Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = ESI-TOF mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 886 KiB  
Article
An Innovative Approach for Maximum Recovery of Isoflavones from Glycine max by the Design of Experiments Method
by Aleksandra Bibow, Sławomir Dresler and Marta Oleszek
Appl. Sci. 2025, 15(15), 8442; https://doi.org/10.3390/app15158442 - 30 Jul 2025
Viewed by 236
Abstract
Isoflavones are the main phenolic compounds of soybean that affect its biological activity. The quantity of these valuable compounds extracted from plant material can significantly vary, influenced by the chosen extraction method and the specific extractants employed. Moreover, in cosmetics and pharmacy, the [...] Read more.
Isoflavones are the main phenolic compounds of soybean that affect its biological activity. The quantity of these valuable compounds extracted from plant material can significantly vary, influenced by the chosen extraction method and the specific extractants employed. Moreover, in cosmetics and pharmacy, the application of non-toxic, eco-friendly solvents is very important. This study aimed to develop the best mixture of extractants to maximize the recovery of individual isoflavones from soybean seeds by optimization of the proportion of three components: ethanol, water, and propanediol. The design of experiments (DOE) method was strategically employed. The extracts were obtained through accelerated solvent extraction and meticulously analyzed for isoflavone content using advanced electrospray ionization–time of flight–mass spectrometry (ESI-TOF-MS) profiling. The predominant isoflavones were daidzin, genistin, malonylgenistin, malonyldaidzin, and malonylglycitin. Our experiment demonstrated that employing three extractants in a balanced 1:1:1 v/v/v ratio resulted in the highest isolation of isoflavones compared to all other mixtures tested. Nevertheless, a detailed exploration of approximate values and utility profiles revealed a more effective composition for extraction efficiency. This optimal mixture features 32.8% ethanol, 39.2% water, and 27.8% propanediol, maximizing the yield of isoflavones from soybean seeds. The innovative use of mixture design and triangular response surfaces has proven to be a powerful approach for developing this superior three-component extraction mixture. This innovative approach not only enhances extraction efficiency but also paves the way for improved processing methods in the industry. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Figure 1

13 pages, 3506 KiB  
Article
Development of an HPTLC-MS Method for the Differentiation of Celosiae Semen: Celosia argentea Versus C. cristata
by Kyu Won Kim, Geonha Park, Sejin Ku and Young Pyo Jang
Molecules 2025, 30(13), 2786; https://doi.org/10.3390/molecules30132786 - 28 Jun 2025
Viewed by 293
Abstract
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, [...] Read more.
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, is not officially listed. The morphological and chemical similarities between the two pose challenges for accurate identification. This study presents an integrative method combining digital image analysis and high-performance thin-layer chromatography coupled with mass spectrometry (HPTLC-MS) to differentiate CAS from CCS. Digital microscopy and ImageJ analysis showed that CCS has a projection area over twice that of CAS. Chemically, an optimized HPTLC method using ethyl acetate, methanol, water, and formic acid revealed distinct fingerprint patterns under UV 366 nm and white light. Notably, celosin F was exclusively detected in CAS, while celosin H, J, and K were characteristic of CCS. ESI-TOF-MS analysis confirmed these markers, resolving an overlap in RF values. Repeatability tests showed total SDs of sucrose for intra-day, inter-day, and inter-analysis precision were 0.006, 0.004, and 0.005, respectively, confirming method reliability. This combined approach offers a rapid, reliable, and practical tool for distinguishing these two medicinal seeds, supporting enhanced quality control and regulatory standardization in pharmaceutical applications. Full article
Show Figures

Figure 1

8 pages, 882 KiB  
Short Note
bis(2-Phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]-iridium(III) Hexafluorophosphate
by Patrick Endres, Nishi Singh, Andreas Winter, Helmar Görls and Ulrich S. Schubert
Molbank 2025, 2025(2), M2024; https://doi.org/10.3390/M2024 - 18 Jun 2025
Viewed by 408
Abstract
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding [...] Read more.
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding (X-bonding). The synthesis of bis(2-phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]iridium(III) hexafluorophosphate, (2)(PF6), is straightforward and involves post-complexation iodination, thus expanding the already rich toolbox for performing “chemistry on the complex”. The formation of the iodoethynyl moieties was unequivocally proven by 1H-NMR spectroscopy, ESI-TOF mass spectrometry, and single-crystal XRD analysis. Full article
Show Figures

