Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = ESA CCI Soil Moisture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6561 KB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Viewed by 1400
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

19 pages, 6796 KB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Viewed by 744
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
Show Figures

Figure 1

29 pages, 16304 KB  
Article
Estimating and Downscaling ESA-CCI Soil Moisture Using Multi-Source Remote Sensing Images and Stacking-Based Ensemble Learning Algorithms in the Shandian River Basin, China
by Liguo Wang and Ya Gao
Remote Sens. 2025, 17(4), 716; https://doi.org/10.3390/rs17040716 - 19 Feb 2025
Cited by 5 | Viewed by 1860
Abstract
Soil Moisture (SM) plays a crucial role in agricultural production, ecology, and sustainable development. The prevailing resolution of microwave-based SM products is notably coarse, typically spanning from 10 to 50 km, which might prove inadequate for specific applications. In this research, various single-model [...] Read more.
Soil Moisture (SM) plays a crucial role in agricultural production, ecology, and sustainable development. The prevailing resolution of microwave-based SM products is notably coarse, typically spanning from 10 to 50 km, which might prove inadequate for specific applications. In this research, various single-model machine learning algorithms have been employed to study SM downscaling, each with its own limitations. In contrast to existing methodologies, our research introduces a pioneering algorithm that amalgamates diverse individual models into an integrated Stacking framework for the purpose of downscaling SM data within the Shandian River Basin. This basin spans the southern region of Inner Mongolia and the northern area of Hebei province. In this paper, factors exerting a profound influence on SM were comprehensively integrated. Ultimately, the surface variables involved in the downscaling process were determined to be Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Surface Reflectance (SR), Evapotranspiration (ET), Digital Elevation Model (DEM), slope, aspect, and European Space Agency-Climate Change Initiative (ESA-CCI) product. The goal is to generate a 1 km SM downscaling dataset for a 16-day period. Two distinct models are constructed for the SM downscaling process. In one case, the downscaling is followed by the inversion of SM, while in the other case, the inversion is performed after the downscaling analysis. We also employ the Categorical Features Gradient Boosting (CatBoost) algorithm, a single model, for analytical evaluation in identical circumstances. According to the results, the accuracy of the 1 km SM obtained using the inversion-followed-by-downscaling model is higher. Furthermore, it is observed that the stacking algorithm, which integrates multiple models, outperforms the single-model CatBoost algorithm in terms of accuracy. This suggests that the stacking algorithm can overcome the limitations of a single model and improve prediction accuracy. We compared the predicted SM and ESA-CCI SM; it is evident that the predicted results exhibit a strong correlation with ESA-CCI SM, with a maximum Pearson correlation coefficient (PCC) value of 0.979 and a minimum value of 0.629. The Mean Absolute Error (MAE) values range from 0.002 to 0.005 m3/m3, and the Root Mean Square Error (RMSE) ranges from 0.003 to 0.006 m3/m3. Overall, the results demonstrate that the stacking algorithm based on multi-model integration provides more accurate and consistent retrieval and downscaling of SM. Full article
Show Figures

Graphical abstract

21 pages, 14185 KB  
Article
An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model
by Nari Kim, Soo-Jin Lee, Eunha Sohn, Mija Kim, Seonkyeong Seong, Seung Hee Kim and Yangwon Lee
Water 2024, 16(18), 2661; https://doi.org/10.3390/w16182661 - 18 Sep 2024
Cited by 3 | Viewed by 2915
Abstract
Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote sensing, with data [...] Read more.
Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote sensing, with data retrieval facilitated by reanalysis models such as the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) and the Global Land Data Assimilation System (GLDAS). However, the suitability of these methods for capturing local-scale variabilities is insufficiently validated, particularly in regions like South Korea, where land surfaces are highly complex and heterogeneous. In contrast, artificial intelligence (AI) approaches have shown promising potential for soil moisture retrieval at the local scale but have rarely demonstrated substantial products for spatially continuous grids. This paper presents the retrieval of daily soil moisture (SM) over a 500 m grid for croplands in South Korea using random forest (RF) and automated machine learning (AutoML) models, leveraging satellite images and meteorological data. In a blind test conducted for the years 2013–2019, the AutoML-based SM model demonstrated optimal performance, achieving a root mean square error of 2.713% and a correlation coefficient of 0.940. Furthermore, the performance of the AutoML model remained consistent across all the years and months, as well as under extreme weather conditions, indicating its reliability and stability. Comparing the soil moisture data derived from our AutoML model with the reanalysis data from sources such as the European Space Agency Climate Change Initiative (ESA CCI), GLDAS, the Local Data Assimilation and Prediction System (LDAPS), and ERA5 for the South Korea region reveals that our AutoML model provides a much better representation. These experiments confirm the feasibility of AutoML-based SM retrieval, particularly for local agrometeorological applications in regions with heterogeneous land surfaces like South Korea. Full article
Show Figures

