the BCR Sequential Extraction Procedure and Multivariate Statistical Elucidation of the Data. J. Hazard. Mater. 2006, 132, 80–89. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Pérez-Moreno, S.M.; Gázquez, M.J.; Pérez-López, R.; Bolivar, J.P. Validation of the BCR Sequential Extraction Procedure for Natural Radionuclides. Chemosphere 2018, 198, 397–408. [Google Scholar] [CrossRef]
- Lefkowitz, J.P.; Rouff, A.A.; Elzinga, E.J. Influence of pH on the Reductive Transformation of Birnessite by Aqueous Mn(II). Environ. Sci. Technol. 2013, 47, 10364–10371. [Google Scholar] [CrossRef]
- Shi, M.; Li, Q.; Wang, Q.; Yan, X.; Li, B.; Feng, L.; Wu, C.; Qiu, R.; Zhang, H.; Yang, Z.; et al. A Review on the Transformation of Birnessite in the Environment: Implication for the Stabilization of Heavy Metals. J. Environ. Sci. 2024, 139, 496–515. [Google Scholar] [CrossRef]
- Dawadi, S.; Gupta, A.; Khatri, M.; Budhathoki, B.; Lamichhane, G.; Parajuli, N. Manganese Dioxide Nanoparticles: Synthesis, Application and Challenges. Bull. Mater. Sci. 2020, 43, 277. [Google Scholar] [CrossRef]
- Julien, C.M.; Massot, M.; Poinsignon, C. Lattice Vibrations of Manganese Oxides: Part I. Periodic Structures. Spectrochim Acta A 2004, 60, 689–700. [Google Scholar] [CrossRef]
- Nico, P.S.; Zasoski, R.J. Importance of Mn(III) Availability on the Rate of Cr(III) Oxidation on δ-MnO2. Environ. Sci. Technol. 2000, 34, 3363–3367. [Google Scholar] [CrossRef]
- Potter, R.M.; Rossman, G.R. The Tetravalent Manganese Oxides: Identification, Hydration, and Structural Relationships by Infrared Spectroscopy. Am. Mineral. 1979, 64, 1199–1218. [Google Scholar]
- Marschner, P. Processes in Submerged Soils—Linking Redox Potential, Soil Organic Matter Turnover and Plants to Nutrient Cycling. Plant Soil 2021, 464, 1–12. [Google Scholar] [CrossRef]
- Reynolds, J.G.; Naylor, D.V.; Fendorf, S.E. Arsenic Sorption in Phosphate-Amended Soils during Flooding and Subsequent Aeration. Soil Sci. Soc. Am. J. 1999, 63, 1149–1156. [Google Scholar] [CrossRef]
- Lyu, H.; Zhao, H.; Tang, J.; Gong, Y.; Huang, Y.; Wu, Q.; Gao, B. Immobilization of Hexavalent Chromium in Contaminated Soils Using Biochar Supported Nanoscale Iron Sulfide Composite. Chemosphere 2018, 194, 360–369. [Google Scholar] [CrossRef]
- Ao, M.; Sun, S.; Deng, T.; Zhang, F.; Liu, T.; Tang, Y.; Li, J.; Wang, S.; Qiu, R. Natural Source of Cr(VI) in Soil: The Anoxic Oxidation of Cr(III) by Mn Oxides. J. Hazard. Mater. 2022, 433, 128805. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, X.; Qian, W.; Hong, Z.; Tang, H.; Xu, R.; Yu, Y. Pectin Adsorption on Amorphous Fe/Al Hydroxides and Its Effect on Surface Charge Properties and Cu(II) Adsorption. J. Soils. Sediments 2017, 17, 2481–2489. [Google Scholar] [CrossRef]
- Manceau, A.; Charlet, L.; Boisset, M.C.; Didier, B.; Spadini, L. Sorption and Speciation of Heavy Metals on Hydrous Fe and Mn Oxides. From Microscopic to Macroscopic. Appl. Clay Sci. 1992, 7, 201–223. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, R.; Jiang, T.; Li, Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the Addition of Rice Straw Derived Biochar to a Simulated Polluted Ultisol. J. Hazard. Mater. 2012, 229–230, 145–150. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, W.; Han, L. Distribution and Contamination Hazards of Heavy Metals in Solid Residues from the Pyrolysis and Gasification of Wastewater Sewage Sludge. J. Residuals Sci. Technol. 2016, 13, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Liu, H.; Catalano, J.G.; Wang, Z.; Qian, A.; Giammar, D.E. Understanding the Roles of Dissolution and Diffusion in Cr(OH)3 Oxidation by δ-MnO2. ACS Earth Space Chem. 2019, 3, 357–365. [Google Scholar] [CrossRef]
- Apte, A.D.; Tare, V.; Bose, P. Extent of Oxidation of Cr(III) to Cr(VI) under Various Conditions Pertaining to Natural Environment. J. Hazard. Mater. 2006, 128, 164–174. [Google Scholar] [CrossRef]
pH | OM (%) | CEC (cmol/kg) | Available N (mg/kg) | Olsen-P (mg/kg) | EF-Cr (mg/kg) | RF-Cr (mg/kg) | OF-Cr (mg/kg) | ResF-Cr (mg/kg) |
---|---|---|---|---|---|---|---|---|
5.63 | 1.74 | 7.48 | 32.03 | 21.25 | 0.28 | 0.18 | 6.72 | 261.63 |
Chemical Name | Purity/Concentration | Manufacturer |
---|---|---|
KMnO4 | ≥99.5% | Nanjing Chemical Reagent Co., Ltd. (Nanjing, China) |
HCl | 36–38% | Xilong Scientific Co., Ltd. (Shantou, China) |
MnSO4·H2O | ≥99.0% | Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) |
CH3COOH | ≥99.7% | Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yang, H.; You, S.; Zhong, X.; Jiang, P.; Lan, X.; Ma, R. A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane. Toxics 2025, 13, 262. https://doi.org/10.3390/toxics13040262
Zhang W, Yang H, You S, Zhong X, Jiang P, Lan X, Ma R. A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane. Toxics. 2025; 13(4):262. https://doi.org/10.3390/toxics13040262
Chicago/Turabian StyleZhang, Wei, Huan Yang, Shaohong You, Xia Zhong, Pingping Jiang, Xudong Lan, and Rui Ma. 2025. "A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane" Toxics 13, no. 4: 262. https://doi.org/10.3390/toxics13040262
APA StyleZhang, W., Yang, H., You, S., Zhong, X., Jiang, P., Lan, X., & Ma, R. (2025). A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane. Toxics, 13(4), 262. https://doi.org/10.3390/toxics13040262