Figure 1

32 pages, 7375 KiB  
Article
An Innovative Strategy for Untargeted Mass Spectrometry Data Analysis: Rapid Chemical Profiling of the Medicinal Plant Terminalia chebula Using Ultra-High-Performance Liquid Chromatography Coupled with Q/TOF Mass Spectrometry–Key Ion Diagnostics–Neutral Loss Filtering
by Jia Yu, Xinyan Zhao, Yuqi He, Yi Zhang and Ce Tang
Molecules 2025, 30(11), 2451; https://doi.org/10.3390/molecules30112451 - 3 Jun 2025
Viewed by 693
Abstract
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of [...] Read more.
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of the medicinal plant Terminalia chebula. The strategy consists of four main steps. First, untargeted data are acquired in negative electrospray ionization (ESI) mode. Second, a genus-specific diagnostic ion database is constructed by leveraging characteristic fragment ions (e.g., gallic acid, chebuloyl, and HHDP groups) and conserved substructures. Third, MS/MS data are high-resolution filtered using key ion diagnostics and neutral loss patterns (302 Da for HHDP; 320 Da for chebuloyl). Finally, structures are elucidated via detailed spectral analysis. The methanol extract of T. chebula was separated on a C18 column using a gradient of acetonitrile and 0.1% aqueous formic acid within 33 min. This separation enabled detection of 164 compounds, of which 47 were reported for the first time. Based on fragmentation pathways and diagnostic ions (e.g., m/z 169 for gallic acid, m/z 301 for ellagic acid, and neutral losses of 152, 302, and 320 Da), the compounds were classified into three major groups: gallic acid derivatives, ellagitannins (containing HHDP, chebuloyl, or neochebuloyl moieties), and triterpenoid glycosides. KID-NLF overcomes key limitations of conventional workflows—namely, isomer discrimination and detection of low-abundance compounds—by exploiting genus-specific structural signatures. This strategy demonstrates high efficiency in resolving complex polyphenolic and triterpenoid profiles and enables rapid annotation of both known and novel metabolites. This study highlights KID-NLF as a robust framework for phytochemical analysis in species with high chemical complexity. It also paves the way for applications in quality control, drug discovery, and mechanistic studies of medicinal plants. Full article
Show Figures

Graphical abstract

21 pages, 2506 KiB  
Article
Integrated Gel Electrophoresis and Mass Spectrometry Approach for Detecting and Quantifying Extraneous Milk in Protected Designation of Origin Buffalo Mozzarella Cheese
by Sabrina De Pascale, Giuseppina Garro, Silvia Ines Pellicano, Andrea Scaloni, Stefania Carpino, Simonetta Caira and Francesco Addeo
Foods 2025, 14(7), 1193; https://doi.org/10.3390/foods14071193 - 28 Mar 2025
Cited by 1 | Viewed by 521
Abstract
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or [...] Read more.
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or non-PDO buffalo milk in PDO dairy buffalo products. Peripheral laboratories use gel electrophoresis combined with polyclonal antipeptide antibodies for initial screening, enabling the detection of foreign caseins, including those originating outside the PDO-designated regions. For more precise identification, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) differentiates species by detecting proteotypic peptides. In cases requiring confirmation, nano-liquid chromatography coupled to electrospray tandem mass spectrometry (nano-LC-ESI-MS/MS) is used in central state laboratories for the highly sensitive detection of extraneous milk proteins in PDO buffalo MdBC cheese. On the other hand, analysis of the pH 4.6 soluble fraction from buffalo blue cheese identified 2828 buffalo-derived peptides and several bovine specific peptides, confirming milk adulteration. Despite a lower detection extent in the pH 4.6 insoluble fraction following tryptic hydrolysis, the presence of bovine peptides was still sufficient to verify fraud. This integrated proteomic approach, which combines electrophoresis and mass spectrometry technologies, significantly improves milk adulteration detection, providing a robust tool to face increasingly sophisticated fraudulent practices. Full article
Show Figures