Figure 1

27 pages, 10360 KB  
Article
Soil Moisture-Derived SWDI at 30 m Based on Multiple Satellite Datasets for Agricultural Drought Monitoring
by Jing Ning, Yunjun Yao, Joshua B. Fisher, Yufu Li, Xiaotong Zhang, Bo Jiang, Jia Xu, Ruiyang Yu, Lu Liu, Xueyi Zhang, Zijing Xie, Jiahui Fan and Luna Zhang
Remote Sens. 2024, 16(18), 3372; https://doi.org/10.3390/rs16183372 - 11 Sep 2024
Cited by 5 | Viewed by 3923
Abstract
As a major agricultural hazard, drought frequently occurs due to a reduction in precipitation resulting in a continuously propagating soil moisture (SM) deficit. Assessment of the high spatial-resolution SM-derived drought index is crucial for monitoring agricultural drought. In this study, we generated a [...] Read more.
As a major agricultural hazard, drought frequently occurs due to a reduction in precipitation resulting in a continuously propagating soil moisture (SM) deficit. Assessment of the high spatial-resolution SM-derived drought index is crucial for monitoring agricultural drought. In this study, we generated a downscaled random forest SM dataset (RF-SM) and calculated the soil water deficit index (RF-SM-SWDI) at 30 m for agricultural drought monitoring. The results showed that the RF-SM dataset exhibited better consistency with in situ SM observations in the detection of extremes than did the SM products, including SMAP, SMOS, NCA-LDAS, and ESA CCI, for different land cover types in the U.S. and yielded a satisfactory performance, with the lowest root mean square error (RMSE, below 0.055 m3/m3) and the highest coefficient of determination (R2, above 0.8) for most observation networks, based on the number of sites. A vegetation health index (VHI), derived from a Landsat 8 optical remote sensing dataset, was also generated for comparison. The results illustrated that the RF-SM-SWDI and VHI exhibited high correlations (R ≥ 0.5) at approximately 70% of the stations. Furthermore, we mapped spatiotemporal drought monitoring indices in California. The RF-SM-SWDI provided drought conditions with more detailed spatial information than did the short-term drought blend (STDB) released by the U.S. Drought Monitor, which demonstrated the expected response of seasonal drought trends, while differences from the VHI were observed mainly in forest areas. Therefore, downscaled SM and SWDI, with a spatial resolution of 30 m, are promising for monitoring agricultural field drought within different contexts, and additional reliable factors could be incorporated to better guide agricultural management practices. Full article
(This article belongs to the Special Issue Quantitative Remote Sensing of Vegetation and Its Applications)
Show Figures

