Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Weather Station Datal
2.3. Satellite Precipitation Products
- i.
- Monthly-accumulated climatological precipitation (CHPClim).
- ii.
- Geostationary satellite observations in the infrared (IR) channel from the NOAA data sources.
- iii.
- Product of the Climate Prediction Centre (CPC) and the B1 IR of the National Climatic Data Centre (NCDC);
- iv.
- Precipitation estimated by the TRMM 3B42 product from NASA.
- v.
- Rainfall field of the NOAA atmospheric model, Climate Forecast System version 2 (CFSv2);
- vi.
- And in-situ observations of precipitation acquired from national and regional meteorological services.
2.4. Hydrological Modeling Based on ANN
2.5. Data Analysis Methodology
Statistical Approaches
- i.
- by visual comparison of variables;
- ii.
- by quantitative comparison;
- iii.
- by qualitative comparison;
- iv.
- by comparison of spatial structures of precipitation fields.
- -
- The POD (the Probability Of Detection), which represents the fraction of observed events that were correctly estimated, is also referred to as the success rate;
- -
- The FAR (the False Alarm Ratio) is the estimated proportion of events that tend to be falsely detected.
- -
- The critical success index (CSI) measures the ratio of satellite events that are correctly detected to the total number of observed or detected events.
- -
- The Heidke skill score (HSS) measures the accuracy of the estimates accounting for matches due to random chance.
3. Results and Discussions
3.1. Evaluation of Satellites Precipitation Products through Comparison with Rain Gouges
3.2. Validation of the TerraClimate Precipitation Products by Comparison between the Observed and Simulated Flow of a Hydrological Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baratta, D.; Cicioni, G.; Masulli, F.; Studer, L. Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Netw. 2003, 16, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Abrahart, R.J. Neural network rainfall–runoff forecasting based on continuous resampling. J. Hydroinf. 2003, 5, 51–61. [Google Scholar] [CrossRef]
- Afshin, S.; Fahmi, H.; Alizadeh, A.; Sedghi, H.; Kaveh, F. Long term rainfall forecasting by integrated artificial neural network-fuzzy logic-wavelet modeling Karoon basin. Sci. Res. Essays 2011, 6, 1200–1208. [Google Scholar]
- Aksoy, H.; Dahamsheh, A. Artificial neural network models for forecasting monthly precipitation in Jordan. Stoch. Environ. Res. Risk Assess. 2009, 23, 917–931. [Google Scholar] [CrossRef]
- Altunkaynak, A. Forecasting surface water level fluctuations of lake van by artificial neural networks. Water Resour. Manage. 2007, 21, 399–408. [Google Scholar] [CrossRef]
- Asati, S.R.; Rathore, S.S. Comparative study of stream flow prediction models. Int. J. Life Sci. Biotecnol. Pharm. Res. 2012, 1, 139–151. [Google Scholar]
- Bhadra, A.; Bandyopadhyay, A.; Singh, R.; Raghuwanshi, N.S. Rainfall–runoff modeling: Comparison of two approaches with different data requirements. Water Resour. Manage. 2010, 24, 37–62. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Aryastana, P.; Liu, G.-R.; Huang, W.-R. Assessment of satellite precipitation product estimates over Bali Island. Atmos. Res. 2020, 244, 105032. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of Satellite Rainfall Estimates over the Chinese Mainland. Remote Sens. 2014, 6, 11649–11672. [Google Scholar] [CrossRef]
