Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (552)

Search Parameters:
Keywords = EMPA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 354
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

24 pages, 3976 KiB  
Article
SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
by Bianca-Ștefania Profire, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala and Lenuța Profire
Pharmaceutics 2025, 17(8), 969; https://doi.org/10.3390/pharmaceutics17080969 - 26 Jul 2025
Viewed by 435
Abstract
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, [...] Read more.
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, oleanolic acid (OA) was incorporated into the lipid bilayer, while the liposomal surface was coated with polyvinylpyrrolidone (PVP). Results: The resulting liposomes exhibited favorable physico-chemical properties (particle size ~170 nm, low PDI, negative zeta potential), high encapsulation efficiencies (up to 97%), and spherical morphology as confirmed by STEM. XRD and DSC analyses indicated successful API incorporation and amorphization within the lipid matrix, while PVP coating provided slight improvements in thermal stability. Trehalose proved to be an effective cryoprotectant, preserving liposome integrity after freeze-drying. In vitro release studies demonstrated sustained and delayed drug release, especially in PVP-coated and OA-containing formulations. Conclusions: All these findings highlight the promise of PVP-coated, OA-stabilized liposomal formulations co-loaded with SGLT2 inhibitors and Cur as biocompatible, multifunctional platforms for targeted HF therapy. Full article
Show Figures

Graphical abstract

30 pages, 4865 KiB  
Article
Thermal Behavior and Smoke Suppression of Polyamide 6,6 Fabric Treated with ALD-ZnO and DOPO-Based Silane
by Wael Ali, Raphael Otto, Ana Raquel Lema Jimenez, Sebastian Lehmann, Eui-Young Shin, Ying Feng, Milijana Jovic, Sabyasachi Gaan, Jochen S. Gutmann, Kornelius Nielsch, Amin Bahrami and Thomas Mayer-Gall
Materials 2025, 18(13), 3195; https://doi.org/10.3390/ma18133195 - 7 Jul 2025
Viewed by 626
Abstract
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic [...] Read more.
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic layer deposition (ALD) of ZnO with a phosphorus–silane-based flame retardant (DOPO-ETES). ALD allowed precise control of ZnO layer thickness (50, 84, and 199 nm), ensuring uniform coating. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) revealed that ZnO altered the degradation pathway of PA6,6 through catalytic effects, promoting char formation and reducing heat release. The combination of ZnO and DOPO-ETES resulted in further reductions in heat release rates. However, direct flame tests showed that self-extinguishing behavior was not achieved, emphasizing the limitations related to the melting of PA6,6. TG-IR and cone calorimetry confirmed that ZnO coatings suppressed the release of smoke-related volatiles and incomplete combustion products. These findings highlight the potential of combining metal-based catalytic flame retardants like ZnO with phosphorus-based coatings to improve flame retardancy while addressing the specific challenges of polyamide textiles. This approach may also be adapted to other fabric types and integrated with additional flame retardants, broadening its relevance for textile applications. Full article
Show Figures

Graphical abstract

24 pages, 20538 KiB  
Article
Data of Lithium from Triphylite LiFe2+PO4 Present in Conțu-Negovanu Pegmatites, in the Southern Carpathians, Romania
by Nicolae Călin, Ciprian Constantina, Diana Perșa, Valentina Cetean and Valentin Paraschiv
Minerals 2025, 15(6), 641; https://doi.org/10.3390/min15060641 - 12 Jun 2025
Viewed by 398
Abstract
This study aims to describe the triphylite (LiFe2+PO4) from Li-bearing pegmatites from the Conțu-Negovanu area (Southern Carpathians, Romania). Thus, for the first time in this area, using four analytical methods, i.e., electron micro-probe analysis (EMPA), polarized optical microscopy (POM), [...] Read more.
This study aims to describe the triphylite (LiFe2+PO4) from Li-bearing pegmatites from the Conțu-Negovanu area (Southern Carpathians, Romania). Thus, for the first time in this area, using four analytical methods, i.e., electron micro-probe analysis (EMPA), polarized optical microscopy (POM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (p-XRD), the authors have succeeded in isolating the triphylite from the isomorphous triphylite–lithiophilite series. In addition, in the Conțu-Negovanu area, two new minerals were identified and described for the first time in pegmatites from this area: Fe-rich gatehouseite and wolfeite. The use of EMPA allowed for the tentative calculation of empirical formulae for these secondary phosphate minerals. Full article
Show Figures

