Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS
Abstract
:1. Introduction
2. Results
2.1. Thin-Layer Chromatography (TLC)
2.2. Evaluation of Antioxidant Capacity
2.3. Antibacterial Activity
2.4. Antifungal Activity
2.5. LC-ESI-QTOF-MS/MS Analysis
2.6. GC/MS Analysis
3. Discussion
3.1. Thin-Layer Chromatography (TLC)
3.2. Evaluation of Antioxidant Capacity
3.3. Antibacterial Activity
3.4. Antifungal Activity
3.5. LC-ESI-QTOF-MS/MS Analysis
3.5.1. Putative Identification of Flavonoids
3.5.2. Putative Identification of Procyanidins
3.6. GC/MS Analysis
3.7. Statistical Analysis
3.7.1. Antioxidant Capacity
3.7.2. EC50
3.7.3. Antimicrobial Activity
4. Materials and Methods
4.1. Chemicals and Instruments
4.2. Plant Material
4.3. Preparation of Plant Material
4.4. Thin-Layer Chromatography (TLC)
4.5. Evaluation of the Antioxidant Capacity of the Crude Extract and Fractions
4.6. In Vitro Biological Assays for Antibacterial Activity
4.7. In Vitro Biological Assays for Antifungal Activity
4.8. Statistical Analysis
4.8.1. Antioxidant Capacity
4.8.2. Antimicrobial Activity
4.9. Chemical Characterization by UHPLC-MS/MS
4.10. Gas Chromatography-Mass Spectrometry
4.10.1. Sample Preparation for Liquid Injection
4.10.2. Sample Preparation for SPME Analysis
4.10.3. Experimental Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maciel, M.A.M.; Pinto, A.C.; Veiga, V.F., Jr.; Grynberg, N.F.; Echevarria, A. Plantas medicinais: A necessidade de estudos multidisciplinares. Quím. Nova 2002, 2, 429–438. [Google Scholar] [CrossRef]
- Soares, A.J.S.; Cimbleris-Alkmim, A.; Ramalho-De-Oliveira, D.; Mendonça, S.A.M.; Rodrigues, I.V. Potencialidades da prática da atenção farmacêutica no uso de fitoterápicos e plantas medicinais. J. Appl. Pharm. Sci. 2021, 7, 10–21. Available online: https://www.researchgate.net/publication/348975474 (accessed on 16 December 2024).
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef] [PubMed]
- Nigussie, D.; Davey, G.; Tufa, T.B.; Brewster, M.; Legesse, B.A.; Fekadu, A.; Makonnen, E. Antibacterial and Antifungal Activities of Ethiopian Medicinal Plants: A Systematic Review. Front. Pharmacol. 2021, 12, 633921. [Google Scholar] [CrossRef]
- Alemu, M.; Lulekal, E.; Asfaw, Z.; Warkineh, B.; Debella, A.; Abebe, A.; Degu, S.; Debebe, E. Antibacterial activity and phytochemical screening of traditional medicinal plants most preferred for treating infectious diseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia. PLoS ONE 2024, 19, e0300060. [Google Scholar] [CrossRef]
- Buzgaia, N.; Lee, S.Y.; Rukayadi, Y.; Abas, F.; Shaari, K. Antioxidant Activity, α-Glucosidase Inhibition and UHPLC-ESI-MS/MS Profile of Shmar (Arbutus pavarii Pamp). Plants 2021, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Bussa, N.; Gashaw, T.; Mengistu, G. Investigating In Vitro Antibacterial Activities of Medicinal Plants Having Folkloric Repute in Ethiopian Traditional Medicine. J. Evid. Based Integr. Med. 2019, 24, 2515690X19886276. [Google Scholar] [CrossRef]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Santos, L.; Viel, A.M.; Tarosso, L.F.; Momesso, L.d.S.; Palmieri, D.A.; Spera, K.D. Medicinal plants of the brazilian cerrado: Knowing to preserve. Biosci. J. 2020, 36, 556–567. [Google Scholar] [CrossRef]
- Gates, B. Banisteriopsis and Diplopterys (Malpighiaceae). Flora Neotrop. Monograph. 1982, 30, 1–237. Available online: https://www.jstor.org/stable/4393754 (accessed on 16 December 2024).