Figure 1

16 pages, 1560 KiB  
Article
Challenges in Using the Official Italian Method to Detect Bovine Whey Proteins in Protected Designation of Origin Buffalo Mozzarella: A Proteomic Approach to Face Observed Limits
by Federica Della Cerra, Mariapia Esposito, Simonetta Caira, Andrea Scaloni and Francesco Addeo
Foods 2025, 14(5), 822; https://doi.org/10.3390/foods14050822 - 27 Feb 2025
Viewed by 762
Abstract
This study critically examines the limitations of the official Italian methodology used for detecting bovine adulteration milk in Protected Designation of Origin (PDO) Mozzarella di Bufala Campana (MdBC). This method focuses on the whey fraction of cheese samples, which comprises about 1% of [...] Read more.
This study critically examines the limitations of the official Italian methodology used for detecting bovine adulteration milk in Protected Designation of Origin (PDO) Mozzarella di Bufala Campana (MdBC). This method focuses on the whey fraction of cheese samples, which comprises about 1% of total MdBC proteins, and is based on a high-performance liquid chromatography (HPLC) quantification of the bovine β-lactoglobulin A (β-Lg A) as a marker. Here, we have demonstrated that this official methodology suffers from measurement inconsistencies due to its reliance on raw bovine whey standards, which fail to account for β-Lg genetic polymorphisms in real MdBC samples and protein thermal modifications during cheesemaking. To overcome these limitations, we propose a dual proteomics-based approach using matrix-assisted laser desorption ionization (MALDI-TOF) mass spectrometry (MS) and nano-HPLC-electrospray (ESI)−tandem mass spectrometry (MS/MS) analysis of MdBC extracted whey. MALDI-TOF-MS focused on identifying proteotypic peptides specific to bovine and buffalo β-Lg and α-lactalbumin (α-La), enabling high specificity for distinguishing the two animal species at adulteration levels as low as 1%. Complementing this, nano-HPLC-ESI-MS/MS provided a comprehensive profile by identifying over 100 bovine-specific peptide markers from β-Lg, α-La, albumin, lactoferrin, and osteopontin. Both methods ensured precise detection and quantification of bovine milk adulteration in complex matrices like pasta filata cheeses, achieving high sensitivity even at minimal adulteration levels. Accordingly, the proposed dual proteomics-based approach overcomes challenges associated with whey protein polymorphism, heat treatment, and processing variability, and complements casein-based methodologies already validated under European standards. This integrated framework of analyses focused on whey and casein fraction enhances the reliability of adulteration detection and safeguards the authenticity of PDO buffalo mozzarella, upholding its unique quality and integrity. Full article
Show Figures