Figure 1

16 pages, 7880 KiB  
Article
A Comparative Study on Corrosion Fatigue Susceptibility and Microstructural Effects in 6061-T6 and 6082-T6 Aluminum Alloys
by Tetiana Avramenko, Silvain Michel, Alex Stutz, Jan Kollender, Iurii Burda, Ulrik Hans, Christian Affolter and Giovanni Pietro Terrasi
Metals 2025, 15(6), 653; https://doi.org/10.3390/met15060653 - 12 Jun 2025
Viewed by 768
Abstract
In the present study, fatigue performance of 6061-T6 and 6082-T6 commercially available extruded aluminum alloys in dry air and 3.5 wt% NaCl-saturated environment was investigated and compared. It was found that the aggressive chloride environment accelerated fatigue failure by up to an order [...] Read more.
In the present study, fatigue performance of 6061-T6 and 6082-T6 commercially available extruded aluminum alloys in dry air and 3.5 wt% NaCl-saturated environment was investigated and compared. It was found that the aggressive chloride environment accelerated fatigue failure by up to an order of magnitude compared to laboratory air. Furthermore, alloy 6061-T6 shows more predictable fatigue life, having less scatter in its time to failure in a corrosive environment. The presence of localized pitting corrosion, particularly in Fe-rich intermetallic phases, provides initiation sites for fatigue cracks, leading to premature failure in both alloys. The corrosion fatigue cracks dominantly propagate through the grain interiors rather than along grain boundaries, indicating a tendency to transgranular crack propagation mechanisms. The effect of different loading frequencies (10 Hz and 0.2 Hz) on the corrosion fatigue life of 6061-T6 alloy showed a slightly enhanced fatigue life at the higher frequency. It was also found that alloy 6061-T6 was susceptible to pitting corrosion in NaCl-saturated environments with concentrations ranging between 0.5 wt% and 3.5 wt% without exhibiting significant changes in fatigue life. Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Graphical abstract

19 pages, 6921 KiB  
Article
Drying Performance of Fabrics on the Human Body
by Ivona Jerkovic, Agnes Psikuta, Sahar Ebrahimi, Joyce Baumann, Martin Camenzind, Simon Annaheim and René M. Rossi
Materials 2025, 18(11), 2655; https://doi.org/10.3390/ma18112655 - 5 Jun 2025
Viewed by 539
Abstract
When developing fabrics for applications in which evaporative cooling and drying play an important role, e.g., sports or occupational applications, the drying performance of fabrics is commonly determined using fast and easy-to-perform benchmark methods. The measurement conditions in these methods, however, differ significantly [...] Read more.
When developing fabrics for applications in which evaporative cooling and drying play an important role, e.g., sports or occupational applications, the drying performance of fabrics is commonly determined using fast and easy-to-perform benchmark methods. The measurement conditions in these methods, however, differ significantly from the drying conditions on the human body surface, where drying is obstructed on one side of the fabric through contact with the skin and at the same time enhanced due to contact with the heated surface (skin). The aims of this study were to understand and quantify the fabric drying process at the skin interface considering these real-use effects based on tests applying two-sided drying, one-sided drying, one-sided drying on a heated surface, and one-sided drying on a heated surface in the stretched state, and to relate these to existing standard methods. The findings showed that contact with a solid heated surface such as the skin and the stretched state of the fabric both make a significant contribution (p < 0.05) to the drying rate compared to two-sided drying in standard climatic conditions. The corresponding drying rates observed for a range of typical fabrics used in leisure and sports as a first layer next to the skin were found to be 1.6 (±0.2), 1.1 (±0.2), 7.9 (±2.1), and 10.6 (±0.8) g/m2 min for two-sided drying, one-sided drying, one-sided drying on a heated surface, and one-sided drying on a heated surface in the stretched state, respectively. These findings are of great importance for human thermal modelling, including clothing models, where the drying process significantly contributes to the heat and mass transfer in the skin–clothing–environment system. Full article
Show Figures