- Nagamine-Pinheiro, N.; Fagg, C.W.; Gomes, S.M.; Oliveira, R.C.; Sonsin-Oliveira, J. Vegetative anatomy, morphology and histochemistry of three species of Malpighiaceae used in analogues of the Amazonian psychoactive beverage Ayahuasca. Flora 2021, 275, e151760. [Google Scholar] [CrossRef]
- Possobom, C.C.F.; Guimarães, E.; Machado, S.R. Leaf glands act as nectaries in Diplopterys pubipetala (Malpighiaceae). Plant Biol. 2010, 12, 863–870. [Google Scholar] [CrossRef]
- Possobom, C.C.F.; Guimarães, E.; Machado, S.R. Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora—Morphol. Distrib. Funct. Ecol. Plants 2015, 211, 26–39. [Google Scholar] [CrossRef]
- Possobom, C.C.F.; Machado, S.R.; Guimarães, E. Reproductive system of Diplopterys pubipetala (Malpighiaceae) plants from a savanna ecosystem. Int. J. Plant Biol. 2016, 8, 1–6. [Google Scholar]
- Souto, L.S.; Oliveira, D.M.T. Morfoanatomia e ontogênese das sementes de espécies de Banisteriopsis C.B. Robinson e Diplopterys A. Juss. (Malpighiaceae). Acta Bot. Bras. 2008, 22, 733–740. [Google Scholar] [CrossRef]
- Souto, L.S.; Oliveira, D.M.T. Estrutura do pericarpo de Banisteriopsis CB Rob. e Diplopterys A. Juss. (Malpighiaceae): Novos dados suportando a segregação genérica. Acta Bot. Bras. 2012, 26, 527–536. [Google Scholar] [CrossRef]
- Costa, M.O.N.; Santos, K.T.; Almeida, C.A.; Fonseca, F.S.A.; Angolini, C.F.F.; Oliveira, D.A.; Melo Júnior, A.F.; Menezes, E.V.; Royo, V.A. Chemical Composition of Diplopterys pubipetala (Malpighiaceae). Eur. J. Med. Plants 2020, 31, 43–48. [Google Scholar] [CrossRef]
- Sacramento, V.M.; Santos, K.T.; Rocha, D.F.O.; Cabral, E.C.; Eberlin, M.N.; Mercadante-Simões, M.O.; da Fonseca, F.S.A.; Júnior, A.F.M.; Menezes, E.V.; de Oliveira, D.A.; et al. Chemical profile and antioxidant activity in Diplopterys pubipetala (Malpighiaceae). Nat. Prod. Res. 2020, 36, 3450–3454. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.T.; Souza, L.R.; Batista de Paula, A.M.; Avelar Almeida, C.; Alves de Oliveira, D.; de Melo Júnior, A.F.; Menezes, E.V.; Brandão, M.M.; Royo, V.d.A. In Vitro Antitumor Effect on Melanoma Cell Line and Chemical Composition of Diplopterys pubipetala (A. Juss) W.R. Anderson and C. Davis. Pharmacogn. Rev. 2020, 14, 146–154. [Google Scholar] [CrossRef]
- Freitas, J.F.L.; França, F.D.; Chaves, M.M.; Menezes, E.V.; Melo Júnior, A.F.; Oliveira, D.A.; Almeida, C.A.; Teixeira, K.S.; Brandão, M.M.; Royo, V.A. Chromatographic Profiles, Anti inflammatory, and Cytotoxicity Potential of Extracts of Banisteriopsis pubipetala (A. Juss). Pharmacogn. Res. 2019, 11, 339–345. [Google Scholar] [CrossRef]
- Prazeres, R.M.; Santos, K.T.; de Melo Junior, A.F.; Oliveira, D.A.; Menezes, E.V.; Junio, J.B.S.; Fonseca, F.S.A.; Royo, V.A. Perfil de ácidos graxos e propriedades físico químicas do óleo extraído das sementes de Banisteriopsis pubipetala (A. Juss.) Cuatrec. (Malpighiaceae). Periódico Tchê Química 2017, 14, 105–111. [Google Scholar] [CrossRef]
- Pádua, M.S.; Mendes-Costa, M.C.; Ferreira, J.M.S.; Magalhães, J.C.; Castro, A.H.F. Assessment of antimicrobial activity in vitro of ethanolic extracts of Banisteriopsis anisandra (A. Juss.) B. Gates (Malpighiaceae). Rev. Bras. Plantas Med. 2013, 15, 431–437. [Google Scholar] [CrossRef]
- Nunes, B.C.; Martins, M.M.; Chang, R.; Morais, S.A.L.; Nascimento, E.A.; de Oliveira, A.; Cunha, L.C.; da Silva, C.V.; Teixeira, T.L.; Ambrósio, M.A.; et al. Antimicrobial activity, cytotoxicity and selectivity index of Banisteriopsis laevifolia (A. Juss.) B. Gates leaves. Ind. Crops Prod. 2016, 92, 277–289. [Google Scholar] [CrossRef]
- Quaresma, D.M.O.; Justino, A.B.; Sousa, R.M.F.; Munoz, R.A.A.; de Aquino, F.J.T.; Martins, M.M.; Goulart, L.R.; Pivatto, M.; Espindola, F.S.; de Oliveira, A. Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorg. Chem. 2020, 105, 104335. [Google Scholar] [CrossRef]
- Alexandre, G.P.; Simão, J.L.S.; Tavares, M.O.A.; Zuffo, I.M.S.; Prado, S.V.; de Paiva, J.A.; Mustapha, A.N.; DE Oliveira, A.E.; Kato, L.; Severino, V.G.P. Dereplication by HPLC-ESI-MS and antioxidant activity of phenolic compounds from Banisteriopsis laevifolia (Malpighiaceae). An. Acad. Bras. Cienc. 2022, 94, 1–15. [Google Scholar] [CrossRef]
- Siqueira, E.P.; Alves, T.M.A.; Zani, C.L. Fingerprint of volatiles from plant extracts based on SPME-GC-MS. Rev. Bras. Farmacogn. 2007, 17, 565–571. [Google Scholar] [CrossRef]
- Nascimento, R.F.D.; de Lima, A.C.A.; Barbosa, G.A.; da Silva, V.P.A. Cromatografia Gasosa Aspectos Teóricos e Práticos; Imprensa Universitária: Fortaleza, Brazil, 2018; pp. 1–334. [Google Scholar]
- Martins, M. Estudo Fitoquímico e Atividades Antioxidante, Antimicrobiana, Antiprotozoária e Citotóxica da Espécie Banisteriopsis oxyclada (A. Juss.) B. Gates. Universidade Federal de Uberlândia: Uberlândia, Brazil, 2018. [Google Scholar] [CrossRef]