Figure 1

23 pages, 409 KiB  
Article
Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS
by Veronica de Melo Sacramento, Vanessa de Andrade Royo, Pedro Henrique Fonseca Veloso, Kamila Soares Freitas Souto, Alisson Samuel Portes Caldeira, Carlos Henrique Gomes Martins, Sara Lemes de Souza, Ezequias Pessoa de Siqueira, Fernando Ribeiro Cassiano, Afrânio Farias de Melo Júnior, Dario Alves de Oliveira, Elytania Veiga Mnezes and Tânia Maria de Almeida Alves
Molecules 2025, 30(4), 946; https://doi.org/10.3390/molecules30040946 - 18 Feb 2025
Viewed by 965
Abstract
Diplopterys pubipetala (Malpighiaceae) is a liana native to the Brazilian Cerrado biome, traditionally used in Ayahuasca preparations. Despite its cultural importance, research on its chemical composition and biological activities, which may have therapeutic potential, is limited. This study investigated the volatile and non-volatile [...] Read more.
Diplopterys pubipetala (Malpighiaceae) is a liana native to the Brazilian Cerrado biome, traditionally used in Ayahuasca preparations. Despite its cultural importance, research on its chemical composition and biological activities, which may have therapeutic potential, is limited. This study investigated the volatile and non-volatile secondary metabolites of D. pubipetala leaves, their antioxidant capacity, and their antibacterial and antifungal activities. Volatile compounds were identified using gas chromatography-mass spectrometry (GC-MS) coupled to solid-phase microextraction (SPME), while non-volatile compounds were annotated using UHPLC-MS/MS-ESI-Q-TOF. Antioxidant capacity was evaluated by DPPH assay, and antimicrobial activity was assessed in vitro against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida species (C. albicans, C. tropicalis, C. glabrata). GC-MS analysis revealed 25 predominant volatile compounds, including ethyl dodecanoate, ethyl tetradecanoate, nonanoic acid, and 5-methylhexan-2-one, with documented antifungal, antioxidant, and antimicrobial activities. The crude extract and ethyl acetate fraction showed strong antioxidant capacity (EC50 9.83 µg/mL and 6.42 µg/mL, respectively), and antifungal effects were observed against Candida species. This study provides the first comprehensive investigation of the antioxidant capacity and antibacterial and antifungal activities of D. pubipetala, together with a detailed chemical profile of its volatile compounds. Full article
11 pages, 2546 KiB  
Article
Improved Detection of Polysulfated Oligosaccharides by Mass Spectrometry Applicable to Miniaturized Samples
by Frédéric Jeanroy, Julie Gil, Clothilde Comby-Zerbino, Claire Demesmay and Vincent Dugas
Molecules 2024, 29(23), 5642; https://doi.org/10.3390/molecules29235642 - 28 Nov 2024
Cited by 1 | Viewed by 842
Abstract
The study of biomolecules and their interactions in their natural environment requires increasingly sophisticated technological and methodological developments. The complexity of these developments is due, among other things, to the nature of these molecules and the small quantities available depending on their origin. [...] Read more.
The study of biomolecules and their interactions in their natural environment requires increasingly sophisticated technological and methodological developments. The complexity of these developments is due, among other things, to the nature of these molecules and the small quantities available depending on their origin. In this context, this study focuses on the conditions for improving the detection of glycosaminoglycans on a miniaturized scale by mass spectrometry. These multicharged anionic linear polysaccharides are in fact difficult to study by mass spectrometry and can present, for a given molecule, a large number of signals linked to different charge states, to the loss of one or more sulfate groups and to the presence of different adducts, which reduces sensitivity and complicates the interpretation of the spectra. In order to reduce this complexity, we have investigated different sample preparation methods applicable to small sample volumes. The development of home-made capillary ion-exchange columns, for example, makes it possible to control the adducts formed in nano-ESI coupling. However, their use on a miniaturized scale for detection by MALDI-TOF-MS does not allow for performances as high as those obtained with treatment with a commercial DOWEXTM resin. However, experimental results allowed us to demonstrate that the presence of DOWEXTM resin colloid residues in the aqueous phase greatly improves the quality of the spectra obtained by MALDI-TOFMS on a Fondaparinux model glycosaminoglycan. Full article
Show Figures

Figure 1

23 pages, 7107 KiB  
Article
Profiling of Organosulfur Compounds in Onions: A Comparative Study between LC-HRMS and DTD-GC-MS
by Ana V. González-de-Peredo, Alicia Maroto, Gerardo F. Barbero and Antony Memboeuf
Chemosensors 2024, 12(7), 130; https://doi.org/10.3390/chemosensors12070130 - 6 Jul 2024
Viewed by 2197
Abstract
Onions are known not only for their culinary importance but also for their nutritional and health-promoting properties. Both properties are closely linked to their content of organosulfur compounds, which account for up to 5% of the dry weight of an onion. Given the [...] Read more.
Onions are known not only for their culinary importance but also for their nutritional and health-promoting properties. Both properties are closely linked to their content of organosulfur compounds, which account for up to 5% of the dry weight of an onion. Given the importance of these compounds, suitable analytical methods are required for their study. Two techniques should be highlighted in this context: gas chromatography coupled to mass spectrometry (GC-MS), and liquid chromatography coupled to mass spectrometry (LC-MS). In this study, eight different onion varieties were analyzed using two distinct analytical techniques: direct thermal desorption–gas chromatography–mass spectrometry (DTD-GC-MS) and high-resolution mass spectrometry (HRMS) on an LC-ESI-QqTOF instrument. Each method identified different organosulfur compounds, with LC-HRMS targeting 15 non-volatile compounds, such as cysteine sulfoxides, and GC-MS targeting 18 volatiles, such as disulfides and trisulfides. The results obtained were studied using Pearson correlations and principal component analysis. No precise correlation was found between the initial organosulfur compounds in onions and their hydrolysates. Consequently, although GC is one of the most employed techniques in the scientific literature, the use of LC-HRMS or a combination of both techniques may offer a more comprehensive and accurate description of the metabolomic profile of onions. Full article
Show Figures