Figure 1

25 pages, 29302 KB  
Article
Spatiotemporal Variations in Near-Surface Soil Water Content across Agroecological Regions of Mainland India: 1979–2022 (44 Years)
by Alka Rani, Nishant K. Sinha, Bikram Jyoti, Jitendra Kumar, Dhiraj Kumar, Rahul Mishra, Pragya Singh, Monoranjan Mohanty, Somasundaram Jayaraman, Ranjeet Singh Chaudhary, Narendra Kumar Lenka, Nikul Kumari and Ankur Srivastava
Remote Sens. 2024, 16(16), 3108; https://doi.org/10.3390/rs16163108 - 22 Aug 2024
Cited by 3 | Viewed by 3924
Abstract
This study was undertaken to address how near-surface soil water content (SWC) patterns have varied across diverse agroecological regions (AERs) of mainland India from 1979 to 2022 (44 years) and how these variations relate to environmental factors. Grid-wise trend analysis using the Mann–Kendall [...] Read more.
This study was undertaken to address how near-surface soil water content (SWC) patterns have varied across diverse agroecological regions (AERs) of mainland India from 1979 to 2022 (44 years) and how these variations relate to environmental factors. Grid-wise trend analysis using the Mann–Kendall (MK) trend test and Sen’s slope was conducted to determine the trends and their magnitudes. Additionally, we used Spearman’s rank correlation (ρ) to explore the relationships of ESA CCI’s near-surface SWC data with key environmental variables, including rainfall, temperature, actual evapotranspiration, and the normalized difference vegetation index (NDVI). The results revealed significant variations in SWC patterns and trends across different AERs and months. The MK trend test indicated that 17.96% of the area exhibited a significantly increasing trend (p < 0.1), while7.6% showed a significantly decreasing trend, with an average annual Sen’s slope of 0.9 × 10−4 m3 m−3 year−1 for mainland India. Areas with the highest decreasing trends were AER-16 (warm per-humid with brown and red hill soils), AER-15 (hot subhumid to humid with alluvium-derived soils), and AER-17 (warm per-humid with red and lateritic soils). In contrast, increasing trends were the most prominent in AER-5 (hot semi-arid with medium and deep black soils), AER-6 (hot semi-arid with shallow and medium black soils), and AER-19 (hot humid per-humid with red, lateritic, and alluvium-derived soils). Significant increasing trends were more prevalent during monsoon and post-monsoon months while decreasing trends were noted in pre-monsoon months. Correlation analysis showed strong positive correlations of SWC with rainfall (ρ = 0.70), actual evapotranspiration (ρ = 0.74), and NDVI (ρ = 0.65), but weak or negative correlations with temperature (ρ = 0.12). This study provides valuable insights for policymakers to delineate areas based on soil moisture availability patterns across seasons, aiding in agricultural and water resource planning under changing climatic conditions. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Graphical abstract

15 pages, 2158 KB  
Article
How Can Seasonality Influence the Performance of Recent Microwave Satellite Soil Moisture Products?
by Raffaele Albano, Teodosio Lacava, Arianna Mazzariello, Salvatore Manfreda, Jan Adamowski and Aurelia Sole
Remote Sens. 2024, 16(16), 3044; https://doi.org/10.3390/rs16163044 - 19 Aug 2024
Cited by 6 | Viewed by 1579
Abstract
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and [...] Read more.
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and soil properties. When long-term analysis is performed, these discrepancies are mitigated by the contribution of SM seasonality and are only evident when high-frequency variations (i.e., signal anomalies) are investigated. This study sought to examine the responsiveness of SM to seasonal variations in terrestrial ecoregions located in areas covered by the in situ Romanian Soil Moisture Network (RSMN). To achieve this aim, several remote sensing-derived retrievals were considered: (i) NASA’s Soil Moisture Active and Passive (SMAP) L4 V5 model assimilated product data; (ii) the European Space Agency’s Soil Moisture and Ocean Salinity INRA–CESBIO (SMOS-IC) V2.0 data; (iii) time-series data extracted from the H115 and H116 SM products, which are derived from the analysis of Advanced Scatterometer (ASCAT) data acquired via MetOp satellites; (iv) Copernicus Global Land Service SSM 1 km data; and (v) the “combined” European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) product v06.1. An initial assessment of the performance of these products was conducted by checking the anomaly of long-term fluctuations, quantified using the Absolute Variation of Local Change of Environment (ALICE) index, within a time frame spanning 2015 to 2020. These correlations were then compared with those based on raw data and anomalies computed using a moving window of 35 days. Prominent correlations were observed with the SMAP L4 dataset and across all ecoregions, and the Balkan mixed forests (646) exhibited strong concordance regardless of the satellite source (with a correlation coefficient RALICE > 0.5). In contrast, neither the Central European mixed forests (No. 654) nor the Pontic steppe (No. 735) were adequately characterized by any satellite dataset (RALICE < 0.5). Subsequently, the phenological seasonality and dynamic behavior of SM were computed to investigate the effects of the wetting and drying processes. Notably, the Central European mixed forests (654) underwent an extended dry phase (with an extremely low p-value of 2.20 × 10−16) during both the growth and dormancy phases. This finding explains why the RSMN showcases divergent behavior and underscores why no satellite dataset can effectively capture the complexities of the ecoregions covered by this in situ SM network. Full article
(This article belongs to the Special Issue Remote Sensing of Climate-Related Hazards)
Show Figures