- Freires, I.; Denny, C.; Benso, B.; de Alencar, S.; Rosalen, P. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R.; Organizadores. Farmacognosia: Da Planta ao Medicamento, 6th ed.; Editora UFRGS: Porto Alegre, Brazil, 2010. [Google Scholar]
- Brassuer, T.; Angenot, L. Le mélange diphénylborate d’aminoéthanol—PEG 400. J. Chromatogr. A 1986, 351, 351–355. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; 384p. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Silva, T.F.R.; Martins, M.M.; de Morais, S.A.L.; Chang, R.; de Aquino, F.J.T.; da Silva, C.V.; Teixeira, T.L.; Martins, C.H.; Moraes, T.S.; et al. Antifungal and cytotoxicity activities of Banisteriopsis argyrophylla leaves. J. Pharm. Pharmacol. 2018, 70, 1541–1552. [Google Scholar] [CrossRef]
- Santos, B.W.L.; Moreira, D.C.; Borges, T.K.D.S.; Caldas, E.D. Components of Banisteriopsis caapi, a Plant Used in the Preparation of the Psychoactive Ayahuasca, Induce Anti-Inflammatory Effects in Microglial Cells. Molecules 2022, 27, 2500. [Google Scholar] [CrossRef] [PubMed]
- Paula-Freire, L.I.G.; Mendes, F.R.; Molska, G.R.; Duarte-Almeida, J.M.; Carlini, E.A. Comparison of the chemical composition and biological effects of the roots, branches and leaves of Heteropterys tomentosa A. Juss. J. Ethnopharmacol. 2013, 145, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.; Behrens, C.S.B.; Nagamine-Pinheiro, N.; Fagg, C.W.; Silva, M.S.; Martins-Silva, T.; Sonsin-Oliveira, J. Ethnobotany and Wood Anatomy of Banisteriopsis caapi Ethnotaxa and Diplopterys cf. pubipetala, Components of Ayahuasca in Brazilian Rituals. Econ. Bot. 2023, 77, 18–47. [Google Scholar] [CrossRef]
- Maia, L.O.; Daldegan-Bueno, D.; Wiebner, I.; Araujo, D.B.; Tófoli, L.F. Ayahuasca’s therapeutic potential: What we know—And what not. Eur. Neuropsychopharmacol. 2023, 66, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.; Opaleye, E.; Bouso, J.C.; Tófoli, L.F.; Sarris, J.; Schubert, V.; Ruffell, S.; Simonova, H. Insights, Life Changes and Lifestyle Changes Reported by Individuals Consuming Ayahuasca in Naturalistic Settings: Nature, Frequency and Associations with Mental Health and Wellbeing. Psychoactives 2023, 2, 256–286. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Oliveira, G.L.S. Determinação da capacidade antioxidante de produtos naturais in vitro pelo método do DPPH•: Estudo de revisão. Rev. Bras. Plantas Med. 2015, 17, 36–44. [Google Scholar] [CrossRef]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Dias Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz. 2002, 97, 1027–1031. [Google Scholar] [CrossRef]
- Rocha, E.O.; Cunha, L.C.S.; Silva, M.V.S.G.; Freitas, T.R.; Nascimento, E.A.; Silva, L.O.; Martins, C.H.G.; Aquino, F.J.T.; Chang, R.; Morais, S.A.L. Chemical composition and antimicrobial activity of essential oil of flowers from Banisteriopsis campestris (A. Juss.) Little. Rev. Virtual Quím. 2018, 10, 1562–1577. [Google Scholar] [CrossRef]
- Ferreira, I.V.; Mendes-Costa, M.C. Antimicrobial activity of ethanol extracts of Banisteriopsis anisandra (Malpighiaceae) and drug interactions. RSBO 2019, 16, 94–100. [Google Scholar] [CrossRef]
- Frias, U.A.; Mendes-Costa, M.; Takahashi, J. Caracterização fitoquímica e avaliação das atividades antibacteriana e anticolinesterásica de extratos de Banisteriopsis anisandra A. Juss. (Malpighiaceae). Rev. Cuba. Plantas Med. 2011, 16, 60–71. Available online: https://www.researchgate.net/publication/284790325 (accessed on 16 December 2024).
- Carlos, N.; Loss, R.; Silva, S.; Guedes, S.; Carvalho, J. Avaliação físico-química e atividade antimicrobiana da casca, polpa e semente do murici (Byrsonima crassifolia). EnciBio 2017, 14, 232–243. Available online: https://www.conhecer.org.br/ojs/index.php/biosfera/article/view/841 (accessed on 16 December 2024). [CrossRef]
- Martínez-Vázquez, M.; González-Esquinca, A.R.; Cazares Luna, L.; Moreno Gutiérrez, M.N.; García-Argáez, A.N. Antimicrobial activity of Byrsonima crassifolia (L.) H.B.K. J. Ethnopharmacol. 1999, 66, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Pinho, L.; Souza, P.N.S.; Macedo Sobrinho, E.; Almeida, A.C.; Martins, E.R. Atividade antimicrobiana de extratos hidroalcoolicos das folhas de alecrim- pimenta, aroeira, barbatimão, erva baleeira e do farelo da casca de pequi. Ciênc Rural. 2012, 42, 326–331. [Google Scholar] [CrossRef]
- Roman Júnior, W.A.; Carvalho, M.L.C.; Vilegas, W.; Nakamura, C.V.; Filho, B.P.D.; Mello, J.C.P. 2,3,4,6-Tetra-O-(3-nitropropanoyl)-O-β-D-glucopyranoside, a New Antimicrobial from the Roots of Heteropteris aphrodisiaca. Acta Farm. Bon. 2005, 24, 543–545. Available online: http://hdl.handle.net/11449/68447 (accessed on 16 December 2024).