Figure 1

15 pages, 3869 KiB  
Article
Correlation Between Plume Emission and Material Modifications in Fiber Laser Processing of Titanium
by Antaryami Mohanta and Marc Leparoux
Processes 2025, 13(6), 1761; https://doi.org/10.3390/pr13061761 - 3 Jun 2025
Viewed by 532
Abstract
The plume emission generated during the interaction of a fiber laser with titanium is spectrally analyzed to investigate the thermal effect-based spectral signature with a focus on surface impact and penetration depth. A wobble head coupled with the fiber laser forms circular patterns [...] Read more.
The plume emission generated during the interaction of a fiber laser with titanium is spectrally analyzed to investigate the thermal effect-based spectral signature with a focus on surface impact and penetration depth. A wobble head coupled with the fiber laser forms circular patterns on the surface during the interaction. The effects of wobble speed and laser peak power on the track width of the circular pattern, penetration depth, and plume emission characteristics were studied. Decreasing the wobble speed and increasing the laser peak power led to wider tracks and a deeper penetration. The variation in track width, penetration depth, and line emission intensities follows a similar pattern, indicating a correlation between plume emission and material modifications. A transition point at approximately 400 W of laser peak power was observed in track width, penetration depth, line emission intensities, and plume temperature variations. The increase in track width and line emission intensities with laser peak power shows growth at a slower rate below the transition point and at a higher rate above it. By contrast, the penetration depth and plume temperature increase at a higher rate below the transition compared to above it. This indicates that the increasing laser peak power leads to a more pronounced surface impact, resulting in an increase in track width and to a greater plume formation, causing enhanced line emission intensities and laser beam shielding that reduces the rate of increase in penetration depth above the transition point. Full article
(This article belongs to the Special Issue Progress in Laser-Assisted Manufacturing and Materials Processing)
Show Figures

Figure 1

22 pages, 3841 KiB  
Article
Effect of Processing Parameters on the Printability and Mechano-Biological Properties of Polycaprolactone–Bioactive Glass Composites for 3D-Printed Scaffold Fabrication
by José I. Contreras Raggio, Miguel Pardo, Pablo Núñez, Carola Millán, Gilberto Siqueira, Humberto Palza, Juan F. Vivanco and Ameet K. Aiyangar
Polymers 2025, 17(11), 1554; https://doi.org/10.3390/polym17111554 - 3 Jun 2025
Viewed by 681
Abstract
Direct ink writing (DIW) is an attractive, extrusion-based, additive manufacturing method for fabricating scaffold structures with controlled porosity using custom composite inks. Polycaprolactone–bioactive glass (PCL-BG) inks have gained attention for bone applications, but optimizing the formulation and fabrication of PCL-BG-based inks for improved [...] Read more.
Direct ink writing (DIW) is an attractive, extrusion-based, additive manufacturing method for fabricating scaffold structures with controlled porosity using custom composite inks. Polycaprolactone–bioactive glass (PCL-BG) inks have gained attention for bone applications, but optimizing the formulation and fabrication of PCL-BG-based inks for improved printability and desired mechano-biological properties remains a challenge. This study employs a two-step design to systematically evaluate the effect of three factors in terms of PCL-BG composite printability and mechano-biological properties: ink preparation (acetone or dichloromethane (DCM) as the solvent, and mechanical compounding), the extrusion temperature (90 °C, 110 °C, and 130 °C), and the BG content (0%, 10%, and 20% BG). Pure PCL was used as the control. Rheological, calorimetric, and thermo-gravimetric analyses were conducted before printing. Cylindrical scaffolds and solid wells were printed to evaluate the printability, mechanical properties, and cytocompatibility. The scaffold porosity and pore size were carefully examined. Mechanical tests demonstrated that composite formulations with added BG and higher printing temperatures increased the elastic modulus and yield strength. However, PCL-DCM-BG combinations exhibited increased brittleness with higher BG content. Despite concerns about the toxic solvent DCM, the cytocompatibility was comparable to pure PCL for all ink preparation methods. The results suggest that the interaction between the ink preparation solvent, the BG content, and the printing temperature is critical for material design and fabrication planning in bone tissue engineering applications, providing insights into optimizing PCL-BG composite ink formulations for 3D printing in bone tissue engineering. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 1850 KiB  
Article
Impact of SGLT2i on Cardiac Remodeling and the Soleus Muscle of Infarcted Rats
by Lidiane Moreira Souza, Felipe Cesar Damatto, Bruna Brasil Brandão, Eder Anderson Rodrigues, Anna Clara Consorti Santos, Rafael Campos França Silva, Mariana Gatto, Luana Urbano Pagan, Paula Felippe Martinez, Gilson Masahiro Murata, Leonardo Antonio Mamede Zornoff, Paula Schmidt Azevedo Gaiolla, Inês Falcão-Pires, Katashi Okoshi and Marina Politi Okoshi
Antioxidants 2025, 14(6), 647; https://doi.org/10.3390/antiox14060647 - 28 May 2025
Cited by 1 | Viewed by 650
Abstract
Skeletal muscle changes occur in heart failure (HF). Despite the cardioprotective effects of sodium–glucose co-transporter 2 (SGLT2) inhibitors in HF, their impact on skeletal muscle remains poorly understood. We investigated the effects of the SGLT2 inhibitor empagliflozin (EMPA) on cardiac remodeling and the [...] Read more.
Skeletal muscle changes occur in heart failure (HF). Despite the cardioprotective effects of sodium–glucose co-transporter 2 (SGLT2) inhibitors in HF, their impact on skeletal muscle remains poorly understood. We investigated the effects of the SGLT2 inhibitor empagliflozin (EMPA) on cardiac remodeling and the soleus muscle of rats with myocardial infarction (MI)-induced HF. Methods: One week after MI induction, rats were assigned to Sham, Sham + EMPA, MI, and MI + EMPA groups. EMPA was administered (5 mg/kg/day) for 12 weeks. Results: MI + EMPA and MI had dilated left cardiac chambers; the left atrium diameter and left ventricle end-diastolic area were smaller in MI + EMPA than MI. The ejection fraction did not differ between infarcted groups. MI + EMPA had a larger soleus cross-sectional area and higher Type II myosin heavy chain expression than MI. Carbonylated protein and malondialdehyde levels were lower and superoxide dismutase activity higher in MI + EMPA than MI. Respiratory Complex I expression was higher in MI + EMPA than MI. Metabolic enzyme activities, altered in MI, were normalized in MI + EMPA. EMPA up-regulated anabolic proteins and down-regulated catabolic proteins. Conclusion: Empagliflozin attenuates infarction-induced cardiac remodeling in rats. In soleus muscle, empagliflozin preserves cell trophism, reduces oxidative stress, normalizes muscle and mitochondrial metabolism, and positively modulates proteins involved in synthesis and degradation-related pathways. Full article
(This article belongs to the Special Issue Oxidative Stress in Striated Muscle and Other Tissues)
Show Figures