Graphical abstract

27 pages, 7504 KB  
Article
Spatial Downscaling of ESA CCI Soil Moisture Data Based on Deep Learning with an Attention Mechanism
by Danwen Zhang, Linjun Lu, Xuan Li, Jiahua Zhang, Sha Zhang and Shanshan Yang
Remote Sens. 2024, 16(8), 1394; https://doi.org/10.3390/rs16081394 - 15 Apr 2024
Cited by 12 | Viewed by 3567
Abstract
Soil moisture (SM) is a critical variable affecting ecosystem carbon and water cycles and their feedback to climate change. In this study, we proposed a convolutional neural network (CNN) model embedded with a residual block and attention module, named SMNet, to spatially downscale [...] Read more.
Soil moisture (SM) is a critical variable affecting ecosystem carbon and water cycles and their feedback to climate change. In this study, we proposed a convolutional neural network (CNN) model embedded with a residual block and attention module, named SMNet, to spatially downscale the European Space Agency (ESA) Climate Change Initiative (CCI) SM product. In the SMNet model, a lightweight Convolutional Block Attention Module (CBAM) dual-attention mechanism was integrated to comprehensively extract the spatial and channel information from the high-resolution input remote sensing products, the reanalysis meteorological dataset, and the topographic data. The model was employed to downscale the ESA CCI SM from its original spatial resolution of 25 km to 1 km in California, USA, in the annual growing season (1 May to 30 September) from 2003 to 2021. The original ESA CCI SM data and in situ SM measurements (0–5 cm depth) from the International Soil Moisture Network were used to validate the model’s performance. The results show that compared with the original ESA CCI SM data, the downscaled SM data have comparable accuracy with a mean correlation (R) and root mean square error (RMSE) of 0.82 and 0.052 m3/m3, respectively. Moreover, the model generates reasonable spatiotemporal SM patterns with higher accuracy in the western region and relatively lower accuracy in the eastern Nevada mountainous area. In situ site validation results in the SCAN, the SNOTEL network, and the USCRN reveal that the R and RMSE are 0.62, 0.63, and 0.77, and 0.077 m3/m3, 0.093 m3/m3, and 0.078 m3/m3, respectively. The results are slightly lower than the validation results from the original ESA CCI SM data. Overall, the validation results suggest that the SMNet downscaling model proposed in this study has satisfactory performance in handling the task of soil moisture downscaling. The downscaled SM model not only preserves a high level of spatial consistency with the original ESA CCI SM model but also offers more intricate spatial variations in SM depending on the spatial resolution of model input data. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 6696 KB  
Article
The Verification and Fusion Analysis of Passive Microwave Soil Moisture Products in the Three Northeastern Provinces of China
by Chunnuan Wang, Tao Yu, Xingfa Gu, Chunmei Wang, Xingming Zheng, Qiuxia Xie, Jian Yang, Qiyue Liu, Lili Zhang, Juan Li, Lingling Li, Miao Liu, Meiyu Ru and Xinxin Qiu
Atmosphere 2024, 15(4), 441; https://doi.org/10.3390/atmos15040441 - 2 Apr 2024
Cited by 2 | Viewed by 1569
Abstract
The utilization of remote sensing soil moisture products in agricultural and hydrological studies is on the rise. Conducting a regional applicability analysis of these soil moisture products is essential as a preliminary step for their effective utilization. The triple collocation (TC) method enables [...] Read more.
The utilization of remote sensing soil moisture products in agricultural and hydrological studies is on the rise. Conducting a regional applicability analysis of these soil moisture products is essential as a preliminary step for their effective utilization. The triple collocation (TC) method enables the estimation of the standard deviation of errors in products when true soil moisture values are unavailable. It assesses data uncertainty and mitigates the influence of product errors on fusion, thereby enhancing product accuracy significantly. In this study, the TC uncertainty error analysis was employed to integrate Soil Moisture Active Passive (SMAP), the Advanced Microwave Scanning Radiometer 2 (AMSR-2), and the European Space Agency Climate Change Initiative (ESA CCI) active (ESA CCI A) and passive (ESA CCI P) products, with ground-based measurements serving as a reference. Traditional evaluation metrics, such as the correlation coefficient (R), bias, root mean square error (RMSE), and unin situed root mean square error (ubRMSE), were employed to evaluate the accuracy of the product. The findings indicate that SMAP and ESA CCI P products demonstrate strong spatiotemporal continuity within the research area and exhibit low uncertainty across various land types. The products derived from the Advanced Microwave Scanning Radiometer 2 (AMSR-2) exhibit a high level of temporal and spatial continuity; however, there is a requirement for enhancing their accuracy. The products of ESA CCI A exhibit notable spatiotemporal disjunction, contributing significantly to their elevated level of uncertainty. After fusion with TC analysis, the correlation coefficient (R = 0.7) of the TC-2 product derived from the fusion of SMAP, AMSR-2, and ESA CCI P products is significantly higher than the correlation coefficient of the TC-1 product (R = 0.65) obtained from the fusion of SMAP, AMSR-2, and ESA CCI A products at a 95% confidence level. The integration of data can efficiently mitigate the challenges associated with spatiotemporal gaps and inaccuracies in products, offering a dependable foundation for the subsequent utilization of remote sensing products. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

