
Citation: Xing, X.; Wu, M.; Scholze,

M.; Kaminski, T.; Vossbeck, M.; Lu,

Z.; Wang, S.; He, W.; Ju, W.; Jiang, F.

Soil Moisture Assimilation Improves

Terrestrial Biosphere Model GPP

Responses to Sub-Annual Drought at

Continental Scale. Remote Sens. 2023,

15, 676. https://doi.org/10.3390/

rs15030676

Academic Editor: Won-Ho Nam

Received: 8 December 2022

Revised: 16 January 2023

Accepted: 19 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Soil Moisture Assimilation Improves Terrestrial Biosphere
Model GPP Responses to Sub-Annual Drought at
Continental Scale
Xiuli Xing 1, Mousong Wu 1,2,*, Marko Scholze 2 , Thomas Kaminski 3, Michael Vossbeck 3, Zhengyao Lu 2,
Songhan Wang 4, Wei He 1, Weimin Ju 1 and Fei Jiang 1,5

1 International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
2 Department of Physical Geography and Ecosystem Science, Lund University, SE-22362 Lund, Sweden
3 The Inversion Lab, 20249 Hamburg, Germany
4 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
5 Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
* Correspondence: mousongwu@nju.edu.cn

Abstract: Due to the substantial gross exchange fluxes with the atmosphere, the terrestrial carbon
cycle plays a significant role in the global carbon budget. Drought commonly affects terrestrial carbon
absorption negatively. Terrestrial biosphere models exhibit significant uncertainties in capturing
the carbon flux response to drought, which have an impact on estimates of the global carbon
budget. Through plant physiological processes, soil moisture tightly regulates the carbon cycle in the
environment. Therefore, accurate observations of soil moisture may enhance the modeling of carbon
fluxes in a model–data fusion framework. We employ the Carbon Cycle Data Assimilation System
(CCDAS) to assimilate 36-year satellite-derived surface soil moisture observations in combination
with flask samples of atmospheric CO2 concentrations. We find that, compared to the default model,
the performance of optimized net ecosystem productivity (NEP) and gross primary productivity
(GPP) has increased with the RMSEs reduced by 1.62 gC/m2/month and 10.84 gC/m2/month,
which indicates the added value of the ESA-CCI soil moisture observations as a constraint on the
terrestrial carbon cycle. Additionally, the combination of soil moisture and CO2 concentration in
this study improves the representation of inter-annual variability of terrestrial carbon fluxes as well
as the atmospheric CO2 growth rate. We thereby investigate the ability of the optimized GPP in
responding to drought by comparing continentally aggregated GPP with the drought index. The
assimilation of surface soil moisture has been shown to efficiently capture the influences of the sub-
annual (≤9 months drought durations) and large-scale (e.g., regional to continental scales) droughts
on GPP. This study highlights the significant potential of satellite soil moisture for constraining
inter-annual models of the terrestrial biosphere’s carbon cycle and for illustrating how GPP responds
to drought at a continental scale.

Keywords: gross primary productivity; drought; carbon cycle data assimilation system; ESA-CCI
soil moisture

1. Introduction

Globally, the terrestrial ecosystems take ~25% of the anthropogenic carbon dioxide
(CO2) emissions and serve as an important carbon sink, but large uncertainties exist due to
potentially compensating impacts of both CO2 fertilization and climate change-induced
droughts [1]. The terrestrial ecosystem gross primary productivity (GPP), quantifying the
amount of the carbon (C) uptake by plants from the atmosphere, is the largest C flux within
the C cycle [2]. However, GPP is influenced by climate (radiation, precipitation, temperature
and humidity, etc.), CO2 concentration, and human activities, resulting in a high uncertainty
in the representativeness of inter-annual variability and climate change [3–10]. Therefore,
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accurate estimates of photosynthesis and vegetation primary production across large spatial
scales are necessary for understanding the drivers of the terrestrial carbon (C) cycle.

At regional or a larger scale, GPP is usually estimated by remote sensing [11,12],
process-based models (i.e., terrestrial biosphere models (TBMs)) [13,14], or flux tower
observation-based upscaling methods [15]. A useful tool for researching the local, regional,
continental, and global levels of ecosystem GPP and understanding the response of ter-
restrial ecosystems to droughts are process-based TBMs [14,16]. Process-based models,
which are based on more explicit mechanisms than remote sensing and machine learning
GPP models, can be used to simulate historical GPP and forecast future GPP in response
to environmental changes. However, process-based models that simulate GPP highly
depend on their inputs, parameters, and structures as well as show notable uncertainty
and thereby variations amongst models [17,18]. One commonly used technique to reduce
uncertainty in process-based TBMs is data assimilation. The main application of such data
assimilation approach is focused on constraining model parameters with observations such
as atmospheric CO2 concentrations [19]. With the use of the Carbon Cycle Data Assimi-
lation System (CCDAS), Rayner et al. (2005) [19] demonstrated that through assimilated
atmospheric CO2 data, parameter uncertainties can be reduced significantly. CCDAS is
now able to assimilate Earth observations (EO) data such as Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR) data [20]; in addition, it has achieved the ability to
assimilate both atmospheric CO2 observations and FAPAR simultaneously [21], as well as
the combination of in situ CO2 concentration and soil moisture from passive microwave
observations [22,23] to constrain the parameters related to terrestrial carbon and the water
cycle.

Drought is the most common factor that affects GPP negatively [24–26]. A number of
recent studies have attributed recent declines in managed ecosystem productivity to climate
change-induced droughts [27–29]. Orth et al. (2020) [30] showed that drought intensity
and duration are the primary factors that influence how the GPP responds to drought at
large scale, and the drought duration is a key diagnostic variable for diagnosing drought-
induced changes in GPP. Due to the GPP algorithm’s lack of consideration for the impacts
of soil moisture on photosynthesis, they may not accurately reproduce the inter-annual
variations in GPP and may therefore underestimate the effects of drought on GPP [31]. For
example, Schewe et al. [32] found that due to an inadequate representation of both human
management and natural processes, current TBMs understate the effect of drought on GPP.
Additionally, existing TBMs simplify soil hydrological processes and have shown large
uncertainty in predicting the effects of drought on the land carbon sink [16,33–35]. The need
for deeper knowledge of the water stress mechanisms integrated in TBMs is highlighted
by the significant inter-model heterogeneity [36–38]. Due to continued global warming,
the frequency and severity of droughts have grown throughout the world over the past
few decades and are expected to become worse [39,40]. Therefore, in order to control and
reduce the harmful effects of climate change, it is crucial to study how GPP responds to
drought.

Surface soil moisture is a promising proxy for realistic assessment of the drought
duration–vegetation response relationship [30]. Four earth system models’ outputs indi-
cated that the long-term global terrestrial carbon uptake would be greatly affected by soil
moisture [36]. Previous studies indicated that dryness stress on ecosystem output is largely
dominated by soil moisture [41]. When evaluating the responses of GPP to drought at
regional and global scales, the assimilation of soil moisture data in this case can contribute
to obtaining a more reliable conclusion [42,43]. The relationship between the carbon, water,
and energy cycles in the physical climate system and the biogeochemical cycles is regulated
by soil moisture, which is essential for vegetative processes [44]. Therefore, one of the
major factors in ecosystem models that controls stomatal conductance and regulates both
plant water usage and carbon uptake is soil moisture [45–47]. The modeling of various land
surface processes and the responses of GPP to drought have been demonstrated to benefit
from assimilation of remotely sensed surface soil moisture [42,43,48,49]. Although simulta-
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neous assimilation of atmospheric CO2 concentration and satellite-derived soil moisture
data has been studied in CCDAS [22,23], they lacked analysis of how the optimized GPP
responded to drought.

In this study, we assimilated the globally derived long-term remote sensing soil mois-
ture data from 1980 to 2015 (European Space Agency Climate Change Initiative (ESA-CCI)
v4.4), combining the atmospheric CO2 concentrations from the same period (Table A1,
Scripps Institution of Oceanography (SIO) stations information) to optimize the process pa-
rameters with the underlying Biosphere Energy Transfer HYdrology (BETHY) [50] scheme
of CCDAS. The main aim is (1) to investigate the simulated carbon fluxes (Net Ecosystem
Productivity (NEP) and GPP) performance by comparison with other datasets; (2) to assess
the capability of the optimized results in representing the relationship between carbon
cycle and climate extremes by calculating the correlation between El Niño-Southern Oscil-
lation (ENSO) indices and carbon fluxes (NEP, GPP, and CO2 growth rate (CGR)) when
constrained through simultaneous assimilation of ESA-CCI soil moisture observations and
CO2 flask observations at a global scale over 35 years (1980–2015); and (3) to demonstrate
the ability of the optimized GPP in representing intense drought by comparing continen-
tally aggregated GPP with the comprehensive drought index Standardized Precipitation
Evapotranspiration Index (SPEI).