Figure 1

17 pages, 1468 KiB  
Review
SGLT2 Inhibitors in Glomerulonephritis: Beyond Nephroprotection?
by Lucia Del Vecchio, Silvia Peiti, Giulio Pucci Bella and Francesco Locatelli
J. Clin. Med. 2025, 14(10), 3533; https://doi.org/10.3390/jcm14103533 - 18 May 2025
Viewed by 1494
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, initially developed for glycaemic control in type 2 diabetes, have demonstrated substantial renal and cardiovascular protective effects across various chronic kidney diseases (CKD), including glomerulonephritis. Beyond their established haemodynamic and metabolic benefits, recent evidence points to additional mechanisms [...] Read more.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, initially developed for glycaemic control in type 2 diabetes, have demonstrated substantial renal and cardiovascular protective effects across various chronic kidney diseases (CKD), including glomerulonephritis. Beyond their established haemodynamic and metabolic benefits, recent evidence points to additional mechanisms of action potentially relevant to immune-mediated kidney diseases, such as the modulation of inflammation, immunometabolism, and oxidative stress. Randomised clinical trials (DAPA-CKD and EMPA-KIDNEY) and real-world observational studies consistently show that SGLT2 inhibitors reduce proteinuria and slow estimated glomerular filtration rate (eGFR) decline in patients with glomerulonephritis, including IgA nephropathy and focal segmental glomerulosclerosis. These benefits may extend to patients with stable immunosuppression. Further data are needed in this subgroup. Importantly, SGLT2 inhibitors display a favourable safety profile, even among those with immunosuppressed status. Again, further evidence is awaited in this respect. Despite these promising findings, unanswered questions remain regarding their efficacy in nephrotic syndrome, early-stage disease, and in comparison or combination with other supportive therapies. Overall, the evolving evidence supports the inclusion of SGLT2 inhibitors as a key component of supportive therapy in glomerulonephritis, with potential benefits extending beyond proteinuria reduction. Full article
(This article belongs to the Special Issue Novelties in the Treatment of Glomerulonephritis)
Show Figures