Figure 1

29 pages, 1798 KiB  
Review
Advanced Mass Spectrometry-Based Biomarker Identification for Metabolomics of Diabetes Mellitus and Its Complications
by Feixue Zhang, Shan Shan, Chenlu Fu, Shuang Guo, Chao Liu and Shuanglong Wang
Molecules 2024, 29(11), 2530; https://doi.org/10.3390/molecules29112530 - 27 May 2024
Cited by 6 | Viewed by 5843
Abstract
Over the years, there has been notable progress in understanding the pathogenesis and treatment modalities of diabetes and its complications, including the application of metabolomics in the study of diabetes, capturing attention from researchers worldwide. Advanced mass spectrometry, including gas chromatography–tandem mass spectrometry [...] Read more.
Over the years, there has been notable progress in understanding the pathogenesis and treatment modalities of diabetes and its complications, including the application of metabolomics in the study of diabetes, capturing attention from researchers worldwide. Advanced mass spectrometry, including gas chromatography–tandem mass spectrometry (GC-MS/MS), liquid chromatography–tandem mass spectrometry (LC-MS/MS), and ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS), etc., has significantly broadened the spectrum of detectable metabolites, even at lower concentrations. Advanced mass spectrometry has emerged as a powerful tool in diabetes research, particularly in the context of metabolomics. By leveraging the precision and sensitivity of advanced mass spectrometry techniques, researchers have unlocked a wealth of information within the metabolome. This technology has enabled the identification and quantification of potential biomarkers associated with diabetes and its complications, providing new ideas and methods for clinical diagnostics and metabolic studies. Moreover, it offers a less invasive, or even non-invasive, means of tracking disease progression, evaluating treatment efficacy, and understanding the underlying metabolic alterations in diabetes. This paper summarizes advanced mass spectrometry for the application of metabolomics in diabetes mellitus, gestational diabetes mellitus, diabetic peripheral neuropathy, diabetic retinopathy, diabetic nephropathy, diabetic encephalopathy, diabetic cardiomyopathy, and diabetic foot ulcers and organizes some of the potential biomarkers of the different complications with the aim of providing ideas and methods for subsequent in-depth metabolic research and searching for new ways of treating the disease. Full article
Show Figures

Figure 1

29 pages, 3408 KiB  
Article
Monitoring the Phenolic and Terpenic Profile of Olives, Olive Oils and By-Products throughout the Production Process
by Lucía López-Salas, Javier Díaz-Moreno, Marco Ciulu, Isabel Borrás-Linares, Rosa Quirantes-Piné and Jesús Lozano-Sánchez
Foods 2024, 13(10), 1555; https://doi.org/10.3390/foods13101555 - 16 May 2024
Cited by 8 | Viewed by 2341
Abstract
Olive oil is a food of great importance in the Mediterranean diet and culture. However, during its production, the olive oil industry generates a large amount of waste by-products that can be an important source of bioactive compounds, such as phenolic compounds and [...] Read more.
Olive oil is a food of great importance in the Mediterranean diet and culture. However, during its production, the olive oil industry generates a large amount of waste by-products that can be an important source of bioactive compounds, such as phenolic compounds and terpenes, revalorizing them in the context of the circular economy. Therefore, it is of great interest to study the distribution and abundance of these bioactive compounds in the different by-products. This research is a screening focused on phytochemical analysis, with particular emphasis on the identification and quantification of the phenolic and terpenic fractions. Both the main products of the olive industry (olives, olive paste and produced oil) and the by-products generated throughout the oil production process (leaf, “alpeorujo”, liquid and solid residues generated during decanting commonly named “borras” and washing water) were analyzed. For this purpose, different optimized extraction procedures were performed for each matrix, followed by high-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF/MS) analysis. Although no phenolic alcohols were quantified in the leaf and the presence of secoiridoids was low, this by-product was notable for its flavonoid (720 ± 20 µg/g) and terpene (5000 ± 300 µg/g) contents. “Alpeorujo” presented a complete profile of compounds of interest, being abundant in phenolic alcohols (900 ± 100 µg/g), secoiridoids (4500 ± 500 µg/g) and terpenes (1200 ± 100 µg/g), among others. On the other hand, while the solid residue of the borras was the most abundant in phenolic alcohols (3700 ± 200 µg/g) and secoiridoids (680 ± 20 µg/g), the liquid fraction of this waste was notable for its content of elenolic acid derivatives (1700 ± 100 µg/mL) and phenolic alcohols (3000 ± 300 µg/mL). Furthermore, to our knowledge, this is the first time that the terpene content of this by-product has been monitored, demonstrating that it is an important source of these compounds, especially maslinic acid (120 ± 20 µg/g). Finally, the phytochemical content in wash water was lower than expected, and only elenolic acid derivatives were detected (6 ± 1 µg/mL). The results highlighted the potential of the olive by-products as possible alternative sources of a wide variety of olive bioactive compounds for their revalorization into value-added products. Full article
(This article belongs to the Special Issue Bioactive Compounds, Antioxidants, and Health Benefits—Volume II)
Show Figures