2. Materials and Methods
2.1. Carbon Cycle Data Assimilation System (CCDAS) and Simulation Experiments

A Carbon Cycle Data Assimilation System (CCDAS) was used to optimize ecosys-
tem fluxes in this study. CCDAS is based on the BETHY model and combined with an
atmospheric transport model (TM2 [51]). CCDAS utilizes a variational method to optimize
the process parameters as well as variables by assimilating in situ and remotely sensed
observations. The BETHY model simulates carbon cycling as well as the water and energy
balance in an ecosystem. Plants are categorized into 13 plant function types (PFTs) and each
grid can be represented by at most 3 PFTs, which sum up to be 100% coverage of the area
in the grid [19]. Photosynthesis is simulated with the Farquhar equation and C3 and C4 are
separately modeled. Soil hydrology is represented by a two-layer bucket model [22] and
the first layer which is 4 cm thick corresponds to the soil layer detected by the microwave
remote sensing techniques.

Net ecosystem exchange (NEE) simulated by BETHY was then used as an input
together with prescribed background fluxes (fossil fuel, ocean and land use change fluxes)
for the TM2 [19], which simulates atmospheric CO2 concentrations at the flask sample
stations from National Oceanic and Atmospheric Administration (NOAA) observation
networks (NOAA CO2 networks). The fossil fuel fluxes were from Marland, et al. [52]
for the year 1980, and a scaling factor was used for each year from 1981 to 2015 based
on ratios of the global annual total fluxes from the Global Carbon Budget (GCB, [53]) to
the those by Marland, et al. [52] in 1980. The ocean fluxes were taken from two sources.
The fluxes from Takahashi, et al. [54] were used to describe the flux climatology, and we
added the anomalies derived from the inversed ocean fluxes with atmospheric TM3 [55] for
1980–2015. For land use change fluxes, we used the flux from 1980 by Houghton, et al. [56]
and rescaled it to the other years based on the ratios of the annual total land use change
fluxes estimated from GCB to the values from 1980 at the respective grid.

Three experiments were conducted with CCDAS: a ”prior” simulation experiment
with default model parameters, a “co2” simulation experiment with atmospheric CO2 con-
centrations from 8 stations (Table A1) assimilated, and a “sm + co2” simulation experiment
with surface soil moisture data from ESA-CCI and atmospheric CO2 data from 8 stations
simultaneously assimilated. The simulation period is 1980 to 2015, with daily soil moisture
and monthly carbon fluxes (GPP, NEP, and CO2 concentrations) as output. The spatial
resolution for the simulations is 8◦ × 10◦ both for BEHTY and TM2.
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In total, CCDAS optimizes 101 parameters related to different processes and different
PFTs and soil textures using a variational method which minimizes the cost function with
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [57]:

J(x) =
1
2

(Mco2(p)− Oco2)
TC−1

co2(Mco2(p)− Oco2)+

(Msm(p)− Osm)
TC−1

sm (Msm(p)− Osm)+

(p − p0)
TC−1

p (p − p0)

 (1)

where M and O stand for model and observation, respectively; subscripts co2 and sm
stand for atmospheric CO2 concentrations and soil moisture, respectively; C stands for
the uncertainty covariance matrices for observations and parameters; p stands for the
parameters; p0 denotes the prior control vector.

2.2. Data
2.2.1. Meteorological Data

Daily meteorological data are input by BETHY and include maximum and minimum
air temperatures, precipitation, and incoming shortwave radiation. Here, we used Climatic
Research Unit—National Centers for Environmental Prediction (CRUNCEP) v7 [58] and
re-gridded the data from the original 0.5◦ × 0.5◦ to the 8◦ × 10◦ CCDAS spatial resolution.
The CRUNCEP is specifically designed to force the land surface models (CLMs) over a long
period. The CRUNCEP has been successfully used to drive CLM for vegetation growth,
evapotranspiration, and gross primary production and for the TRENDY (trends in net
land–atmosphere carbon exchange over the period 1980–2010) project.

2.2.2. Atmospheric CO2 Concentrations

The atmospheric CO2 concentrations from 8 flask sample stations were used for
assimilation. These 8 stations contain monthly CO2 concentrations from 1980 to 2015
and are derived from the Scripps Institution of Oceanography (SIO) networks [59]. The
CO2 concentrations at each station were then simulated by the TM2 using terrestrial and
background fluxes as inputs.

We computed the global CO2 growth rate (CGR) based on the CO2 concentrations
from Mauna Loa (MLO) and the South Pole (SPO) and assigned a weight of 0.75 and 0.25
to them, respectively, as done in [19]. We then computed the monthly growth rate as the
difference between the de-seasonalized CO2 concentrations from the next month and the
current month, and filtered the data using a 7-month rolling mean method.

2.2.3. ESA-CCI Soil Moisture

The European Space Agency Climate Change Initiative (ESA-CCI) soil moisture dataset
was used in the assimilation experiment. This dataset combines observations from ac-
tive/passive microwave remote sensing products and generates a spatial/temporal continu-
ous daily surface soil moisture product with original spatial resolution of
0.25◦ × 0.25◦ [60,61]. Since CCDAS is run at the 8◦ × 10◦ grid in this study for effi-
ciency in computing, we re-gridded the soil moisture data to the model resolution. To
keep as much useful information from the soil moisture product as possible, we used
soil moisture derived from the ‘prior’ simulation experiment to correct the inter-annual
variability of the ESA-CCI product. The goals of this bias correction method were to
(1) eliminate the requirement for precise texture data and (2) preserve as much pertinent
data from the ESA-CCI measurement as is practical. Details can be seen in [22].

2.2.4. GRACE-REC TWS Data

Gravity Recovery and Climate Experiment—REConstruction Total Water Storage
(GRACE-REC TWS) data are a statistical reconstruction of GRACE observations from
2002 to 2017. Thorough explanations of the statistical methodology used to produce the
reconstruction of historical TWS anomalies may be found in [62]. In conclusion, past
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changes in water storage were reconstructed using a statistical model that was induced
using daily anomalies in temperature and precipitation. The GRACE-REC TWS data we
used here were from 1980 to 2015 at 0.5◦ × 0.5◦. We then re-gridded them into 8◦ × 10◦

resolution for comparison with CCDAS GPP and other variables from CCDAS.

2.2.5. Top-Down Net Ecosystem CO2 Flux

The atmospheric inversed monthly net ecosystem exchange (NEE) fluxes from Jena
CarboScope (s76oc_v4.3, update of [63,64]) were compared with the optimized NEP from
CCDAS. The s76oc_v4.3 product estimates spatially and temporally explicit CO2 fluxes
between the Earth’s surface and the atmosphere using a linear Bayesian inversion approach
based on atmospheric CO2 measurements from 9 stations, each of which spans the entire
period from 1976 to 2018. Since the spatial resolution for Jena CarboScope is 3.75◦ × 5◦, we
re-gridded the NEE into 8◦ × 10◦ and converted it to NEP by minus one.

2.2.6. FLUXCOM Gross Primary Productivity

The upscaled GPP based on FLUXNET2015 [65], denoted as FLUXCOM, was com-
pared with the optimized GPP from CCDAS. The FLUXCOM GPP was developed with
a representativeness-based upscaling approach using flux sites that sampled in similar
environmental conditions. Strong reflections of the spatiotemporal variability in the dis-
tribution of flux observations may be seen in the spatiotemporal variability and accuracy
of the upscaled GPP dataset. Because the accessible flux sites provide a good sample of
the ecoregions, the dataset has higher accuracy and lower uncertainty in those areas. This
product has the spatial resolution of 0.5◦ × 0.5◦ and was therefore re-gridded to the CCDAS
resolution. We only used the available data from 1982 to 2011 for comparison.