23 pages, 15263 KB  
Article
Identifying the Spatial Heterogeneity and Driving Factors of Satellite-Based and Hydrologically Modeled Profile Soil Moisture
by Han Yang, Xiaoqi Zhang, Zhe Yuan, Bin Xu and Junjun Huo
Remote Sens. 2024, 16(3), 448; https://doi.org/10.3390/rs16030448 - 24 Jan 2024
Cited by 3 | Viewed by 2123
Abstract
Profile soil moisture (PSM), the soil water content in the whole soil layer, directly controls the major processes related to biological interaction, vegetation growth, and runoff generation. Its spatial heterogeneity, which refers to the uneven distribution and complexity in space, influences refined spatial [...] Read more.
Profile soil moisture (PSM), the soil water content in the whole soil layer, directly controls the major processes related to biological interaction, vegetation growth, and runoff generation. Its spatial heterogeneity, which refers to the uneven distribution and complexity in space, influences refined spatial management and decision-making in ecological, agricultural, and hydrological systems. Satellite instruments and hydrological models are two important sources of spatial information on PSM, but there is still a gap in understanding their potential mechanisms that affect spatial heterogeneity. This study is designed to identify the spatial heterogeneity and the driving factors of two PSM datasets; one is preprocessed from a satellite product (European Space Agency Climate Change Initiative, ESA CCI), and the other is simulated from a distributed hydrological model (the DEM-based distributed rainfall-runoff model, DDRM). Three catchments with different climate conditions were chosen as the study area. By considering the scale dependence of spatial heterogeneity, the profile saturation degree (PSD) datasets from different sources (shown as ESA CCI PSD and DDRM PSD, respectively) during 2017 that are matched in terms of spatial scale and physical properties were acquired first based on the calibration data from 2014–2016, and then the spatial heterogeneity of the PSD from different sources was identified by using spatial statistical analysis and the semi-variogram method, followed by the geographic detector method, to investigate the driving factors. The results indicate that (1) ESA CCI and DDRM PSD are similar for seasonal changes and are overall consistent and locally different in terms of the spatial variations in catchment with different climate conditions; (2) based on spatial statistical analysis, the spatial heterogeneity of PSD reduces after spatial rescaling; at the same spatial scale, DDRM PSD shows higher spatial heterogeneity than ESA CCI PSD, and the low-flow period shows higher spatial heterogeneity than the high-flow period; (3) based on the semi-variogram method, both ESA CCI and DDRM PSD show strong spatial heterogeneity in most cases, in which the proportion of C/(C0 + C) is higher than 0.75, and the spatial data in the low-flow period mostly show larger spatial heterogeneity, in which the proportion is higher than 0.9; the spatial heterogeneity of PSD is higher in the semi-arid catchment; (4) the first three driving factors of the spatial heterogeneity of both ESA CCI and DDRM PSD are DEM, precipitation, and soil type in most cases, contributing more than 50% to spatial heterogeneity; (5) precipitation contributes most to ESA CCI PSD in the low-flow period, and there is no obvious high contribution of precipitation to DDRM PSD. The research provides insights into the spatial heterogeneity of PSM, which helps develop refined modeling and spatial management strategies for soil moisture in ecological, agricultural, and hydrological fields. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing of Soil Science)
Show Figures