- Amorim, J.D.S.; Viola, M.R.; Junqueira, R.; Oliveira, V.A.D.; Mello, C.R.D. Evaluation of Satellite Precipitation Products for Hydrological Modeling in the Brazilian Cerrado Biome. Water 2020, 12, 2571. [Google Scholar] [CrossRef]
- Abdelmoneim, H.; Soliman, M.R.; Moghazy, H.M. Evaluation of TRMM 3B42V7 and CHIRPS Satellite Precipitation Products as an Input for Hydrological Model over Eastern Nile Basin. Earth Syst. Environ. 2020, 4, 685–698. [Google Scholar] [CrossRef]
- Camberlin, P.; Barraud, G.; Bigot, S.; Dewitte, O.; Makanzu Imwangana, F.; Maki Mateso, J.C.; Samba, G. Evaluation of remotely sensed rainfall products over Central Africa. Q. J. R. Meteorol. Soc. 2019, 145, 2115–2138. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa. Remote. Sens. 2017, 9, 430. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Stampoulis, D.; Anagnostou, E.N. Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeorol. 2012, 13, 588–603. [Google Scholar] [CrossRef]
- Bouizrou, I.; Bouadila, A.; Aqnouy, M.; Gourfi, A. Assessment of remotely sensed precipitation products for climatic and hydrological studies in arid to semi-arid data-scarce region, central-western Morocco. Remote Sens. Appl. Soc. Environ. 2023, 30, 100976. [Google Scholar] [CrossRef]
- Habitou, N.; Morabbi, A.; Ouazar, D.; Bouziane, A.; Hasnaoui, M.D.; Sabri, H. CHIRPS precipitation open data for drought monitoring: Application to the Tensift basin, Morocco. J. Appl. Remote Sens. 2020, 14, 034526. [Google Scholar]
- Tramblay, Y.; Thiemig, V.; Dezetter, A.; Hanich, L. Evaluation of satellite-based rainfall products for hydrological modelling in Morocco. Hydrol. Sci. J. 2016, 61, 2509–2519. [Google Scholar] [CrossRef]
- Salih, W.; Chehbouni, A.; Epule, T.E. Evaluation of the Performance of Multi-Source Satellite Products in Simulating Observed Precipitation over the Tensift Basin in Morocco. Remote Sens. 2022, 14, 1171. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; El Meslouhi, M.R.; Chehbouni, A. Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. US Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Hessels, T.M. Comparison and Validation of Several Open Access Remotely Sensed Rainfall Products for the Nile Basin; Delft University of Technology: Delft, The Netherlands, 2015; Available online: https://repository.tudelft.nl/islandora/object/uuid:3566f883-16fd-4465-be43-6b2037baa6ff (accessed on 30 March 2023).
- Nogueira, S.M.; Moreiro, M.A.; Volpato, M.M. Evaluating precipitation estimates from Eta, TRMM and CHIRPS data in the South-Southeast Region of Minas Gerais State—Brazil. Remote Sens. 2018, 10, 313. [Google Scholar] [CrossRef]
- Ayehu, G.T.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech. 2018, 11, 1921–1936. [Google Scholar] [CrossRef]
- Mosaffa, H.; Sadeghi, M.; Hayatbini, N.; Afzali Gorooh, V.; Akbari Asanjan, A.; Nguyen, P.; Sorooshian, S. Spatiotemporal Variations of Precipitation over Iran Using the High-Resolution and Nearly Four Decades Satellite-Based PERSIANN-CDR Dataset. Remote Sens. 2020, 12, 1584. [Google Scholar] [CrossRef]
- Raman, H.; Chandramauli, V. Deriving a general operating policy for reservoirs using neural network. J. Water Resour. Plan Manag. ASCE 1996, 122, 342–347. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superposition of sigmoidal functions. Math. Control. Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Cheleng, A.A. Rainfall–runoff modeling based on artificial neural networks (ANNs). Eur. J. Sci. Res. 2011, 65, 490–506. [Google Scholar]