- Freitas, L.B.O.; Boaventura, M.A.D.; Santos, W.L.; Stehmann, J.R.; Junior, D.D.; Lopes, M.T.P.; Magalhães, T.F.; da Silva, D.L.; de Resende, M.A. Allelopathic, cytotoxic and antifungic activities of new dihydrophenanthrenes and other constituents of leaves and roots extracts of Banisteriopsis anisandra (Malpighiaceae). Phytochem Lett. 2015, 12, 9–16. [Google Scholar] [CrossRef]
- de Jesus, T.R.; Alves, L.G.S.; Lopes, S.A.; Mendes, S.J.F.; Serra, I.C.P.B. Desenvolvimento de uma formulação tópica à base de Byrsonima crassifolia para tratamento de candidíase cutânea. Rev. Foco 2023, 16, e2260. [Google Scholar] [CrossRef]
- Zhang, C.W.; Zhong, X.J.; Zhao, Y.S.; Rajoka, M.S.R.; Hashmi, M.H.; Zhai, P.; Song, X. Antifungal natural products and their derivatives: A review of their activity and mechanism of actions. Biomed. Pharmacother. 2023, 7, 100262. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Zhuang, B.; Bi, Z.M.; Wang, Z.Y.; Duan, L.; Lai, C.J.S.; Liu, E.H. Chemical profiling and quantitation of bioactive compounds in Platycladi Cacumen by UPLC-Q-TOF-MS/MS and UPLC-DAD. J. Pharm. Biomed. Anal. 2018, 154, 207–215. [Google Scholar] [CrossRef]
- Ma, X.; Wang, F.; Hang, T.; Dramou, P. Degradation study of rutin as template from magnetic composite molecularly imprinted polymer supernatant samples by liquid chromatography–mass spectrometry. J. Chromatogr. A. 2022, 1673, 463199. [Google Scholar] [CrossRef]
- Ali, D.E.; Bassam, S.M.; Elatrebi, S.; Habiba, E.S.; Allam, E.A.; Omar, E.M.; Ghareeb, D.A.; Abdulmalek, S.A.; Abdel-Sattar, E. HR LC-MS/MS metabolomic profiling of Yucca aloifolia fruit and the potential neuroprotective effect on rotenone-induced Parkinson’s disease in rats. PLoS ONE 2023, 18, e0282246. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Shachaf, N.; Feldberg, L.; Rogachev, I.; Heinig, U.; Aharoni, A. PICA: Pixel Intensity Correlation Analysis for Deconvolution and Metabolite Identification in Mass Spectrometry Imaging. Anal. Chem. 2023, 95, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Tadros, S.; Eltomy, S.; Salama, A.; El Gedaily, R. A Review on Traditional uses, Phytochemistry and Pharmacological Potential of Family Malpighiaceae. Egypt. J. Chem. 2022, 65, 235–274. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, X.; Zheng, X.; Shi, Y.; Li, C.; He, Q.; Li, Y.; Chen, X. Integrated UPLC-Q-TOF-MS/MS and Network Pharmacology Approach to Investigating the Metabolic Profile of Marein of Coreopsis tinctoria Nutt. Evid. Based Complement. Altern. Med. 2022, 23, 6707811. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.R.F.; Wu, H.; Nebo, L.; Fernandes, J.B.; das Graças Fernandes da Silva, M.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; et al. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorg. Med. Chem. 2015, 23, 466–470. [Google Scholar] [CrossRef]
- Rodrigues, P.A.; Morais, S.M.; Souza, C.M.; Magalhães, D.V.; Vieira, Í.G.P.; Andrade, G.M.; Rao, V.S.; Santos, F.A. Gastroprotective effect of Byrsonima sericea DC leaf extract against ethanol-induced gastric injury and its possible mechanisms of action. Acad. Bras. Ciênc. 2012, 84, 113–122. [Google Scholar] [CrossRef]
- Carmo, P.L.; Mello, R.d.J.; Ramos, I.F.d.O.; de Jesus, C.C.M.; Pontes, R.G.M.d.S.; de Araújo, M.H.; Bonavita, A.G.C.; Pinto, S.C.; Muzitano, M.F.; Raimundo, J.M. Analgesic and anti-inflammatory activities of ethyl acetate and butanol fractions from Vitex polygama hydroalcoholic leaf extract. Nat. Prod. Res. 2023, 37, 776–781. Available online: https://www.tandfonline.com/doi/full/10.1080/14786419.2022.2083125 (accessed on 16 December 2024). [CrossRef]
- El-Hawary, S.S.; El-Fitiany, R.A.; Mousa, O.M.; Salama, A.A.A.; El Gedaily, R.A. Metabolic profiling and in vivo hepatoprotective activity of Malpighia glabra L. leaves. J. Food Biochem. 2020, 45, e13588. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ouyang, X.; Liang, M.; Chen, D. Comparative analysis of radical adduct formation (RAF) products and antioxidant pathways between myricetin-3-O-galactoside and myricetin aglycone. Molecules 2019, 24, 2769. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, Y.; Tiwari, S.; Mishra, D.K.; Kanojiya, S. The characterization and quantification of structures of Cajanus scarabaeoides phytochemicals and their seasonal variation analysis using ultra-performance liquid chromatography-tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2023, 37, e9440. [Google Scholar] [CrossRef] [PubMed]