Figure 1

18 pages, 4680 KB  
Article
Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone
by Said Rachidi, EL Houssine El Mazoudi, Jamila El Alami, Mourad Jadoud and Salah Er-Raki
Water 2023, 15(11), 1997; https://doi.org/10.3390/w15111997 - 24 May 2023
Cited by 20 | Viewed by 4636
Abstract
Several satellite precipitation estimates are becoming available globally, offering new possibilities for modeling water resources, especially in regions where data are scarce. This work provides the first validation of four satellite precipitation products, CHIRPS v2, Tamsat, Persiann CDR and TerraClimate data, in a [...] Read more.
Several satellite precipitation estimates are becoming available globally, offering new possibilities for modeling water resources, especially in regions where data are scarce. This work provides the first validation of four satellite precipitation products, CHIRPS v2, Tamsat, Persiann CDR and TerraClimate data, in a semi-arid region of Essaouira city (Morocco). The precipitation data from different satellites are first compared with the ground observations from 4 rain gauges measurement stations using the different comparison methods, namely: Pearson correlation coefficient (r), Bias, mean square error (RMSE), Nash-Sutcliffe efficiency coefficient and mean absolute error (MAE). Secondly, a rainfall-runoff modeling for a basin of the study area (Ksob Basin S = 1483 km2) was carried out based on artificial neural networks type MLP (Multi Layers Perceptron). This model was -then used to evaluate the best satellite products for estimating the discharge. The results indicate that TerraClimate is the most appropriate product for estimating precipitation (R2 = 0.77 and 0.62 for the training and validation phase, respectively). By using this product in combination with hydrological modeling based on ANN (Artificial Neural Network) approach, the simulations of the monthly flow in the watershed were not very satisfactory. However, a clear improvement of the flow estimations occurred when the ESA-CCI (European Space Agency’s (ESA) Climate Change Initiative (CCI)) soil moisture was added (training phase: R2 = 0.88, validation phase: R2 = 0.69 and Nash ≥ 92%). The results offer interesting prospects for modeling the water resources of the coastal zone watersheds with this data. Full article
Show Figures