- Nourani, V.; Komasi, M.; Mano, A. A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resour. Manage. 2009, 23, 2877–2894. [Google Scholar] [CrossRef]
- Mohammadi, K.; Eslami, H.R.; Dayyani Dardashti, S. Comparison of regression, ARIMA and ANN models for reservoir in flow forecasting using Snow melt equivalent (a case study of Karaj). J. Agric. Sci. Technol. 2005, 7, 17–30. [Google Scholar]
- Can, İ.; Tosunoğlu, F.; Kahya, E. Daily stream flow modelling using autoregressive moving average and artificial neural networksmodels: Case study of Çoruh basin, Turkey. Water Environ. J. 2012, 26, 567–576. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, J.Z.; Qiu, F.-P.; Yang, J.-J. Biased Wavelet Neural network and its application to stream flow forecast. In Advances in Neural Networks—ISNN 2006; Wang, J., Yi, Z., Zurada, J., Lu, B.-L., Yin, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Nagesh Kumar, D.; Srinivasa Raju, K.; Sathish, T. River flow forecasting using recurrent neural networks. Water Resour. Manage. 2004, 18, 143–161. [Google Scholar] [CrossRef]
- Singh, S.M.; Maiti, P.R.; Shaiwalini, S. Statistical modeling of climate parameters. Asian J. Curr. Eng. Maths 2012, 1, 29–33. [Google Scholar]
- Imani, M.; You, R.J.; Kuo, C.Y. Caspian Sea level prediction using satellite altimetry by artificial neural net works. Int. J. Environ. Sci. Technol. 2014, 11, 1035–1042. [Google Scholar] [CrossRef]
- Wang, J.; Sui, J.; Guo, L.; Karney, B.W.; Jüpner, R. Forecast of water level and ice jam thickness using the back propagation neural network and support vector machine methods. Int. J. Environ. Sci. Technol. 2010, 7, 215–224. [Google Scholar] [CrossRef]
- El-Shafie, A.; Noureldin, A.; Taha, M.; Hussain, A.; Mukhlisin, M. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia. Hydrol. Earth Syst. Sci. 2012, 16, 1151–1169. [Google Scholar] [CrossRef]
- El-Shafie, A.H.; El-Shafie, A.; El Mazoghi, H.G.; Shehata, A.; Taha, M.R. Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt. Int. J. Phys. Sci. 2011, 6, 1306–1316. [Google Scholar]
- Gholizadeh, M.H.; Darand, M. Forecasting precipitation with artificial neural networks (case study: Tehran). J. Appl. Sci. 2009, 9, 1786–1790. [Google Scholar] [CrossRef]
- Mandal, T.; Jothiprakash, V. Short-term rainfall prediction using ANN and MT techniques. ISHJ. Hydraul. Eng. 2012, 18, 20–26. [Google Scholar] [CrossRef]
- Ramírez, M.C.V.; Ferreira, N.J.; Velho, H.F.D.C. Linear and nonlinear statistical down scaling for rainfall forecasting over Southeastern Brazil. Weather. Forecast. 2006, 21, 969–989. [Google Scholar] [CrossRef]
- Lin, J.Y.; Cheng, C.T.; Chau, K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599–612. [Google Scholar] [CrossRef]
- Ebert, E. Methods for verifying satellite precipitation estimates. In Measuring Precipitation from Space: EURAINSAT and the Future; Levizzani, V., Bauer, P., Turk, F.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 345–356. [Google Scholar]
- Jobard, I.; Chopin, F.; Bergrès, J.; Roca, R. An intercomparison of 10-day precipitation satellite products during west African monsoon. Int. J. Remote Sens. 2011, 32, 2353–2376. [Google Scholar] [CrossRef]
- Laurent, H.; Jobard, I.; Toma, A. Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmos. Res. 1998, 4748, 651–670. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Wood, E.F. Hydrological Forecating. In Handbook of Hydrology; Maodment, D., Ed.; Mc Graw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Seyyedi, H.; Anagnostou, E.; Beighley, E.; McCollum, J. Satellite-driven downscaling of global reanalysis precipitation products for hydrological applications. Hydrol. Earth Syst. Sci. 2014, 18, 5077–5091. [Google Scholar] [CrossRef]