Figure 1

12 pages, 2166 KiB  
Article
119Sn Element-Specific Phonon Density of States of BaSnO3
by Alexey Rulev, Hongxin Wang, Selma Erat, Murat Aycibin, Daniel Rentsch, Vladimir Pomjakushin, Stephen P. Cramer, Qianli Chen, Nobumoto Nagasawa, Yoshitaka Yoda and Artur Braun
Crystals 2025, 15(5), 440; https://doi.org/10.3390/cryst15050440 - 5 May 2025
Viewed by 374
Abstract
Vibration spectroscopy is routinely used in analytical chemistry for molecular speciation. Less common is its use in studying the dynamics of reaction and transport processes. A shortcoming of vibration spectroscopies is that they are not inherently specific to chemical elements. Progress in synchrotron [...] Read more.
Vibration spectroscopy is routinely used in analytical chemistry for molecular speciation. Less common is its use in studying the dynamics of reaction and transport processes. A shortcoming of vibration spectroscopies is that they are not inherently specific to chemical elements. Progress in synchrotron radiation-based X-ray technology has developed nuclear resonance vibration spectroscopy (NRVS), which can be used to produce element-specific vibration spectra and partial vibrational density of states (PVDOS), provided the material under investigation contains a Mössbauer-active element. While the method has been recently used successfully for protein spectroscopy, fewer studies have been conducted for condensed matter. We have employed NRVS on the BaSnO3 perovskite structure, which is a model compound for ceramic proton conductors in intermediate temperature fuel cells. Since we used 119Sn as a Mössbauer isotope, the derived experimental PVDOS is specific to the element Sn in BaSnO3. We show how this phonon DOS is used as an experimental anchor for the interpretation of the DFT-calculated PVDOS of BaSnO3. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 3137 KiB  
Article
Empagliflozin Alleviates Hepatic Steatosis and Oxidative Stress via the NRF1 Pathway in High-Fat Diet-Induced Mouse Model of Metabolic Dysfunction-Associated Steatotic Liver Disease
by Yu Jung Heo, Jieun Park, Nami Lee, Sung-E Choi, Ja Young Jeon, Seung Jin Han, Dae Jung Kim, Kwan Woo Lee and Hae Jin Kim
Int. J. Mol. Sci. 2025, 26(9), 4054; https://doi.org/10.3390/ijms26094054 - 25 Apr 2025
Viewed by 818
Abstract
Empagliflozin (EMPA)—a sodium-glucose cotransporter type 2 inhibitor—reduces endoplasmic reticulum (ER) stress, oxidative stress, and inflammation during metabolic dysfunction-associated steatotic liver disease (MASLD) progression. However, the direct effects of EMPA on hepatic lipid metabolism and oxidative stress are unclear. Through the current study, we [...] Read more.
Empagliflozin (EMPA)—a sodium-glucose cotransporter type 2 inhibitor—reduces endoplasmic reticulum (ER) stress, oxidative stress, and inflammation during metabolic dysfunction-associated steatotic liver disease (MASLD) progression. However, the direct effects of EMPA on hepatic lipid metabolism and oxidative stress are unclear. Through the current study, we seek to explore the effects of EMPA on oxidative stress and related mechanisms in MASLD. To this end, MASLD was induced in C57BL/6J mice using a high-fat diet (HFD); nuclear respiratory factor 1 (NRF1) was downregulated via viral transduction (AAV8-shNrf1). Glucose homeostasis and liver histology were assessed, and oxidative stress and inflammation were measured. HFD-fed mice-derived liver tissue samples exhibited more lipid droplets, higher triglyceride levels, and elevated oxidative and ER stress than chow diet (CD)-fed mice. EMPA attenuated HFD-induced liver oxidative and ER stress. Additionally, the HFD significantly decreased NRF1 and Sirtuin (SIRT)7 expression compared with CD, which was rescued by EMPA treatment. However, these results did not affect insulin resistance or lipid synthesis-related changes upon EMPA treatment in the Nrf1-knockdown mice. Furthermore, EMPA alleviated HFD-induced hepatic steatosis and oxidative stress; however, these effects were lost in Nrf1-knockdown mice. Collectively, the results of this study suggest that EMPA ameliorates MASLD by reducing steatosis and attenuating oxidative stress via NRF1. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

21 pages, 4653 KiB  
Article
Trends in Swiss Passenger Vehicles Based on Machine Learning Segmentation
by Miriam Elser, Pirmin Sigron, Betsy Sandoval Guzman, Naghmeh Niroomand and Christian Bach
Sustainability 2025, 17(8), 3550; https://doi.org/10.3390/su17083550 - 15 Apr 2025
Viewed by 755
Abstract
Road transport represents a major contributor to air pollution, energy consumption, and carbon dioxide emissions in Switzerland. In response, stringent emission regulations, penalties for non-compliance, and incentives for electric vehicles have been introduced. This study investigates how these policies, along with shifting consumer [...] Read more.
Road transport represents a major contributor to air pollution, energy consumption, and carbon dioxide emissions in Switzerland. In response, stringent emission regulations, penalties for non-compliance, and incentives for electric vehicles have been introduced. This study investigates how these policies, along with shifting consumer preferences and vehicle design advancements, have influenced the composition of the Swiss new passenger car fleet. Using machine learning techniques, we segment passenger vehicles to analyze trends over time. Our findings reveal a decline in micro and small vehicles, alongside an increase in lower- and upper-middle-class vehicles, sport utility vehicles, and alternative powertrains across all segments. Additionally, steady increases in vehicle width, length, and weight are observed in all classes since 1995. While technological advancements led to reductions in energy consumption and carbon dioxide emissions until 2016, an increase has since been observed, driven by higher engine power, greater vehicle weight, and changes in certification schemes. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