Figure 1

15 pages, 4452 KB  
Article
Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau
by Wenjun Yu, Yanzhong Li and Guimin Liu
Remote Sens. 2023, 15(4), 918; https://doi.org/10.3390/rs15040918 - 7 Feb 2023
Cited by 3 | Viewed by 2697
Abstract
Soil moisture (SM) retrieved from satellite and spaceborn sensors provides useful parameters for earth system models (ESMs). The Climate Change Initiative (CCI) SM products released by the European Space Agency have been widely used in many humid/semi-humid climatic regions due to their relatively [...] Read more.
Soil moisture (SM) retrieved from satellite and spaceborn sensors provides useful parameters for earth system models (ESMs). The Climate Change Initiative (CCI) SM products released by the European Space Agency have been widely used in many humid/semi-humid climatic regions due to their relatively long-term record. However, the performance of these products in cold and arid regions, such as the Qinghai-Tibetan Plateau (QTP), is largely unknown, necessitating urgent evaluation and calibration in these areas. In this work, we evaluated the reliability and improved the accuracy of the active-passive combined CCI products (CCI-C) using in-situ measured SM contents (SMC) under different underlying surface conditions. First, some conventional models were used to investigate the relationship between the CCI-C and the in-situ observed SMC, yielding similar fitting performances. Next, the random forest method and multiple linear regression were used to contrast the conventional models to calibrate and validate the CCI-C SM product based on the in-situ observed SMC, and the random forest method was found to have the highest accuracy. However, calibration of the CCI-C SM data with the best-performed random forest method based on different spatial zonation methods, e.g., by climate, topography, land cover, and vegetation, resulted in distinct spatial patterns of SM. Compared to a widely-used satellite SM product, namely the Soil Moisture Active Passive (SMAP) SM dataset, the calibrated CCI-C SM data based on climatic and vegetation zonation were larger but had similar spatial patterns. This study also points to the value of the calibrated CCI-C SM product to support land surface studies on the QTP. Full article
(This article belongs to the Special Issue Remote Sensing and Land Surface Process Models for Permafrost Studies)
Show Figures

Figure 1

14 pages, 14994 KB  
Article
Assessment of High-Resolution Surface Soil Moisture Products over the Qinghai–Tibet Plateau for 2009–2017
by Dongjun Lin, Xing Yuan, Binghao Jia and Peng Ji
Atmosphere 2023, 14(2), 302; https://doi.org/10.3390/atmos14020302 - 2 Feb 2023
Cited by 2 | Viewed by 2448
Abstract
The surface soil moisture over the Qinghai–Tibet Plateau (QTP) has an important impact on the weather and climate of East Asia. Under climate warming, the imbalance of solid–liquid water of QTP has become a research hotspot, but the surface soil moisture dynamics over [...] Read more.
The surface soil moisture over the Qinghai–Tibet Plateau (QTP) has an important impact on the weather and climate of East Asia. Under climate warming, the imbalance of solid–liquid water of QTP has become a research hotspot, but the surface soil moisture dynamics over QTP are not clear owing to the lack of precise measurements over a large scale. In this paper, the quality of gridded surface soil moisture products including CSSPv2 high-resolution (6 km) simulation, ESA CCI satellite retrieval, ERA5 land-atmosphere coupled reanalysis, and GLDAS2.1 land reanalysis products (Noah, Catchment, VIC) is analyzed over QTP by comparison with the in situ measurements at 140 stations during 2009–2017. We find that the CSSPv2 product shows a higher correlation than the global satellite and reanalysis products, with correlation increased by 7.7%–115.6%. The root mean squared error of the CSSPv2 product is lower than that of other products, with the error decreased by 13.4%–46.3%. The triple collocation analysis using high-resolution simulation, global reanalysis, and satellite retrieval products over the entire plateau shows that the error of CSSPv2 is the lowest, followed by ESA CCI, while ERA5 is the highest. The soil moisture products of ESA CCI, ERA5, and CSSPv2 all show an increasing trend from April to September of 2009 to 2017, with wetting in the west and drying in the east. This study indicates that the CSSPv2 high-resolution surface soil moisture product has better performance over QTP than other global products, and the global satellite and reanalysis products may overestimate the surface soil moisture dynamics. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