- Osuntokun, O.T.; Idowu, T.O.; Cristina, G.M. Bio-guided Isolation, Purification and Chemical Characterization of Epigallocatechin; Epicatechin, Stigmasterol, Phytosterol from of Ethyl Acetate Stem Bark Fraction of Spondias mombin (Linn.). Biochem. Pharmacol. 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Gonçalves, J.; Luís, Â.; Gradillas, A.; García, A.; Restolho, J.; Fernández, N.; Domingues, F.; Gallardo, E.; Duarte, A.P. Ayahuasca Beverages: Phytochemical Analysis and Biological Properties. Antibiotics 2020, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Samoylenko, V.; Tekwani, B.L.; Khan, I.A.; Miller, L.S.; Chaurasiya, N.D.; Rahman, M.M.; Tripathi, L.M.; Khan, S.I.; Joshi, V.C.; et al. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson’s disease. J. Ethnopharmacol. 2010, 128, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Shreelakshmi, S.V.; Chaitrashree, N.; Nazareth, M.S.; Kumar, S.S.; Shetty, N.P.; Giridhar, P. Bioactive compounds and antioxidant activity during ripening of Malpighia glabra fruits. J. Food Sci. Technol. 2024, 61, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, Y.; Ahmad, M.T.; Chong, C.M.; Ismail, I.S.; Shaari, K. Phenolic content of Terminalia catappa L. leaf and toxicity evaluation on red hybrid tilapia (Oreochromis sp.). J. Fish. Biol. 2023, 102, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Rue, E.A.; Rush, M.D.; van Breemen, R.B. Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef]
- Karonen, M.; Imran, I.B.; Engström, M.T.; Salminen, J.P. Characterization of Natural and Alkaline-Oxidized Proanthocyanidins in Plant Extracts by Ultrahigh-Resolution UHPLC-MS/MS. Molecules 2021, 26, 1873. [Google Scholar] [CrossRef]
- Chang, M.; Sun, X.; Guo, X.; Bai, H.; Liu, R.; Jin, Q.; Wang, X. Composition and antioxidant study of procyanidins from peanut skins. Food Meas. 2020, 14, 2781–2789. [Google Scholar] [CrossRef]
- Lin, L.Z.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9382–9390. [Google Scholar] [CrossRef]
- Vas, G.; Vékey, K. Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J. Mass. Spectrom. 2004, 39, 233–254. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—A review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef]
- Aksakal, S.; Aksakal, R.; Becer, C.R. Thioester Functional Polymers. In Sulfur-Containing Polymers; Wiley: Hoboken, NJ, USA, 2021; pp. 235–263. [Google Scholar]
- Khatri, P.; Rana, J.S.; Jamdagni, P.; Sindhu, A. Phytochemical Screening, Gc-Ms And FT-IR Analysis of Methanolic Extract Leaves of Elettaria cardamomum. Int. J. Res. 2017, 5, 213–224. [Google Scholar] [CrossRef]
- Rahman, A.; Albadrani, G.M.; Ahmad, W.E.; Awan, T.H.; Yavas, İ.; Hussain, S. Plant Secondary Metabolites and Abiotic Stress Tolerance: Overview and Implications. In Plant Abiotic Stress Responses and Tolerance Mechanisms; IntechOpen: London, UK, 2023; pp. 1–22. [Google Scholar]
- Hanif, S.; Jabeen, K.; Akhtar, N.; Iqbal, S. GC-MS Analysis & Antifungal activity of Datura metel L. against Rhizoctonia solani Kuhn. An. Acad. Bras. Cienc. 2022, 94, e20200851. [Google Scholar]
- Saito, J.; Agrawal, A.; Patravale, V.; Pandya, A.; Orubu, S.; Zhao, M.; Andrews, G.P.; Petit-Turcotte, C.; Landry, H.; Croker, A.; et al. The Current States, Challenges, Ongoing Efforts, and Future Perspectives of Pharmaceutical Excipients in Pediatric Patients in Each Country and Region. Children 2022, 9, 453. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, Y.; Feng, Z.; Liu, Z.; Tao, N. Octanal enhances disease resistance in postharvest citrus fruit by the biosynthesis and metabolism of aromatic amino acids. Pestic. Biochem. Physiol. 2024, 200, 105835. [Google Scholar] [CrossRef]
- Vanitha, V.; Vijayakumar, S.; Nilavukkarasi, M.; Punitha, V.N.; Vidhya, E.; Praseetha, P.K. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind. Crops Prod. 2020, 154, 112748. [Google Scholar] [CrossRef]
- Felício, R.; de Albuquerque, S.; Young, M.C.M.; Yokoya, N.S.; Debonsi, H.M. Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J. Pharm. Biomed. Anal. 2010, 52, 763–769. [Google Scholar] [CrossRef]
- Rocha, A.D.; de Oliveira, A.B.; de Souza Filho, J.D.; Lombardi, J.A.; Braga, F.C. Antifungal constituents of Clytostoma ramentaceum and Mansoa hirsuta. Phytother. Res. 2004, 18, 463–467. [Google Scholar] [CrossRef]
- Aranega-Bou, P.; Leyva, M.O.; Finiti, I.; García-Agustín, P.; González-Bosch, C. Priming of plant resistance by natural compounds: Hexanoic acid as a model. Front. Plant Sci. 2014, 5, 488. [Google Scholar] [CrossRef]