Rainfall Station | Altitude (m) | Period of Monthly Available Precipitations |
---|---|---|
Adamna | 70 | 1977–2021 |
Azrou | 350 | 2002–2021 |
Igrounzar | 158 | 1977–2021 |
Talmest | 53 | 1984–2021 |
Rain Gauge | |||
---|---|---|---|
Rain ≥ Threshold | Rain < Threshold | ||
Satellite | Rain ≥ Threshold | a | b |
Rain < Threshold | c | d |
Indicators | Equation | Possible Values | Optimal Value |
---|---|---|---|
Pearson Correlation Coefficient | −1 to 1 | 1 | |
Biais | Biais = | 0 to +∞ | 1 |
Root-Mean-Square Error | 0 to +∞ | 0 | |
Nash-Sutcliffe efficiency | −∞ to 1 | 1 | |
Mean Absolute Error | 0 to +∞ | 0 | |
Probability of detection (POD) | 1 | ||
False alarm ratio (FAR) | 0 | ||
Critical success index (CSI) | 1 | ||
Heidke skill score (HSS) | 1 |
Products | TerraClimate | Persiann CDR | Tamsat | CHIRPS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stations | Adamna | Igrounzar | Talmest | Azrou | Adamna | Igrounzar | Talmest | Azrou | Adamna | Igrounzar | Talmest | Azrou | Adamna | Igrounzar | Talmest | Azrou |
PPC | 0.94 | 0.91 | 0.92 | 0.90 | 0.90 | 0.88 | 0.91 | 0.89 | 0.83 | 0.76 | 0.62 | 0.66 | 0.38 | 0.35 | 0.37 | 0.37 |
Biais | 1.13 | 1.03 | 0.90 | 0.95 | 1.42 | 1.29 | 1.02 | 1.35 | 1.11 | 0.98 | 0.95 | 0.66 | 1.23 | 1.05 | 0.95 | 1.03 |
RMSE | 18.66 | 17.53 | 15.32 | 16.02 | 26.77 | 23.34 | 14.81 | 21.52 | 29.78 | 29.50 | 14.42 | 0.66 | 44.32 | 41.31 | 33.81 | 35.86 |
NSE | 0.71 | 0.74 | 0.81 | 0.75 | −0.07 | 0.19 | 0.69 | −0.04 | 0.08 | 0.10 | 0.25 | 0.66 | −1.65 | −1.30 | −0.78 | −1.32 |
MAE | 8.94 | 8.83 | 8.34 | 9.88 | 14.04 | 11.55 | 7.25 | 12.34 | 17.88 | 16.86 | 4.80 | 0.66 | 25.54 | 23.71 | 15.74 | 22.78 |
POD | 0.78 | 0.80 | 0.80 | 0.86 | 0.99 | 0.99 | 0.99 | 0.99 | 0.78 | 0.80 | 0.80 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 |
FAR | 0.19 | 0.19 | 0.25 | 0.25 | 0.30 | 0.29 | 0.31 | 0.33 | 0.19 | 0.19 | 0.25 | 0.25 | 0.33 | 0.32 | 0.33 | 0.34 |
HSS | 0.37 | 0.39 | 0.27 | 0.34 | 0.17 | 0.19 | 0.11 | 0.07 | 0.37 | 0.39 | 0.27 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 |
CSI | 0.65 | 0.67 | 0.63 | 0.67 | 0.70 | 0.71 | 0.69 | 0.67 | 0.65 | 0.67 | 0.63 | 0.67 | 0.67 | 0.68 | 0.67 | 0.66 |
Criteria | Training Phase | Validation Phase | Prediction Phase |
---|---|---|---|
NSE | 0.97323495 | 0.92705722 | 0.928024483 |
MAE | 1.25760651 | 1.12024264 | 1.251618283 |
RMSE | 3.17008424 | 2.56040084 | 3.428991402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachidi, S.; El Mazoudi, E.H.; El Alami, J.; Jadoud, M.; Er-Raki, S. Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone. Water 2023, 15, 1997. https://doi.org/10.3390/w15111997
Rachidi S, El Mazoudi EH, El Alami J, Jadoud M, Er-Raki S. Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone. Water. 2023; 15(11):1997. https://doi.org/10.3390/w15111997
Chicago/Turabian StyleRachidi, Said, EL Houssine El Mazoudi, Jamila El Alami, Mourad Jadoud, and Salah Er-Raki. 2023. "Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone" Water 15, no. 11: 1997. https://doi.org/10.3390/w15111997
APA StyleRachidi, S., El Mazoudi, E. H., El Alami, J., Jadoud, M., & Er-Raki, S. (2023). Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone. Water, 15(11), 1997. https://doi.org/10.3390/w15111997