19 pages, 40454 KiB  
Article
Shining a Light on Carbon-Reinforced Polymers: Mg/MgO and TiO2 Nanomodifications for Enhanced Optical Performance
by Lukas Haiden, Michael Feuchter, Andreas J. Brunner, Michel Barbezat, Amol Pansare, Bharath Ravindran, Velislava Terziyska and Gerald Pinter
J. Compos. Sci. 2025, 9(4), 187; https://doi.org/10.3390/jcs9040187 - 12 Apr 2025
Cited by 1 | Viewed by 494
Abstract
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition [...] Read more.
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition (EPD) and physical vapor deposition (PVD), respectively. Employing a customized electrophoretic cell, EPD facilitated uniform MgO nanoparticle deposition onto unsized carbon fibers, ensuring stable nanoparticle dispersion and precise fiber coating. As a result, the fibers exhibited increased ultraviolet (UV) reflectance, largely attributed to the optical properties of the protective MgO layer. In parallel, PVD enabled the deposition of Mg/MgO and TiO2 thin films with tailored thicknesses, providing precise control over key optical parameters such as reflectivity and interference effects. Mg/MgO coatings demonstrated high UV reflectivity, while TiO2 layers, with their varying refractive indices, generated vibrant colors in the visible (Vis) range through thickness-dependent light interference. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) assessed the quality, thickness, and uniformity of these thin films, and UV/Vis spectroscopy confirmed the influence of deposition parameters on the resulting optical performance. Post-lamination analyses revealed that both EPD and PVD modifications significantly enhanced UV reflectivity and allowed for customizable color effects. This dual strategy underscores the potential of combining EPD and PVD to develop advanced CFRPs with superior UV resistance, decorative optical features, and improved environmental stability. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

21 pages, 8811 KiB  
Article
Empagliflozin Plays Vasoprotective Role in Spontaneously Hypertensive Rats via Activation of the SIRT1/AMPK Pathway
by Monika Kloza, Anna Krzyżewska, Hanna Kozłowska, Sandra Budziak and Marta Baranowska-Kuczko
Cells 2025, 14(7), 507; https://doi.org/10.3390/cells14070507 - 29 Mar 2025
Viewed by 744
Abstract
Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, prevents endothelial dysfunction, but its effects on vascular tone in hypertension remain unclear. This study investigated whether EMPA modulates vasomotor tone via sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) pathways in spontaneously hypertensive rats [...] Read more.
Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, prevents endothelial dysfunction, but its effects on vascular tone in hypertension remain unclear. This study investigated whether EMPA modulates vasomotor tone via sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) pathways in spontaneously hypertensive rats (SHR) and controls (Wistar Kyoto rats, WKY). Functional (wire myography, organ bath) and biochemical (Western blot) studies were conducted on the third-order of the superior mesenteric arteries (sMAs) and/or aortas. EMPA induced concentration-dependent relaxation of preconstricted sMAs in both groups. In SHR, EMPA enhanced acetylcholine (Ach)-induced relaxation in sMAs and aortas and reduced constriction induced by phenylephrine (Phe) and U46619 in sMAs. The SIRT1 inhibitor (EX527) abolished EMPA’s effects on Ach-mediated relaxation and U46619-induced vasoconstriction, while AMPK inhibition reduced Ach-mediated relaxation and Phe-induced vasoconstriction. SHR showed increased SGLT2 and SIRT1 expression and decreased pAMPK/AMPK levels in sMAs. In conclusion, EMPA might exert vasoprotective effects in hypertension by enhancing endothelium-dependent relaxation and reducing constriction via AMPK/SIRT1 pathways. These properties could improve vascular health in patients with hypertension and related conditions. Further studies are needed to explore new indications for SGLT2 inhibitors. Full article
Show Figures

Graphical abstract

Back to TopTop