- Dharni, S.; Sanchita, M.A.; Samad, A.; Srivastava, S.K.; Sharma, A.; Patra, D.D. Purification, Characterization, and in Vitro Activity of 2,4-Di- tert -butylphenol from Pseudomonas monteilii PsF84: Conformational and Molecular Docking Studies. J. Agric. Food Chem. 2014, 62, 6138–6146. [Google Scholar] [CrossRef]
- Amorim, C.; Alves Filho, E.G.; Rodrigues, T.H.S.; Bender, R.J.; Canuto, K.M.; Garruti, D.S.; Antoniolli, L.R. Volatile compounds associated to the loss of astringency in ‘Rama Forte’ persimmon fruit. Food Res. Int. 2020, 136, 109570. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Mandal, S.; Goyary, D.; Verma, A. Larvicidal property and active compound profiling of Annona squamosa leaf extracts against two species of diptera, Aedes aegypti and Anopheles stephensi. J. Vector Borne Dis. 2023, 60, 401–413. [Google Scholar] [CrossRef]
- Rodrigues, A.R.S.P. Atividade antifúngica do óleo essencial de Mentha piperita (Lamiaceae: Labiatae)—Uma revisão. Conexão Ciência 2024, 19, 103–114. [Google Scholar] [CrossRef]
- Rizwana, H.; Alwhibi, M.S.; Khan, F.; Soliman, D.A. Chemical Composition And Antimicrobial Activity Of Eruca Sativa Seeds Against Pathogenic Bacteria And Fungi. J. Anim. Plant Sci. 2016, 26, 1859–1871. [Google Scholar]
- Fatima, I.; Saleem, R.; Hafeez, A.; Anjum, I.; Khan, S.; Chaudhry, G.A. Green solvent-based extraction of three Fabaceae species: A potential antioxidant, anti-diabetic, and anti-leishmanial agents. Heliyon 2024, 10, e33668. [Google Scholar] [CrossRef]
- Sun, J.; Sun, B.G.; Ren, F.Z.; Chen, H.T.; Zhang, N.; Zhang, Y.Y. Characterization of key odorants in fried chili oil (Zanthoxylum bungeanum) Hanyuan e Hancheng. J. Agric. Food Chem. 2020, 68, 6403–6411. [Google Scholar] [CrossRef]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. Front. Plant Sci. 2022, 13, 856620. [Google Scholar] [CrossRef]
- Huang, Y.; Tuo, S.; Zhao, Y.; Xiong, X.; Yang, Q.; Chen, Y.; Chen, B.; Yang, H. GC–MS Investigation of the Transfer Behavior of Alkalescent Flavors in Moderate/Low-Tar Cigarettes. Chromatographia 2014, 77, 171–178. [Google Scholar] [CrossRef]
- Huang, C.; Sun, P.; Yu, S.; Fu, G.; Deng, Q.; Wang, Z.; Cheng, S. Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome. Int. J. Mol. Sci. 2023, 24, 7901. [Google Scholar] [CrossRef]
- War, A.R.; Sharma, H.C.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Herbivore induced plant volatiles: Their role in plant defense for pest management. Plant Signal. Behav. 2011, 6, 1973–1978. [Google Scholar] [CrossRef]
- Patra, J.; Lee, S.W.; Kwon, Y.S.; Park, J.; Baek, K.H. Chemical characterization and antioxidant potential of the volatile oil of an edible seaweed Porphyra tenera (Kjellman, 1897). Chem. Cent. J. 2017, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Montemayor, N.E.; García, A.; Elizondo-Treviño, E.; Garza-González, E.; Alvarez, L.; Del Rayo, C.M. Chemical Composition of Hexane Extract of Citrus aurantifolia and Anti-Mycobacterium tuberculosis Activity of Some of Its Constituents. Molecules 2012, 17, 11173–11184. [Google Scholar] [CrossRef] [PubMed]
- Ogundajo, A.L.; Ashafa, A.O.T. Chemical profiling, antioxidant and carbohydrate-metabolising enzymes inhibitory potential of fractions from the leaves of Macaranga bateri Mull-Arg. Trans. R. Soc. S. Afr. 2019, 74, 27–37. [Google Scholar] [CrossRef]
- Freire, A.F.d.N.; Silva, E.d.M.; Santos, T.T.; Figueira, F.S. Importance, challenges and perspectives of using fungi in the biological control of plant diseases for Brazilian agriculture. Concilium 2024, 24, 485–504. [Google Scholar] [CrossRef]
- Oliveira, A.V.; Pereira, E.A.; Leles, P.C.G.C.; Fernandes, J.D.L.; Brito, E.C.D.; Pedersoli, L.C.; Brito, E.D.C.D.; Fernandes, J.D.L.; Leles, P.C.G.C.; Pereira, E.A.; et al. Potencial Antifúngico De Plantas Do Cerrado No Tratamento De Candidíase Oral: Um Estudo Bibliográfico. Rev. CPAQV—Cent. Pesqui. Avançadas Qual. Vida. 2024, 16, 1–6. [Google Scholar]
- Alvarenga, F.Q.; Royo, V.A.; Mota, B.F.C.; Laurentiz, R.S.; Menezes, E.V.; Melo Junior, A.F.; Oliveira, D. Atividade Antinociceptiva e Antimicrobiana da Casca do Caule de Psidium Cattleyanum Sabine. Rev. Bras. Plantas Med. 2015, 17, 1125–1133. [Google Scholar] [CrossRef]