2.2.7. Standardized Precipitation-Evapotranspiration Index (SPEI)

The standardized precipitation-evapotranspiration index (SPEI, [66]) is a drought
index that defines the monthly difference between precipitation and potential evapotran-
spiration (PET). For each grid, we used the multi-year mean value and the Mann–Kendall
trend to determine the wet/dry conditions. If the grid has a negative multi-year mean SPEI
and a negative trend in SPEI from 1980 to 2015, it is taken as a dry grid that is becoming
drier; for a grid with positive multi-year mean SPEI and a positive trend in SPEI, it is taken
as a wet grid that is becoming wetter; otherwise the grid is either dry that is becoming
wetter or wet that is becoming drier. In determination of the optimal drought duration that
can be captured by CCDAS when soil moisture is assimilated, we calculated the correlation
between the optimized GPP and SPEI for each grid where the multi-year mean SPEI and
GPP anomalies were negative and repeated this 12 times for SPEI derived from different
durations (1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48 months). Finally, the optimal month was
determined as the one with the tightest correlation to GPP during droughts.

2.2.8. TRENDY GPP

We used the mean GPP simulations from the TRENDYv6 [16,67] ensemble of TBMs to
calculate the correlation with SPEI and evaluate the response of GPP to drought in this study.
Climate variability and the observed global CO2 concentration from the CRUNCEP dataset
are used to constrain the TRENDY models. Since the atmospheric CO2 concentrations in
the S3 simulation were based on observation, and the climate and land cover were varied
over the modeling period (1980–2015), we primarily analyzed model findings from that
simulation. All monthly GPP from TRENDY models were first resampled to 8◦ × 10◦ grid
in the unit of gC m2 yr−1.

2.2.9. GIMMS NDVI

The normalized difference vegetation index (NDVI) is a widely used remote sensing
index and is used to describe vegetation greenness. It is calculated as the difference between
visible and near-infrared reflectance of vegetation. The latest version (3 g.v1) of the Global
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Inventory Modeling and Mapping Studies NDVI (GIMMS NDVI) dataset was used to
calculate the correlation with SPEI in this study [68,69]. This long-term NDVI time series
(8 km pixel size, available twice monthly) spans the period July 1981 to December 2015.
This dataset was created using reflectance data obtained from the GIMMS project using
channels 1 and 2 of the Advanced Very High Resolution Radiometer (AVHRR). This product
was re-gridded to the CCDAS resolution.

2.2.10. LT_SIF

The solar-induced chlorophyll fluorescence (SIF) data called LT_SIF from [70] were
used in this study. The LT_SIF was developed to correct the temporal inconsistencies in
the far-red SIF data from various satellites (GOME, SCIAMACHY, and GOME-2) using the
time series of SIF data from the Sahara Desert as the benchmark. The three satellite sensors’
distinct time series of SIF data were then combined to create LT_SIF, which stands for Long-
Term Consistent Global SIF dataset and spans the period from July 1995 to December 2018
(termed as LT_SIF). We re-gridded the LT_SIF into 8◦ × 10◦ and only used the available
data from 1995 to 2015 to calculate the correlation with SPEI.

2.2.11. ENSO Indices

The El Niño/Southern Oscillation (ENSO) is used to represent the changes in the
equatorial Pacific Ocean and is the main factor of global climate change. ENSO indices are
used to characterize the intensity of an ENSO event. Two ENSO indices were selected to
represent the El Niño-Southern Oscillation. The first one is the Multivariate ENSO Index
(MEI.v2, [71–73]). It is calculated every two months by combining the Empirical Orthogonal
Function (EOF) of five different variables (sea level pressure, sea surface temperature, zonal
and meridional surface wind, and outgoing longwave radiation over the tropical Pacific
basin in the area between 30◦S and 30◦N and 100◦E and 70◦W). The second one is the Niño
3.4 [74], representing the average equatorial sea surface temperature (SST) in the region
5◦N-5◦S and 170◦W-120◦W. These two indices were de-seasonalized and normalized by
their mean values and standard deviations, respectively.

Strong El Niño/La Niña events are defined when the ENSO index anomaly is larger
than 1 or smaller than −1 for more than six continuous months. Additionally, for each
ENSO index, we put the moderate-to-strong El Niño events (anomaly > 1) and moderate-to-
strong La Niña events (anomaly < −1) together for calculation of the correlations between
soil moisture, NEP, CGR, and ENSO, as well as for estimates of the differences in these
variables between El Niño and La Niña events in different continents. The neutral ENSO
events are then defined as the absolute value of the ENSO index being smaller than 1.

2.3. Statistical Analysis

The trend for the data in this study was computed using the Mann–Kendall method
and the significance was derived simultaneously. The Pearson correlations were used
to determine the correlations between different datasets and significance values were
simultaneously obtained.

Since this study focused on the inter-annual variability (IAV) of carbon–water cou-
plings on a continental scale, which was much larger than the CCDAS original resolution
(e.g., 8◦ × 10◦) and other models and products (e.g., 0.5◦ × 0.5◦ to 2◦ × 3◦), we mainly
validated our results on their representation of the IAV from different latitude bands or on
a global scale and used the power spectra to conduct the validation.

CCDAS time series outputs including GPP, NEP, and soil moisture from three ex-
periments (‘prior’, ‘co2’, and ‘sm + co2’) aggregated from different latitude bands, i.e.,
60◦S–30◦S, 30◦S–0◦, 0◦–30◦N, 30◦N–60◦N, 60◦N–90◦N, were transferred to the frequency
domain using the Fast Fourier transform (FFT) package in MATLAB [75] after removing
inter-annual variability. The derived variables were then depicted with a relationship
between power and period.
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2.4. Evaluation Metrics

In this study, root mean square error (RMSE) was used to evaluate the performance
of the assimilation. Each output (CO2 concentration, surface layer soil moisture, NEP,
and GPP) of the model employed RMSE with its corresponding observation (SIO CO2
concentration, ESA-CCI soil moisture, Jena CarboScope NEP, and FLUXCOME GPP).

RMSE =

√√√√ 1
N

N

∑
i=1

(O(i)− M(i))2 (2)

where N is the total number of observations, O is the observed value, and M is the simulated
value.

Another correlation coefficient of determination (R2) was employed to assess the
representativeness of model outputs to inter-annual variability and the GPP response to
drought.

R2 = 1 − ∑N
i=1(O(i)− M(i))2/m

∑N
i=1
(
O(i)− M

)2/m
(3)

Figure 1 shows the framework of methodology in this study. The calculation of these
evaluation metrics and other unspecified data analysis tasks such as pre-processing and
post-processing of data were all performed in python.
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Figure 1. The methodology framework of this study. The blue-shaded part denotes the setup of
three experiments adopted in CCDAS. The orange-shaded part denotes the CCDAS and its inputs.
The purple-shaded part denotes the validation of assimilation performance compared with the SIO
observations, ESA-CCI observations, Jena CarboScope NEP, and FLUXCOM GPP with simulated CO2

concentrations, surface layer soil moisture, NEP, and GPP, respectively. The inter-annual variability
representation of model through calculating the correlation of simulated variables with ENSO indices
(green). The gray-shaded part denotes the relationship of GPP and SPEI to reflect the response of
GPP to drought.

3. Results
3.1. Soil Moisture Assimilation Performance

As seen in Figure A1, in the “prior” experiment, the difference between the simulated
CO2 concentration results and the observations gradually grows with increasing simulation
time. This issue is resolved in the “co2” and “sm + co2” experiments, where the optimized
CO2 concentrations are closer to the observations. Table 1 displays the RMSEs of these
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three experiments. For each of the eight flask sampling stations, the “sm + co2” simulation
demonstrates large improvements in the simulated atmospheric CO2 concentrations com-
pared with the prior simulations. Assimilation of CO2 concentrations and ESA-CCI soil
moisture lowers RMSE from 15.56 and 15.77 ppm for “prior” to 1.13 and 0.89 ppm for “co2”
and 0.89 and 0.31 ppm for “sm + co2” experiments at BHD and SMO sites, respectively. At
the CHR site, the RMSE obtained for the “sm + co2” experiment was identical with that of
the “co2” experiment, both at 1.12 ppm. As expected, slightly higher RMSE values than
the “co2” experiment were recorded at some sites. At the ALT, BRW, KUM, MLO, and SPO
stations, the “sm + co2” achieves the RMSE of 2.07, 2.54, 1.77, 1.42 ppm, and 1.29 ppm,
respectively; whereas in the “co2” experiment, the RMSE is 1.54, 1.71, 1.28, 0.97 ppm, and
0.80 ppm, respectively.

Table 1. The RMSEs for “prior”, “co2”, and “sm + co2” experiments with respect to SIO CO2 concen-
tration observations, respectively.