Figure 1

12 pages, 3521 KiB  
Article
Influence of Citrus sunki and Poncirus trifoliata Root Extracts on Metabolome of Phytophthora parasitica
by Héros José Maximo, Francisca Diana da Silva Araújo, Carolina Clepf Pagotto, Leonardo Pires Boava, Ronaldo José Durigan Dalio, Gustavo Henrique Bueno Duarte, Marcos Nogueira Eberlin and Marcos Antonio Machado
Metabolites 2024, 14(4), 206; https://doi.org/10.3390/metabo14040206 - 5 Apr 2024
Cited by 1 | Viewed by 1882
Abstract
Phytophthora parasitica is an oomycete pathogen that infects a broad range of crops of worldwide economic interest; among them are citrus species. In general, some Citrus and the rootstocks of related genera offer considerable resistance against P. parasitica; therefore, understanding the mechanisms [...] Read more.
Phytophthora parasitica is an oomycete pathogen that infects a broad range of crops of worldwide economic interest; among them are citrus species. In general, some Citrus and the rootstocks of related genera offer considerable resistance against P. parasitica; therefore, understanding the mechanisms involved in the virulence of this pathogen is crucial. In this work, P. parasitica secondary metabolite production was studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-Q-TOF-MS) combined with chemometric tools, and its metabolic profile was evaluated under the influence of Citrus sunki (a highly susceptible host) and Poncirus trifoliata (a resistant genotype) extracts. The root extracts of Citrus sunki had an influence on the growth and hyphae morphology, and the root extracts of P. trifoliata had an influence on the zoospore behavior. In parallel, the spatial distribution of several metabolites was revealed in P. parasitica colonies using MALDI-MSI, and the metabolite ion of m/z 246 was identified as the protonated molecule of Arg-Ala. The MALDI-MSI showed variations in the surface metabolite profile of P. parasitica under the influence of the P. trifoliata extract. The P. parasitica metabolome analysis using UHPLC-ESI-Q-TOF-MS resulted in the detection of Arg-Gln (m/z 303.1775), as well as L-arginine (m/z 175.1191) and other unidentified metabolites. Significant variations in this metabolome were detected under the influence of the plant extracts when evaluated using UHPLC-ESI-Q-TOF-MS. Both techniques proved to be complementary, offering valuable insights at the molecular level when used to assess the impact of the plant extracts on microbial physiology in vitro. The metabolites identified in this study may play significant roles in the interaction or virulence of P. parasitica, but their functional characterization remains to be analyzed. Overall, these data confirm our initial hypotheses, demonstrating that P. parasitica has the capabilities of (i) recognizing host signals and altering its reproductive programing and (ii) distinguishing between hosts with varying responses in terms of reproduction and the production of secondary metabolites. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