- Andreo, D.; Jorge, N. Antioxidantes Naturais: Técnicas De Extração. Bol. Cent. Pesqui. Process. Aliment. 2006, 24, 319–336. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT. Food Sci. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mbaebie, B.; Edeoga, H.; Afolayan, A. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac. J. Trop. Biomed. 2012, 2, 118–124. [Google Scholar] [CrossRef]
- CLSI, Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed.; CLSI document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- CLSI, Clinical and Laboratory Standards Institute. Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI standard M27; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Goughenour, K.D.; Balada-Llasat, J.M.; Rappleye, C.A. Quantitative Microplate-Based Growth Assay for Determination of Antifungal Susceptibility of Histoplasma capsulatum Yeasts. J. Clin. Microbiol. 2015, 53, 3286–3295. [Google Scholar] [CrossRef] [PubMed]
- Soares-Bezerra, R.J.; Ferreira, N.C.S.; Alves, T.M.A.; Zani, C.L.; Rosa, L.H.; Faria, R.X.; Frutuoso, V.d.S.; Alves, L.A. A new insight into purinergic pharmacology: Three fungal species as natural P2X7R antagonists. Phytother. Res. 2019, 33, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass. Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Allard, P.M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef] [PubMed]
EC50 (µg.mL−1) | ||||||
---|---|---|---|---|---|---|
Crude Extract | Hex | DCM | EtOAc | BuOH * or MeOH | References | |
D. pubipetala | 9.83 ± 0.46 d | 84.50 ± 2.01 a | 52.90 ± 5.52 b | 6.46 ± 0.60 e | 19.00 ± 3.58 c | Authors |
B. laevifolia | 4.5 ± 0.9 | 58.1 ± 1.4 | 9.1 ± 0.8 | 4.1 ± 0.5 | 8.4 ± 1.0 | [24] |
B. argyophylla | 4.3 ± 0.8 | 12. 0 ± 2.0 | 17.0 ± 0.4 | 4.1 ± 0.1 | 4.8 ± 0.1 | [25] |
B. oxyclada | 25.9 ± 1.10 | 160.70 ± 3.40 | 100.40 ± 3.90 | 6.50 ± 0.40 | 6.80 ± 0.80 | [29] |
Sample | MIC/MBC | ||
---|---|---|---|
Results em µg.mL−1 | |||
Staphylococcus aureus ATCC 6538 | Escherichia coli ATCC 8739 | Pseudomonas aeruginosa ATCC 27853 | |
CE | 2000/>2000 | 2000/2000 | 2000/>2000 |
Hex | 2000/>2000 | >2000/>2000 | 2000/>2000 |
DCM | >2000/>2000 | >2000/>2000 | 2000/>2000 |
EtOAc | 1000/2000 | >2000/>2000 | 2000/2000 |
MeOH | 2000/2000 | 2000/2000 | 2000/>2000 |
Sample | MIC/MFC | ||
---|---|---|---|
Results em µg.mL−1 | |||
Candida albicans ATCC 90028 | Candida tropicalis ATCC 13803 | Candida glabrata ATCC 2001 | |
CE | 3.9 d/2000 | 3.9 d/2000 | 7.81 b/500 |
Hex | 31.25 b/2000 | 62.5 a/2000 | 15.6 a/2000 |
DCM | 15.6 c/2000 | 31.25 b/2000 | 7.81 b/2000 |
EtOAc | 31.25 b/500 | 15.6 c/1000 | 7.81 b/500 |
MeOH | 62.5 a/2000 | 15.6 c/2000 | 3.9 c/2000 |
Peak Identification | Compound Annotaded (Monoisotopic Mass) | RT (min) | MS [M + H]+ (m/z) | MS/MS Fragments (m/z) | Molecular Formula | Chemical Class |
---|---|---|---|---|---|---|
17 | Epigallocatechin or Gallocatechin c (306.0740) | 9.0 | 307.0809 | 307.0809; 181.0500; 163.0386; 139.0390 | C15H14O7 | Flavonoid |
25 | Procyanidin B1 a (578.1424) | 11.4 | 579,1483 | 579,1502; 409.0927; 287.0567; 10402 | C30H26O12 | Proanthocyanidin |
28 | Epicatechin or Catechin b (290.0790) | 11.7 | 291.0864 | 291.0864; 207.0655; 165.0548; 147.0441 | C15H14O6 | Flavonoid |
30 | Procyanidin Trimer c (866.2058) | 12.2 | 867.2126 | 867.2126; 715.1665; 579.1498; 427.1024 | C45H38O18 | Proanthocyanidin |
43 | Orientin or Isoorientin a (448.1006) | 13.9 | 449.1084 | 449.1084; 431.0990; 395.0775; 353.0667 | C21H20O11 | Flavonoid |
44 | Myricetin-3-O-galactoside a (480.0904) | 14.1 | 481.0982 | 481.0982; 319.0447; 273.0399; 245.0450 | C21H20O13 | Flavonoid |
50 | Rutin b (610.1534) | 14.7 | 611.1612 | 611.1612; 465.1032; 303.0501 | C27H30O16 | Flavonoid |
51 | Vitexin or Isovitexin b (432.1056) | 14.9 | 433.1141 | 433.1141; 313.0711; 283.0605 | C21H20O10 | Flavonoid |
52 | Quercetin-3-O-Glucoside or Isoquercitrin b (464.0955) | 15.1 | 465.1032 | 465.1032; 303.0509; 229.0499; 153.0188 | C21H20O12 | Flavonoid |
58 | Vitexin-O-gallate c (584.1166) | 15.7 | 585.1257 | 585.1257; 415.1028; 313.0708 | C28H24O14 | Flavonoid |
Substances | Area % | tR (min) |
---|---|---|
Crude Extract | ||
S-Methyl-2-propenethioate | 35.02 | 8.126 |
Ethyl hexadecanoate | 26.57 | 19.301 |
Ethyl-3-hydroxy-2,2-dimethylbutanoate | 4.70 | 9.571 |
Ethyl dodecanoate | 4.03 | 14.793 |
Ethyl tetradecanoate | 2.10 | 17.155 |
Partition Hexane | ||
3-Methyl-2-cyclopenten-1-one | 20.86 | 5.682 |
Ethyl hexadecanoate | 18.92 | 19.308 |
Heneicosane | 5.04 | 14.846 |
Tetradecane | 4.47 | 12.226 |
3-Methyl-cyclopentane-1,2-dione | 2.35 | 7.721 |