Station Name Location “prior” “co2” “sm + co2”

ALT 82.3◦N, 62.3◦W 17.5 ppm 1.54 ppm 2.07 ppm

BHD 41.4◦S, 174.9◦E 15.56 ppm 1.13 ppm 0.89 ppm

BRW 71.3◦N, 156.6◦W 17.72 ppm 1.71 ppm 2.54 ppm

CHR 2.0◦N, 157.3◦W 15.9 ppm 1.12 ppm 1.12 ppm

KUM 19.5◦N, 154.8◦W 18.03 ppm 1.28 ppm 1.77 ppm

MLO 19.5◦N, 155.6◦W 17.76 ppm 0.97 ppm 1.42 ppm

SMO 14.2◦S, 170.6◦W 15.77 ppm 0.89 ppm 0.31 ppm

SPO 90.0◦S 15.39 ppm 0.80 ppm 1.29 ppm

In Figure 2, the comparison between simulated surface layer soil moisture content
from three experiments and the ESA-CCI observations is displayed. The global mean soil
moisture RMSE decreases from 4.24 mm for “co2” experiments to 2.57 mm for “sm + co2” ex-
periments as a result of the simultaneous assimilation of CO2 concentrations and ESA-CCI
soil moisture, respectively (Figure 2 b,c). The global mean soil moisture RMSE for “sm + co2”
is slightly higher than the “prior” RSME of 2.26 mm (Figure 2a). Reductions from “co2” to

“sm + co2” experiments are shown for mainly north of the 30◦N latitude, with overall values
reduced by −1.67 mm globally, but with a little degradation in tropical regions (Figure 2d).

In the “co2” simulation and the “sm + co2” simulation, the global mean RMSE of
the simulated NEP is reduced from 23.55 gC/m2/month in the “prior” simulation to
22.95 gC/m2/month and 21.93 gC/m2/month (Figure 3a–c). Middle and high latitudes
of Eurasia and North America, where an RMSE decline in NEP primarily occurs, are
where soil moisture has also shown large improvements (Figure 3c). In areas such as
the Amazon, Sahara, and Australia, where soil moisture is not greatly enhanced, a slight
increase in RMSE can be seen. For GPP, the global mean RMSE values decreased from
68.60 gC/m2/month to a value of 57.76 gC/m2/month in “sm + co2”, a 13.41% decline
(Figure 3a,d), whereas in the “co2” experiment, the RMSE is 68.68 gC/m2/month. In most
regions, the RMSE for GPP has been reduced rather greatly, particularly in the Amazon,
Africa, North America, Central Europe, and Australia. When the ESA-CCI soil moisture
is added in the “sm + co2” experiment, the model performs better in modeling both soil
hydrology and CO2 concentrations, as shown in Figures 2 and 3.
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3.2. The Inter-Annual Variability of the Carbon and Water Fluxes

The correlations between the simulated variables from three experiments (“prior”,
“co2”, and “sm + co2”) and moderate-to-strong ENSO events were used to depict the model
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performance in representing the inter-annual variability at global scale. Our results suggest
that the “sm + co2” experiment obtained the correlations between soil moisture anomalies
from 30◦N to 60◦N (others are detailed shown in Figure A2) and MEI/Niño 3.4 (Figure A3a)
of 0.78/0.76 (p < 0.001), respectively (Figure A3b), with a time lag of 3 months (Figure A4a).
The correlations between the “sm + co2” optimized NEP anomaly and MEI/Niño 3.4
are −0.60/−0.64 (p < 0.001, Figure A3c), respectively. The time lags of the “sm + co2”
optimized NEP and the Jena CarboScope inversed NEP to MEI/Niño 3.4 are 6 months and
8 months, respectively (Figure A4b). The optimized global CO2 growth rate (CGR) shows
the correlation with the MEI/Niño 3.4 as 0.52/0.41 (p < 0.001), respectively (Figure A3d),
with a time lag of 5 months (Figure A4c). The CCDAS-optimized GPP from 30◦N to 60◦N
shows tighter correlation to the two ENSO indices than the FLUXCOM GPP (−0.29/−0.39
vs. 0.01/−0.05, p < 0.001, Figures A3e and A5b).

In Figure A6, we presented the power spectrum of the CCDAS output variables,
e.g., GPP, NEP, and surface soil moisture (0–5 cm). The power spectra show the fea-
tures of variability of GPP, NEP, and soil moisture in the frequency domain. Overall, the
ENSO-band variations of all variables are characterized by a relatively larger amplitude at
low/mid latitudes (e.g., 30◦N-60◦N and 0–30◦S) and a smaller amplitude at high latitudes
(60◦N-90◦N).

CCDAS-optimized surface soil moisture (0–5 cm) and GPP show contrasting rela-
tions over the six continents (Figure 4a,b). Overall, for North America, Europe, and Asia,
which are mainly north of 30◦N, all aggregated moderate-to-strong El Niño/La Niña
events result in lower GPP but higher soil moisture, while for South America, Africa,
and Oceania, which are mainly south of 30◦N, all aggregated moderate-to-strong El
Niño/La Niña events result in the same trend of GPP and soil moisture. GPP decrease
during moderate-to-strong and strong El Niño events in Asia (−0.26/−0.39 PgC yr−1) and
Europe (−0.23/−0.20 PgC yr−1) is accompanied by an increase in surface soil moisture
(0.32/0.23 × 10−1 mm and 0.26/0.29 × 10−1 mm, respectively). In North America, an
increase in GPP during moderate-to-strong and strong El Niño events (0.20/0.34 PgC yr−1)
is mainly caused by an increase in surface soil moisture (0.52/0.68 × 10−1 mm). In
South America, the El Niño events contribute to an increase in GPP (0.90/1.00 PgC
yr−1) accompanied by an increase in surface soil moisture (0.88/0.95 × 10−1 mm). In
South Africa and Oceania, a decrease in GPP during El Niño (−0.47/−0.59 PgC yr−1

and −0.43/−0.33 PgC yr−1) is accompanied by a positive surface soil moisture anomaly
(−0.57/−0.86 × 10−1 mm and −1.47/−0.95 × 10−1 mm).

A linear relationship between GPP anomalies and TWS anomalies (Figure 4c) is
obtained for all continents except South America during moderate-to-strong and strong
El Niño/La Niña events (r = 0.85). We notice that in four out of the six continents (e.g.,
Asia, Europe, Africa, and Oceania) defined in Figure A7, El Niño results in a decrease in
GPP, while La Niña results in an increase in GPP. In North America, both El Niño and La
Niña contribute to an increase in GPP. South America shows a contrasting relationship
between GPP and TWS, with an increase in GPP and an increase in TWS during El Niño,
and a decrease in GPP and a decrease in TWS during La Niña.
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3.3. Drought Impacts on Continental GPP 
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Figure 4. Continentally aggregated soil moisture (a), GPP (b) anomaly differences during El Niño/La
Niña period, and (c) the GPP relation to TWS from GRACE-REC. Hatches in the bars with slash
and backslash denote results during aggregated moderate-to-strong El Niño/La Niña event periods
and during aggregated strong El Niño/La Niña event periods, respectively. Values next to each bar
denote the anomalies during aggregated El Niño (up) and La Niña (down) event periods, respectively.
Symbols in (c) denote aggregated GPP and GRACE-REC TWS anomalies for different levels and
types of El Niño/La Niña events in each continent. The regressions (black line) are based on the solid
dots. The empty dots denote data from South America during different El Niño/La Niña events.

3.3. Drought Impacts on Continental GPP

The tightest correlation between the optimized GPP from CCDAS and SPEI among
12 drought durations (1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48) was identified as the optimal
drought duration. The percentage of droughts of 9 months’ duration identified by the
CCDAS-optimized GPP was 48%, which is the maximum among 12 durations (Figure 5a).
Additionally, a total of 68% of droughts of less than 9 months’ duration were identified
by the CCDAS-optimized GPP. This suggested that the CCDAS could better capture the
response of GPP to sub-annual drought durations (less than 9 months) by assimilating both
CO2 and soil moisture. The TRENDY GPP had the highest percentage at the 48-month
drought duration with 34% (Figure 5b) and the percentage of 80% for droughts greater
than 12 months’ duration, which showed that TRENDY GPP was not good at capturing
sub-annual drought durations (9 months and below) but could capture long-term drought
durations (12 months and above) very well. Similar to TRENDY, GPP proxies NDVI and
SIF derived from remote sensing also had the highest percentages at 48 months with 22%
and 31% (Figure 5c,d), as well as the total percentages of 66% and 77%, respectively, for
droughts of a duration greater than 12 months. Since CCDAS identified the 9-month
drought duration best, the next analyses related to SPEI were based on SPEI-9.
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Figure 5. Drought duration identification using the correlation between GPP, NDVI, SIF, and SPEI.
a, the optimal drought duration (month) that is best identified (with the tightest correlation among
12 durations) with respect to the Pearson correlations between SPEI from different durations and
the GPP from CCDAS. The inset denotes the percentage for each drought duration. (b), same as
(a), but for TRENDY multi-model mean (S3, 6 models) GPP. (c), same as (a), but for the NDVI from
GIMMS3g. (d), same as (a), but for SIF from LT_SIF.