31 pages, 9350 KB  
Article
Soil Moisture Assimilation Improves Terrestrial Biosphere Model GPP Responses to Sub-Annual Drought at Continental Scale
by Xiuli Xing, Mousong Wu, Marko Scholze, Thomas Kaminski, Michael Vossbeck, Zhengyao Lu, Songhan Wang, Wei He, Weimin Ju and Fei Jiang
Remote Sens. 2023, 15(3), 676; https://doi.org/10.3390/rs15030676 - 23 Jan 2023
Cited by 7 | Viewed by 4195
Abstract
Due to the substantial gross exchange fluxes with the atmosphere, the terrestrial carbon cycle plays a significant role in the global carbon budget. Drought commonly affects terrestrial carbon absorption negatively. Terrestrial biosphere models exhibit significant uncertainties in capturing the carbon flux response to [...] Read more.
Due to the substantial gross exchange fluxes with the atmosphere, the terrestrial carbon cycle plays a significant role in the global carbon budget. Drought commonly affects terrestrial carbon absorption negatively. Terrestrial biosphere models exhibit significant uncertainties in capturing the carbon flux response to drought, which have an impact on estimates of the global carbon budget. Through plant physiological processes, soil moisture tightly regulates the carbon cycle in the environment. Therefore, accurate observations of soil moisture may enhance the modeling of carbon fluxes in a model–data fusion framework. We employ the Carbon Cycle Data Assimilation System (CCDAS) to assimilate 36-year satellite-derived surface soil moisture observations in combination with flask samples of atmospheric CO2 concentrations. We find that, compared to the default model, the performance of optimized net ecosystem productivity (NEP) and gross primary productivity (GPP) has increased with the RMSEs reduced by 1.62 gC/m2/month and 10.84 gC/m2/month, which indicates the added value of the ESA-CCI soil moisture observations as a constraint on the terrestrial carbon cycle. Additionally, the combination of soil moisture and CO2 concentration in this study improves the representation of inter-annual variability of terrestrial carbon fluxes as well as the atmospheric CO2 growth rate. We thereby investigate the ability of the optimized GPP in responding to drought by comparing continentally aggregated GPP with the drought index. The assimilation of surface soil moisture has been shown to efficiently capture the influences of the sub-annual (≤9 months drought durations) and large-scale (e.g., regional to continental scales) droughts on GPP. This study highlights the significant potential of satellite soil moisture for constraining inter-annual models of the terrestrial biosphere’s carbon cycle and for illustrating how GPP responds to drought at a continental scale. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 7023 KB  
Article
Merging Microwave, Optical, and Reanalysis Data for 1 Km Daily Soil Moisture by Triple Collocation
by Luyao Zhu, Wenjie Li, Hongquan Wang, Xiaodong Deng, Cheng Tong, Shan He and Ke Wang
Remote Sens. 2023, 15(1), 159; https://doi.org/10.3390/rs15010159 - 27 Dec 2022
Cited by 6 | Viewed by 3168
Abstract
High-spatiotemporal resolution soil moisture (SM) plays an essential role in optimized irrigation, agricultural droughts, and hydrometeorological model simulations. However, producing high-spatiotemporal seamless soil moisture products is challenging due to the inability of optical bands to penetrate clouds and the coarse spatiotemporal resolution of [...] Read more.
High-spatiotemporal resolution soil moisture (SM) plays an essential role in optimized irrigation, agricultural droughts, and hydrometeorological model simulations. However, producing high-spatiotemporal seamless soil moisture products is challenging due to the inability of optical bands to penetrate clouds and the coarse spatiotemporal resolution of microwave and reanalysis products. To address these issues, this study proposed a framework for multi-source data merging based on the triple collocation (TC) method with an explicit physical mechanism, which was dedicated to generating seamless 1 km daily soil moisture products. Current merging techniques based on the TC method often lack seamless daily optical data input. To remedy this deficiency, our study performed a spatiotemporal reconstruction on MODIS LST and NDVI, and retrieved seamless daily optical soil moisture products. Then, the optical-derived sm1, microwave-retrieved sm2 (ESA CCI combined), and reanalysis sm3 (CLDAS) were matched by the cumulative distribution function (CDF) method to eliminate bias, and their weights were determined by the TC method. Finally, the least squares algorithm and the significance judgment were adopted to complete the merging. Although the CLDAS soil moisture presented anomalies over several stations, our proposed method can detect and reduce this impact by minimizing its weight, which shows the robustness of the method. This framework was implemented in the Naqu region, and the results showed that the merged products captured the temporal variability of the SM and depicted spatial information in detail; the validation with the in situ measurement obtained an average ubRMSE of 0.046 m³/m³. Additionally, this framework is transferrable to any area with measured sites for better agricultural and hydrological applications. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Figure 1

Back to TopTop