Partition Dichloromethane | ||
Hex-3-ene-2,5-diol | 16.67 | 6.224 |
Ethyl hexadecanoate | 13.83 | 19.311 |
5-Methylhexan-2-one | 7.92 | 5.736 |
4,5-dimethylhept-2-en-3-ol | 6.36 | 6.830 |
Nonanoic acid | 4.66 | 10.464 |
Partition Ethyl Acetate | ||
Ethyl hexadecanoate | 35.00 | 19.303 |
2-Butoxyethanol | 19.63 | 4.720 |
2,4-Di-tert-butylphenol | 8.19 | 13.818 |
10,13,13-trimethyl-tetradec-11-en-1-ol acetate | 2.85 | 13.300 |
Nonanoic acid | 1.52 | 10.326 |
Fresh Leave | ||
3-Hexen-1-ol | 47.98 | 4.002 |
Ethyl 3-hydroxy-2,2-dimethylbutanoate | 4.05 | 9.558 |
Dodecanal | 3.39 | 12.386 |
Octanal | 3.37 | 6.20 |
Nona-3,6-dien-1-ol | 2.94 | 8.677 |
trans-β-ionone | 2.62 | 13.556 |
2,6,6-trimethylcyclohex-1-enecarboxaldehyde | 2.58 | 9.768 |
cis-3-hexenyl α-methylbutyrate | 1.25 | 9.812 |
6,10-dimethyl-5,9-undecadien-2-one | 1.17 | 13.005 |
Hexanoic acid | 1.10 | 5.781 |
S-Methyl-2-propenothioate | 1.00 | 8.083 |
Substance | Function | References |
---|---|---|
S-Methyl-2-propenethioate | Fatty acid synthesis Acyl group transfer Influence on ADME parameters Release of the active compound | [77] |
Ethyl hexadecanoate | Antimicrobial Antioxidant Flavor enhancer Prevents water loss in plants | [78] [79] |
Ethyl dodecanoate | Antifungal activity | [80] |
Ethyl tetradecanoate | Antifungal activity | [80] |
Ethyl-3-hydroxy-2,2-dimethylbutanoate | Antifungal activity | [80] |
Excipients in drugs | [81] | |
Octanal | Antifungal activity Potential use in agroindustry and pharmaceuticals | [82] |
Heneicosane | Antifungal activity Potential use in agroindustry and pharmaceuticals | [83] |
Hex-3-ene-2,5-diol | Antifungal activityPotential use in agroindustry and pharmaceuticals | [84] |
5-Methyl-hexan-2-one | Antifungal activity Potential use in agroindustry and pharmaceuticals | [85] |
Hexanoic acid | Antifungal activity | [86] |
2,4-Di-tert-butylphenol | Antifungal activity | [87] |
Antioxidant | [88] | |
Larvicidal | [89] | |
Nonanoic acid | Herbicidal Antifungal activity | [90] |
2-Butoxyethanol | Antifungal action | [91] |
Dodecanal | Antifungal action | [92] |
6,10-dimethyl-5,9-undecadien-2-one | Antifungal action | [93] |
2,6,6-trimethylcyclohex-1-enecarboxaldehyde | Aromas and flavors Application in the food and pharmaceutical industries | [94] |
Nona-3,6-dien-1-ol | Aromas and flavors Application in the food and pharmaceutical industries | [94] |
3-Methyl-2-cyclopenten-1-one | Flavor enhancer | [95] |
cis-3-hexenyl α-methylbutyrate | Flavoring in pharmaceuticals | [96] |
3-Hexen-1-ol | Cosmetic formulation | [97] |
trans-β-Ionone | Aroma Antioxidant activity | [98] |
3-Methyl-cyclopentane-1,2-dione | Mycobactericidal activity | [99] |
Tetradecane | Antioxidant activity | [100] |
4,5-dimethylhept-2-en-3-ol | No described biological activity | -- |
10,13,13-trimethyl-tetradec-11-en-1-ol acetate | No described biological activity | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo Sacramento, V.; de Andrade Royo, V.; Fonseca Veloso, P.H.; Freitas Souto, K.S.; Portes Caldeira, A.S.; Gomes Martins, C.H.; de Souza, S.L.; de Siqueira, E.P.; Ribeiro Cassiano, F.; de Melo Júnior, A.F.; et al. Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS. Molecules 2025, 30, 946. https://doi.org/10.3390/molecules30040946
de Melo Sacramento V, de Andrade Royo V, Fonseca Veloso PH, Freitas Souto KS, Portes Caldeira AS, Gomes Martins CH, de Souza SL, de Siqueira EP, Ribeiro Cassiano F, de Melo Júnior AF, et al. Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS. Molecules. 2025; 30(4):946. https://doi.org/10.3390/molecules30040946
Chicago/Turabian Stylede Melo Sacramento, Veronica, Vanessa de Andrade Royo, Pedro Henrique Fonseca Veloso, Kamila Soares Freitas Souto, Alisson Samuel Portes Caldeira, Carlos Henrique Gomes Martins, Sara Lemes de Souza, Ezequias Pessoa de Siqueira, Fernando Ribeiro Cassiano, Afrânio Farias de Melo Júnior, and et al. 2025. "Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS" Molecules 30, no. 4: 946. https://doi.org/10.3390/molecules30040946
APA Stylede Melo Sacramento, V., de Andrade Royo, V., Fonseca Veloso, P. H., Freitas Souto, K. S., Portes Caldeira, A. S., Gomes Martins, C. H., de Souza, S. L., de Siqueira, E. P., Ribeiro Cassiano, F., de Melo Júnior, A. F., Oliveira, D. A. d., Mnezes, E. V., & Alves, T. M. d. A. (2025). Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS. Molecules, 30(4), 946. https://doi.org/10.3390/molecules30040946