The spatial distributions of drought-aggregated GPP anomalies for CCDAS and
TRENDY and NDVI anomalies for GIMMS3g from SPEI-9 with SPEI < –1 were simi-
lar in most areas (Figure 6). As can be seen in Figure 6a–c, CCDAS, TRENDY, and NDVI
all show a trend of reduced vegetation growth (decreased GPP and NDVI) when drought
occurs in most areas south of the 30◦N latitude. For most regions north of 30◦N, especially
northern North America and northern Asia, both CCDAS GPP and NDVI show a trend
of increased vegetation growth (increased GPP and NDVI) when drought occurs, but
TRENDY shows a trend of a decrease in these regions. Further, the CCDAS-optimized GPP
showed a weak increase in the Amazon rainforest region (Figure 6a), which is in agreement
with TRENDY (Figure 6b), but disagreement with NDVI and SIF, which show lower values
in the tropical rainforest region (Figure 6c,d). That is, the CCDAS-optimized GPP showed
that GPP increased in mid- and high-latitude regions in response to drought and weakly
decreased in tropical rainforest regions (Figure 6a).
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Figure 6. Drought-aggregated GPP from CCDAS, TRENDY, NDVI, and SIF. (a), drought-aggregated
GPP anomalies for CCDAS from SPEI-9 with SPEI < –1. (b), drought-aggregated GPP anomalies
for TRENDY multi-model mean (S3, 6 models) from SPEI-9 with SPEI < –1. (c), drought-aggregated
NDVI for GIMMS3g anomalies from SPEI-9 with SPEI < –1. (d), drought-aggregated SIF anomalies
for LT_SIF from SPEI-9 with SPEI < –1.

To further prove the rationality of the CCDAS results, we calculated the correlation
between the CCDAS-optimized GPP and SPEI-9 as well as the region of drought changes
identified using SPEI-9. The CCDAS-optimized GPP showed a positive correlation in the
southern parts of North America and South America as well as western parts of Asia,
where it became drier from dry (DD) and drier from wet (WD), which was identified by
SPEI-9 (Figure 7), suggesting that GPP decreases with more severe drought and results in
decreased GPP in these areas. It is noteworthy that tropical rainforest areas also showed a
change from dry to drier (DD) and the correlation coefficient between GPP and drought
also showed a slight negative correlation, which demonstrated that water reduction brings
higher GPP instead in the Amazon rainforest region. The negative correlation between GPP
and drought was concentrated in mid- and high-latitude regions, suggesting that moisture
is not a major limiting factor in these regions, such as the northern parts of Asia, Eurasia,
and North America, where the melting of snow and ice due to climate warming had led to
a change from dry to wet (DW) or wet to wetter (WW).
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(p < 0.05), the inset depicts the distribution of positive and negative correlations. (b), the
dry/wet condition shift for each grid, dry or wet is defined when the mean value of the 9-month
SPEI is negative/positive, and drier/wetter is defined when the 9-month SPEI trend calculated with
Mann–Kendall method is negative/positive. Dark brown color denotes the grid is dry and becoming
drier (DD), dark green color denotes the grid is wet and becoming wetter (WW), while the light
brown color denotes the grid is dry and becoming wetter, the light green color denotes the grid is wet
and becoming wetter. Dots denote the significance in the calculated trend (p < 0.05) for each grid.

4. Discussion
4.1. The Mechanism of Soil Moisture Controls on Carbon Fluxes

Photosynthesis, heterotrophic respiration, C pool size, and phenology are all controlled
by CO2 and it makes sense that when only assimilating the atmospheric CO2 concentrations,
performance is better than when simultaneously assimilating CO2 concentrations and soil
moisture. According to Scholze, et al. [22], the soil moisture affects the water uptake
and surface energy balance and assimilating satellite-derived soil moisture constrains the
model’s phenology and photosynthesis. In actuality, the model’s hydrological scheme’s
process parameters are corrected by assimilating the surface soil moisture. Since surface
and root zone soil moisture share common parameters, such as soil porosity, which is
used to calculate soil water properties, through these parameters, the assimilation of
satellite-derived surface soil moisture also controls plant-available soil moisture. When
simultaneously assimilating atmospheric CO2 and soil moisture, parameters such as Vcmax,
Tφ, Cw0, srdepth, Sb, emis0, and Offset (regulating the soil water and energy balance,
Table A2) are additionally constrained. Here, the carbon fluxes are further constrained by
the ESA-CCI soil moisture observations. Modulated by ENSO variability on inter-annual
time scales, the simulated soil moisture, NEP, GPP, and CGR showed tighter correlation
to the ENSO indices especially from 30◦ N to 60◦ N. That is, when assimilating both CO2
and ESA-CCI data simultaneously, the optimized CCDAS can be used to better present
the inter-annual variability of carbon–water couplings on large scales and the assimilation
of satellite soil moisture observations helps to achieve a better representation of carbon
processes in addition to soil hydrology. Our finding is consistent with Wu, et al. [23], who
showed that remotely sensed soil moisture assimilation provided better a constraint on the
global carbon cycle than assimilation of CO2 alone and demonstrated the capabilities of
CCDAS to assimilate soil moisture. This is because CCDAS used the strategy of optimizing
model parameters and state variables (e.g., Offset) simultaneously, which constrained
model parameters related to physiology, phenology, soil hydrology, as well as energy
balance and carbon cycle, and by these parameters was able to influence the water uptake
and surface energy balance as well as plant-available soil moisture [22,23].

4.2. Legacy in the Regional GPP Variability

Reduced precipitation, continental freshwater discharge [76], and evapotranspira-
tion [77] over most land areas are associated with El Niño, whereas wetter land occurs
during La Niña [39]. It is clear that El Niño years induce more droughts and a restricted
amount of terrestrial moisture, which increases plant moisture stress through higher mois-
ture demand and the corresponding rise in continental temperature. We show that El Niño
results in a decrease in GPP, while La Niña results in an increase GPP, which is consistent
with [77,78], who demonstrated that the global terrestrial biosphere reduces in both net and
total production with warm ENSO (El Niño) occurrences, but the capacity of the terrestrial
carbon sink rises with cool ENSO (La Niña) events. It has proven that the ENSO phases
(La Niña, neutral, and El Niño years) strongly impact the vegetation productivity on a
continental scale [79].

In this study, we also found that the ENSO shows lagged effects on GPP and varies
continently. For the GPP aggregated in each continent as defined in Figure A7, different time
lags are obtained. North America, Asia, and Europe (mainly distributed in the Northern
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Hemisphere) show a >3-month time lag and South America, Africa, and Oceania (mainly
distributed in the Southern Hemisphere) show just a <3-month time lag (Figure A8c). A
clear lag effect of ENSO indices on global GPP variability was discovered by [80] when
they evaluated the effects of ENSO on global GPP dynamics from 1982 to 2016. Our results
are similar to those of Vicente-Serrano, et al. [81], which illustrated that South Africa,
Australia, and Southeast Asia are the regions most impacted by El Niño phases and, in
those regions, dry conditions are observed at the beginning of events over short time scales
(1–3 months). However, in large areas of America and Eastern Europe, the effects were more
noticeable over longer time scales and were impacted by La Niña phases. Additionally,
Bastos, et al. [82] demonstrated that because of the response of the Southern Hemisphere’s
ecosystems, notably in tropical and subtropical regions, ENSO explains more than 40% of
global net primary production (NPP) variability.