25 pages, 1146 KiB  
Article
Phytochemical Profiles and Antimicrobial Activity of Selected Populus spp. Bud Extracts
by Piotr Okińczyc, Jarosław Widelski, Kinga Nowak, Sylwia Radwan, Maciej Włodarczyk, Piotr Marek Kuś, Katarzyna Susniak and Izabela Korona-Głowniak
Molecules 2024, 29(2), 437; https://doi.org/10.3390/molecules29020437 - 16 Jan 2024
Cited by 11 | Viewed by 2424
Abstract
Buds of poplar trees (Populus species) are often covered with sticky, usually polyphenol-rich, exudates. Moreover, accessible data showed that some Populus bud extracts may be excellent antibacterial agents, especially against Gram-positive bacteria. Due to the fragmentary nature of the data found, we [...] Read more.
Buds of poplar trees (Populus species) are often covered with sticky, usually polyphenol-rich, exudates. Moreover, accessible data showed that some Populus bud extracts may be excellent antibacterial agents, especially against Gram-positive bacteria. Due to the fragmentary nature of the data found, we conducted a systematic screening study. The antimicrobial activity of two extract types (semi-polar—ethanolic and polar—ethanolic-water (50/50; V/V)) from 27 bud samples of different poplar taxons were compared. Antimicrobial assays were performed against Gram-positive (five strains) and Gram-negative (six strains) bacteria as well as fungi (three strains) and covered the determination of minimal inhibitory, bactericidal, and fungicidal concentrations. The composition of extracts was later investigated by ultra-high-performance liquid chromatography coupled with ultraviolet detection (UHPLC-DAD) and with electrospray-quadrupole-time-of-flight tandem mass spectrometry (UHPLC-ESI-qTOF-MS). As a result, most of the extracts exhibited good (MIC ≤ 62.5 µg/mL) or moderate (62.5 < MIC ≤ 500 µg/mL) activity against Gram-positives and Helicobacter pylori, as well as fungi. The most active were ethanolic extracts from P. trichocarpa, P. trichocarpa clone ‘Robusta’, and P. tacamahaca × P. trichocarpa. The strongest activity was observed for P. tacamahaca × P. trichocarpa. Antibacterial activity was supposedly connected with the abundant presence of flavonoids (pinobanksin, pinobanksin 3-acetate, chrysin, pinocembrin, galangin, isosakuranetin dihydrochalcone, pinocembrin dihydrochalcone, and 2′,6′-dihydroxy-4′-methoxydihydrochalcone), hydroxycinnamic acids monoesters (p-methoxycinnamic acid cinnamyl ester, caffeic acid phenethylate and different isomers of prenyl esters), and some minor components (balsacones). Full article
(This article belongs to the Special Issue Antibacterial Agents from Natural Source, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 2219 KiB  
Article
New l-Rhamnose-Binding Lectin from the Bivalve Glycymeris yessoensis: Purification, Partial Structural Characterization and Antibacterial Activity
by Tatyana O. Mizgina, Irina V. Chikalovets, Tatyana A. Bulanova, Valentina I. Molchanova, Alina P. Filshtein, Rustam H. Ziganshin, Eugene A. Rogozhin, Nadezhda V. Shilova and Oleg V. Chernikov
Mar. Drugs 2024, 22(1), 27; https://doi.org/10.3390/md22010027 - 29 Dec 2023
Cited by 4 | Viewed by 2881
Abstract
In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same [...] Read more.
In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/β-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

13 pages, 2208 KiB  
Article
Changes in Phenolic Compounds and Antioxidant Capacity of Artocarpus heterophyllus Lam. (Jackfruit) Pulp during In Vitro Gastrointestinal Digestion
by Ming Cheng, Jiali He, Yu Gu, Gang Wu, Lehe Tan, Chuan Li, Fei Xu and Kexue Zhu
Antioxidants 2024, 13(1), 37; https://doi.org/10.3390/antiox13010037 - 23 Dec 2023
Cited by 4 | Viewed by 3522
Abstract
An in vitro gastrointestinal digestion model was applied to investigate the effect of digestion on the phenolic compounds and antioxidant capacity of Artocarpus heterophyllus Lam. (jackfruit) pulp. The total phenol content (TPC) was determined using Folin–Ciocalteu method, and the antioxidant activities were evaluated [...] Read more.
An in vitro gastrointestinal digestion model was applied to investigate the effect of digestion on the phenolic compounds and antioxidant capacity of Artocarpus heterophyllus Lam. (jackfruit) pulp. The total phenol content (TPC) was determined using Folin–Ciocalteu method, and the antioxidant activities were evaluated by DPPH and ABTS assays. Phenolic compounds were analyzed using ultra-performance liquid chromatography coupled with electrospray ionization, followed by quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The results showed that TPC was significantly higher after gastric digestion. Thirty phenolic compounds (hydroxybenzoic acids and derivatives, hydroxycinnamic acids and derivatives, and flavonoids) were identified. The antioxidant activities of the digested samples varied with the TPC, and there was a correlation between antioxidant activity and TPC. The present study implies that gastrointestinal digestion may improve TPC and increase the amount of free phenolic compounds, mainly related to changes in pH value and digestive enzymes. Full article
Show Figures

Graphical abstract

Back to TopTop