4.3. Drought Impacts on Continental GPP

Drought may significantly affect terrestrial carbon fluxes through the severely im-
pacted structure and function of terrestrial ecosystems [83–85]. The factor that primarily
regulates vegetative activity affects how GPP reacts to drought. For instance, temperature
and radiation are major factors restricting the productivity of terrestrial ecosystems in
northern regions of the Northern Hemisphere. [86,87]. In these areas, drought was typ-
ically followed by temperature and radiation increases, which may have contributed to
a rise in GPP [86,88–90]. In our study, except for some regions in high latitudes in the
Northern Hemisphere which showed increased GPP when drought happened, parts of
tropical South America also showed an increase in GPP. For these regions, GPP showed a
negative correlation with drought, which means that when drought occurs, GPP shows
higher values. As indicated by Nemani et al., (2003) [86], at high latitudes in the Northern
Hemisphere, temperature was the major limitation for vegetative productivity. Decreasing
precipitation was typically followed by increasing temperature, which induced increased
GPP. Our study is consistent with [30,91], which showed that GPP has increased in some
high latitudes of the Northern Hemisphere. With regard to the Amazon rainforest, radiation
is the main factor affecting GPP in South America’s tropical regions. [86,87]. In most cases,
the reduction in precipitation happened at the same time as the rise in radiation. As a result,
in the Amazon rainforest, GPP increased slightly in drought years compared to normal
years. Our study is consistent with [92,93], which showed that GPP increased in drought
years. However, some studies find that the drought has reduced GPP [94,95]. Therefore,
GPP response to drought in rainforests has large uncertainties and needs to be more deeply
investigated in the future. The pattern of GPP response to drought in this study is similar
to that from the BEPS [96], CABLE, LPJ-wsl, and ORCHIDEE models. This demonstrates
that simultaneous assimilation of soil water and CO2 can effectively reveal the spatial
characteristics of drought effects on GPP.

Drought duration is a key variable for describing the large-scale biospheric drought
response [30]. In this study, the optimized CCDAS GPP can reflect the effect of sub-
annual drought durations (<9 months) on GPP in most of the world (68%) by adding
the assimilation of soil moisture, while for GPP products from other process-based TBMs
(TRENDY) as well as the NDVI and SIF derived from remote sensing, they capture longer
drought durations (>12 months) in most parts of the world. As previously described, daily
scale ESA-CCI soil moisture observations were used to optimize model parameters to
produce monthly scale carbon and water fluxes, and this daily scale assimilation is able
to capture the seasonal and inter-annual variability of water and thus better reflect the
short-term drought (<9 months) impacts on GPP. Many studies have been conducted on
the relationship between GPP and drought [41,97–104], and the majority of these focused
on the outputs of TBMs’ simulations or currently available remote sensing products. In
this study, we employed multiple sources of observations, including satellite-derived soil
moisture and in situ CO2 concentrations, to efficiently constrain the parameters of the
carbon and water cycle processes through data assimilation techniques. Based on the
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constrained simulated GPP, we then reliably revealed the differences in GPP response to
drought duration at the regional scale.

4.4. Caveats and Implications

Considering the computational capacity of the model and the long assimilation period
(36 years), we use the coarse model resolution (8◦ × 10◦) to perform the assimilation experi-
ment. We were able to show and quantify the additional value of the ESA-CCI soil moisture
observation as a significant constraint on the terrestrial carbon cycle and could capture the
response of GPP to drought at this coarse resolution. Previous studies showed that drought
has cumulative effects [100,102,105] and lagged effects on vegetation [99,100,106,107]. SPEI
at different time scales calculates the difference between precipitation and PET during the
current and previous months [99]. SPEI at different time scales could therefore measure
the cumulative effect of drought on vegetation. However, the SPEI with a time scale of
9 months in this study causes difficulty in identifying the lagged effect of droughts on
GPP [104]. In addition, it would take a high resolution to accurately capture the lagged
effects of drought on GPP [99,104,106], so the coarse spatial resolution in this study makes
the analysis of the legacy effects of drought on GPP more challenging. In the future re-
search, the resolution of the assimilation system needs to improve to investigate the lagged
effect of specific drought events on GPP at a higher spatial resolution. It is expected that
the assimilation of satellite-derived soil moisture observation data would be a promising
approach to analyze the cumulative and lagged effects of drought on GPP on finer scales.

It is necessary to further develop the terrestrial biosphere model. For instance, it may
be crucial to include more precise processes relating to soil water and heat transfer in
soil profiles to the model to improve the model’s response to extremes such as drought.
Another option for future research is to continually (i.e., simultaneously assimilation)
add new datasets to the model assimilation in order to constrain the processes of the
ecosystem model, which are now largely unconstrained. Potential candidate observations
include VOD (Vegetation Optical Depth) to provide a constraint on the total amount of
vegetation water content and COS (Carbonyl Sulfide) to include a more direct constraint
on photosynthesis.

5. Conclusions

In the present study, we used simultaneous assimilation of ESA-CCI soil moisture and
atmospheric CO2 in situ observations to constrain the global terrestrial carbon cycle during
1980–2015 within a Carbon Cycle Data Assimilation System (CCDAS). We demonstrated the
importance of soil moisture in the TBMs for terrestrial carbon and water cycles modeling
with a CCDAS. The conclusions are as follows:

1. The combination of soil moisture and atmospheric CO2 concentrations in CCDAS
results in a much better simulation of the terrestrial biosphere model in simulating
coupled water–carbon processes in ecosystems. For NEP and GPP, the RMSE between
the optimized model and Jena CarboScope as well as FLUXCOM is reduced by 6.88%
and 14.93% compared to the prior experiment, and by 4.44% and 15.90% compared to
only assimilating CO2. The reason why adding soil moisture observations can better
represent the carbon and water cycle is that the soil moisture constrains the model’s
phenology and photosynthesis through affecting the water uptake and surface energy
balance-related parameters (Vcmax Tφ, Cw0, srdepth, Sb, emis0, and Offset) and
additionally controls (through these parameters) plant-available soil moisture.

2. The assimilation of soil moisture has shown the ability of improving the model’s
representation of inter-annual variability of terrestrial carbon–water cycles and the
atmospheric CO2 growth rate, resulting in high correlations with ENSO indices (soil
moisture: >0.70, NEP: <−0.60, GPP: <−0.20, and CGR: >0.40). Soil moisture is the
main factor controlling GPP at the time of ENSO events. For continents mainly dis-
tributed north of 30◦N (North America, Europe, and Asia), the ENSO results in lower
GPP but higher soil moisture, while for continents mainly south of 30◦ (South Amer-
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ica, Africa, and Oceania), ENSO results in the same trend of GPP and soil moisture.
We also found that the ENSO shows lagged effects on GPP and varies continently.
North America, Asia, and Europe (mainly distributed in the Northern Hemisphere)
show a >3-month time lag compared to South America, Africa, and Oceania (mainly
distributed in the Southern Hemisphere), which show just a <3-month time lag.

3. We show that the optimized GPP is capable of reasonably depicting the response of
GPP to sub-annual drought (≤9 months) by contrasting the continentally aggregated
GPP with the comprehensive drought index SPEI. For the GPP optimized by CCDAS
with both soil moisture and CO2 concentration, GPP responded to 68% of droughts
detected globally with less than 9 months’ duration, while for TRENDY GPP, GIMMS
NDVI, and LT_SIF, these percentages are 20%, 34%, and 23%, respectively. Based
on this 9-month time scale, we analyzed the regional-scale GPP response to drought
and showed that for regions at high latitude in the Northern Hemisphere, where
temperature is the primary control of drought, an increase in GPP occurs with the
occurrence of drought events. Similarly, for the Amazon rainforest region, where
radiation is the main controlling factor, GPP is slightly enhanced when drought
occurs. This indicates that using satellite-based soil moisture observations with a
data assimilation approach can effectively constrain the water–carbon processes of
the model and the simulation results based on this constraint can effectively reveal
the response of GPP to sub-annual (≤9 months) drought at the regional scale.

We noticed that, because a 9-month time scale SPEI was used, the lagged effect of
drought could not be shown in most cases. Moreover, the focus was on the relationship
between GPP and drought over the previous 36 years at a continental scale; only a coarse
spatial resolution (8◦ × 10◦) could be used due to the constraints of spatial resolution and
assimilation duration. Future research needs to improve the resolution of the assimilation
system to investigate the lagged effect of drought on GPP at a higher spatial resolution. In
addition, the model needs to incorporate more detailed soil hydraulic processes to represent
more climatic conditions. Additionally, a further research direction for the future is to
consistently and simultaneously assimilate more datasets such as VOD and COS to further
constrain the ecosystem model’s largely incomplete constrained processes.
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Appendix A

Table A1. SIO CO2 observation stations.

Station Name Station
Code Latitude Longitude Elevation

Alert, NWT, Canada ALT 82.3◦N 62.3◦W 210

Baring Head, New Zealand BHD 41.4◦S 174.9◦E 85

Point Barrow, Alaska BRW 71.3◦N 156.6◦W 11

Christmas Island CHR 2.0◦N 157.3◦W 2

Cape Kumukahi, Hawaii KUM 19.5◦N 154.8◦W 3

Mauna Loa Observatory, Hawaii MLO 19.5◦N 155.6◦W 3397

American Samoa SMO 14.2◦S 170.6◦W 30

South Pole SPO 90.0◦S 2810

Table A2. CCDAS optimized parameters and their changes in optimization.

No. Symbol Description Units Prior Prior unc. Posterior

1 Vcmax

Maximum carboxylation
rate (C3/C4) for PFT 1-13:
TrEv (1; Tropical broadleaf
evergreen tree), TrDec (2;

Tropical broadleaf
deciduous tree), TmpEv (3;

Temperate broadleaf
evergreen tree), TmpDec
(4; Temperate deciduous
tree), EvCn (5; Evergreen

coniferous tree), DecCn (6;
Deciduous coniferous tree),
EvShr (7; Evergreen shrub),

DecShr (8; Deciduous)

µmol(CO2)m-2s-1 6.00 × 10−5 1.20 × 10−5 7.84 × 10−6

2 Vcmax µmol(CO2)m-2s-1 9.00 × 10−5 1.80 × 10−5 2.15 × 10−4

3 Vcmax µmol(CO2)m-2s-1 4.10 × 10−5 8.20 × 10−6 3.81 × 10−5

4 Vcmax µmol(CO2)m-2s-1 3.50 × 10−5 7.00 × 10−6 3.46 × 10−5

5 Vcmax µmol(CO2)m-2s-1 2.90 × 10−5 5.80 × 10−6 4.87 × 10−5

6 Vcmax µmol(CO2)m-2s-1 5.30 × 10−5 1.06 × 10−5 6.72 × 10−5

7 Vcmax µmol(CO2)m-2s-1 5.20 × 10−5 1.04 × 10−5 3.49 × 10−5

8 Vcmax µmol(CO2)m-2s-1 1.60 × 10−4 3.20 × 10−5 9.16 × 10−5

9 Vcmax µmol(CO2)m-2s-1 4.20 × 10−5 8.40 × 10−6 4.45 × 10−5

10 Vcmax µmol(CO2)m-2s-1 8.00 × 10−6 1.60 × 10−6 6.54 × 10−6

11 Vcmax µmol(CO2)m-2s-1 2.00 × 10−5 4.00 × 10−6 2.97 × 10−7

12 Vcmax µmol(CO2)m-2s-1 2.00 × 10−5 4.00 × 10−6 2.06 × 10−5

13 Vcmax µmol(CO2)m-2s-1 1.17 × 10−4 2.34 × 10−5 7.07 × 10−5

https://ecocast
https://www.esrl.noaa.gov/psd/enso/mei/
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
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Table A2. Cont.

No. Symbol Description Units Prior Prior unc. Posterior

14 aJ,V

Ratio Vmax to Jmax (max.
electron transport rate) for

PFT 1–13

- 1.96 9.80 × 10−2 1.81

15 aJ,V - 1.99 9.95 × 10−2 1.75

16 aJ,V - 2.00 1.00 × 10−1 1.99

17 aJ,V - 2.00 1.00 × 10−1 2.07

18 aJ,V - 1.79 8.95 × 10−2 1.87

19 aJ,V - 1.79 8.95 × 10−2 1.81

20 aJ,V - 1.96 9.80 × 10−2 1.95

21 aJ,V - 1.66 8.30 × 10−2 1.66

22 aJ,V - 1.90 9.50 × 10−2 1.81

23 aJ,V - 1.40 × 10−4 2.80 × 10−5 4.47 × 10−5

24 aJ,V - 1.85 9.25 × 10−2 1.80

25 aJ,V - 1.85 9.25 × 10−2 1.84

26 aJ,V - 1.88 9.40 × 10−2 2.13

27 fr,lea f Leaf respiration ratio - 4.00 × 10−1 1.00 × 10−1 4.40 × 10−1

28 fr,growth Growth respiration ratio - 2.00 × 10−1 1.00 × 10−2 2.48 × 10−1

29 Q10, f

Soil respiration
temperature factor, fast

pool
- 1.50 7.50 × 10−1 1.67

30 Q10,s

Soil respiration
temperature factor, slow

pool
- 1.50 7.50 × 10−1 1.35

31 τf Fast pool soil carbon
turnover time year 6.60 × 10−1 4.00 × 10−1 4.25 × 10−2

32 κ
Soil moisture exponential

for soil respiration - 1.00 1.00 2.87

33 fS
Fraction of fast soil

decomposition - 2.00 × 10−1 2.00 × 10−1 2.32 × 10−1

34 ERd
Activation energy, dark

respiration J mol−1 4.50 × 104 2.25 × 103 2.56 × 104

35 EVmax
Activation energy,

carboxylation rate (C3) J mol−1 5.85 × 104 2.93 × 103 6.76 × 104

36 EKO Activation energy, O2 J mol−1 3.59 × 104 1.80 × 103 3.58 × 104

37 EKC Activation energy, CO2 J mol−1 5.94 × 104 2.97 × 103 5.61 × 104

38 Ek
Activation energy,

carboxylation rate (C4) J mol−1 5.10 × 104 2.55 × 103 5.16 × 104

39 αq
Photon capture efficiency

(C3) - 2.80 × 10−1 1.40 × 10−2 2.46 × 10−1

40 αi Quantum efficiency (C4) - 4.00 × 10−2 2.00 × 10−3 3.45 × 10−2

41 Kc25 Michaelis–Menten
constant CO2

µmol(CO2)mol(air)-
1 ◦C−1 4.60 × 10−4 2.30 × 10−5 4.04 × 10−4

42 Ko25 Michaelis–Menten
constant O2

µmol(CO2)mol(air)-
1 ◦C−1 3.30 × 10−1 1.65 × 10−2 3.51 × 10−1
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Table A2. Cont.

No. Symbol Description Units Prior Prior unc. Posterior

43 aΓ, T Temperature slope CO2
compensation point

µmol(CO2)mol(air)-
1 ◦C−1 1.70 × 10−6 8.50 × 10−8 1.42 × 10−6

44 β

Net CO2 sink/soil factor
for PFT 1–13, used for

adjusting soil carbon pool3

- 1.00 2.50 × 10−1 4.79 × 10−1

45 β - 1.00 2.50 × 10−1 1.99

46 β - 1.00 2.50 × 10−1 1.01

47 β - 1.00 2.50 × 10−1 3.61 × 10−1

48 β - 1.00 2.50 × 10−1 2.28 × 10−1

49 β - 1.00 2.50 × 10−1 7.39 × 10−1

50 β - 1.00 2.50 × 10−1 1.63

51 β - 1.00 2.50 × 10−1 1.28

52 β - 1.00 2.50 × 10−1 1.59

53 β - 1.00 2.50 × 10−1 1.67

54 β - 1.00 2.50 × 10−1 6.32 × 10−1

55 β - 1.00 2.50 × 10−1 9.36 × 10−1

56 β - 1.00 2.50 × 10−1 6.55 × 10−2

57 Λ ∼ Maximum leaf area index - 4.00 1.00 × 10−1 3.41

58 Tφ
Phenology temperature

trigger for PFT 4–6
◦C 1.00 × 101 2.00 6.99

59 Tφ
Phenology temperature

trigger for PFT 8
◦C 8.00 2.00 8.26

60 Tφ
Phenology temperature

trigger for PFT 9–12
◦C 2.00 2.00 -2.20

61 Tφ
Phenology temperature

trigger for PFT 13
◦C 1.50 × 101 2.00 2.32 × 101

62 Tr

Spatial range of phenology
temperature trigger for

PFT 4–6, 8, 13

◦C 2.00 1.00 2.06

63 Tr

Spatial range of phenology
temperature trigger for

PFT 9–12

◦C 2.00 1.00 1.74 × 10−1

64 tc
Day length at leaf

shedding for PFT 4–6, 8, 11 h 1.05 × 101 1.00 5.40

65 tr

Spatial range of day length
at leaf shedding for PFT

4–6, 8, 11
h 5.00 × 10−1 2.50 × 10−1 7.78 × 10−1

66 ξ Initial linear leaf growth d−1 5.00 × 10−1 5.00 × 10−1 8.44 × 10−1

67 kL
Inverse of leaf longevity

for PFT 2, 4, 6, 8–10, 12, 13 h 1.00 × 10−1 1.00 × 10−1 4.72 × 10−3

68 kL
Inverse of leaf longevity

for PFT 5, 11 h 5.00 × 10−3 5.00 × 10−3 1.11 × 10−2

69 τw
Length of dry spell before
leaf shedding for PFT 1, 3,

7
d−1 3.00 × 101 3.00 × 101 4.46 × 101

70 τw Length of dry spell before
leaf shedding for PFT 2 d−1 3.00 × 101 3.00 × 101 9.66
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Table A2. Cont.

No. Symbol Description Units Prior Prior unc. Posterior

71 τw
Length of dry spell before
leaf shedding for PFT 9–10,

12, 13
day 3.00 × 101 3.00 × 101 8.10

72 f Ci, C3
Stomata internal to

atmospheric CO2 (C3) - 6.50 × 10−1 6.50 × 10−2 5.55 × 10−1

73 f Ci, C4
Stomata internal to

atmospheric CO2 (C4) - 3.70 × 10−1 3.70 × 10−2 4.47 × 10−1

74 CW0
Ratio of maximum water

supply rate mm d−1 5.00 × 10−1 1.50 × 10−1 9.56 × 10−1

75 emis0 Emissivity of the
atmosphere - 6.40 × 10−1 3.20 × 10−2 7.51 × 10−1

76 srdepth

Rooting depth scalar for
PFT 1–13

- 1.00 1.00 × 10−1 9.47 × 10−1

77 srdepth - 1.00 1.00 × 10−1 4.59 × 10−1

78 srdepth - 1.00 1.00 × 10−1 9.91 × 10−1

79 srdepth - 1.00 1.00 × 10−1 9.77 × 10−1

80 srdepth - 1.00 1.00 × 10−1 1.12

81 srdepth - 1.00 1.00 × 10−1 9.02 × 10−1

82 srdepth - 1.00 1.00 × 10−1 1.07

83 srdepth - 1.00 1.00 × 10−1 1.20

84 srdepth - 1.00 1.00 × 10−1 6.14 × 10−1

85 srdepth - 1.00 1.00 × 10−1 4.40 × 10−1

86 srdepth - 1.00 1.00 × 10−1 1.02

87 srdepth - 1.00 1.00 × 10−1 9.90 × 10−1

88 srdepth - 1.00 1.00 × 10−1 1.47

89 Sb Shape parameter retention
curve scalar for soil texture
1-6: coarse (1; loam sand),
medium/coarse (2; sandy
loam), medium (3; loam),
fine/medium (4; sandy
clay loam), fine (5; clay
loam), organic (6; loam)

- 1.00 1.00 × 10−1 8.18 × 10−1

90 Sb - 1.00 1.00 × 10−1 8.89 × 10−1

91 Sb - 1.00 1.00 × 10−1 1.20

92 Sb - 1.00 1.00 × 10−1 1.16

93 Sb - 1.00 1.00 × 10−1 7.19 × 10−1

94 Sb - 1.00 1.00 × 10−1 9.91 × 10−1

95 Sn

Soil porosity scalar for soil
texture 1-6

- 1.00 1.00 × 10−1 1.33

96 Sn - 1.00 1.00 × 10−1 3.15 × 10−1

97 Sn - 1.00 1.00 × 10−1 1.04

98 Sn - 1.00 1.00 × 10−1 6.26 × 10−1

99 Sn - 1.00 1.00 × 10−1 1.30

100 Sn - 1.00 1.00 × 10−1 9.91 × 10−1

101 Offset Initial atmospheric CO2
concentration ppm 3.36 × 102 1.00 3.37 × 102

These 101 parameters are related to physiology (parameters 1 to 57), phenology (58 to 71), stomatal control (72 to
74), energy balance (75), soil hydrology (76-100), and atmospheric CO2 concentration (101). More details see Wu
et al., 2020.
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Figure A1. Comparison of prior and optimized output of CO2 concentrations at eight sites with
SIO data. (a) is ALT site, (b) is BHD site, (c) is BRW site, (d) is CHR site, (e) is KUM site, (f) is
MLO site, (g) is SMO site, and (h) is SPO site. The “prior”, “co2”, and “sm + co2” experiments are
represented by blue, orange, and green lines, respectively; the SIO observations are represented by
black dot. Simulation results and observations are depicted with monthly data, The RMSEs for these
three experiments are represented by the values in the legend, in ppm.
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Figure A2. Time series anomalies of soil moisture from ESA-CCI and from CCDAS optimization
(‘sm + co2’) at various latitudes. (a–e) denotes different latitude. The anomalies are calculated from
the mean surface soil moisture for each latitudinal band. Red lines for CCI and blue lines for CCDAS
(‘sm + co2’). The correlations of soil moisture anomalies and two ENSO indices (MEI and Niño 3.4)
are depicted in each figure.
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Figure A3. Inter-annual variability of ENSO indices, soil water, NEP, and CO2 concentrations.
(a), normalized anomalies for two ENSO indices, MEI (Multivariate ENSO Index) and Niño 3.4,
anomalies are calculated by removing mean seasonality during 1980–2015, then normalized by
standard deviations for the same period. (b), soil moisture anomalies calculated from zonal mean
soil moisture (30◦N-60◦N) by removing mean seasonality during 1980–2015 and then smoothed with
a 7-month moving average method, for both the CCI remote sensing data and CCDAS-optimized
soil moisture. (c), NEP anomalies calculated from global mean CCDAS-optimized NEP using
the same method as soil moisture. (d), global CO2 growth rate (CGR) anomalies calculated from
the global CO2 concentrations by mixing CO2 concentrations from Mauna Loa (MLO) and South
Pole (SPO), 0.75 × MLO + 0.25 × SPO, and deriving the growth rate by removing mean seasonality,
then a 7-month moving average is used for SIO CO2 concentrations and CCDAS-optimized CO2

concentrations, respectively. (e), GPP anomalies calculated from global mean CCDAS-optimized GPP
using the same method as soil moisture. Correlation coefficients (Pearson r) are derived from the best
values at different time lags between different variables and strong El Niño/La Niña events (values
from the colored region in Figure 1a).
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Figure A4. Relations between Pearson r and time lag. (a), changes in Pearson r for CCI soil moisture
and CCDAS-optimized soil moisture with time lag response of soil moisture to two ENSO indices,
MEI and Niño 3.4. (b), same as (a), but for atmospheric inversion from Jena CarboScope and
CCDAS-optimized NEP. (c), same as (a), but for global CO2 growth rate (CGR) from SIO and CCDAS
optimization.
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Figure A5. Time series anomalies of GPP from FLUXCOM and from CCDAS optimization (‘sm+co2’)
at various latitudes. (a–e) denote different latitudes. The anomalies are calculated from the mean
GPP for each latitudinal band. Red lines for FLUXCOM and blue lines for CCDAS (‘sm+co2’). The
correlations of GPP anomalies and two ENSO indices (MEI and Niño 3.4) are depicted in each figure.
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Figure A6. The power spectra of simulated GPP and NEP (by column) with different experiments
(by color) in different latitude bands (by row). The mean seasonal cycle of all monthly variables
is removed. GPP for gross primary productivity, NEP for net ecosystem productivity. Blue color
denotes results from the prior model simulation with prescribed parameter values, black color
denotes the atmospheric CO2 only assimilation results, and red color denotes the results from the
simultaneous assimilation of soil moisture and atmospheric CO2. The colored digits in each panel
denote the Pearson r of spectra pattern between soil moisture (3rd column) and other variables
(1st and 2nd columns) from different simulation experiments.
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Figure A7. Global vegetation map and continental boundaries as well as atmospheric CO2 observation
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stations. A total of 13 PFTs are defined in CCDAS and the major PFT for each grid cell is shown here.
The continental boundaries are depicted with rectangles, green color for North America, red color
for South America, yellow color for Europe, purple color for South Africa, blue color for Asia, and
brown color for Oceania. The red dots are for the SIO atmospheric CO2 observation stations from
which the data are used in the assimilation.
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