Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,490)

Search Parameters:
Keywords = EF2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 651 KiB  
Article
The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation
by Monika Różycka-Kosmalska, Marcin Kosmalski, Michał Panek, Alicja Majos, Izabela Szymczak-Pajor, Agnieszka Śliwińska, Jacek Kasznicki, Jerzy Krzysztof Wranicz and Krzysztof Kaczmarek
J. Clin. Med. 2025, 14(15), 5431; https://doi.org/10.3390/jcm14155431 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Pulmonary vein isolation (PVI) via cryoballoon ablation (CBA) is a recommended therapeutic strategy for patients with symptomatic paroxysmal and persistent atrial fibrillation (AF) who are refractory to antiarrhythmic drugs. Although PVI has demonstrated efficacy in reducing AF recurrence and improving patients’ quality [...] Read more.
Background/Objectives: Pulmonary vein isolation (PVI) via cryoballoon ablation (CBA) is a recommended therapeutic strategy for patients with symptomatic paroxysmal and persistent atrial fibrillation (AF) who are refractory to antiarrhythmic drugs. Although PVI has demonstrated efficacy in reducing AF recurrence and improving patients’ quality of life, its impact on respiratory function is not well understood, particularly in patients with comorbid conditions. The aim of the study was to search for functional predictors of the respiratory system in the process of evaluating the efficiency of clinical assessment of CBA in patients with AF. Methods: We conducted a prospective study on 42 patients with symptomatic AF who underwent CBA, assessing their respiratory function through spirometry before and 30 days after the procedure. Exclusion criteria included pre-existing lung disease and cardiac insufficiency. The impact of variables such as body mass index (BMI), coronary artery disease (CAD) and heart failure (HF) on spirometry parameters was analyzed using statistical tests. Results: No significant changes were observed in overall post-PVI spirometry parameters for the full cohort. However, post hoc analyses revealed a significant decline in ΔMEF75 in patients with CAD and BMI ≥ 30 kg/m2, whereas ΔFEV1/FVCex was significantly increased in patients with HF, as well as in patients with ejection fraction (EF) < 50%. Conclusions: CBA for AF does not universally affect respiratory function in the short term, but specific subgroups, including patients with CAD and a higher BMI, may require post-procedure respiratory monitoring. In addition, PVI may improve lung function in patients with HF and reduced EF. Full article
(This article belongs to the Special Issue Clinical Aspects of Cardiac Arrhythmias and Arrhythmogenic Disorders)
Show Figures

Figure 1

20 pages, 2782 KiB  
Article
Urban Forest Fragmentation Reshapes Soil Microbiome–Carbon Dynamics
by Melinda Haydee Kovacs, Nguyen Khoi Nghia and Emoke Dalma Kovacs
Diversity 2025, 17(8), 545; https://doi.org/10.3390/d17080545 (registering DOI) - 1 Aug 2025
Abstract
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of [...] Read more.
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of 18 plots were considered in this study, with six plots for each fragment type. Intact interior forest (F), internal forest path fragment (IF), and external forest path fragment (EF) soils were sampled at 0–15, 15–30, and 30–45 cm depths and profiled through phospholipid-derived fatty acid (PLFA) chemotyping and amino sugar proxies for living microbiome and microbial-derived necromass assessment, respectively. Carbon fractionation was performed through the chemical oxidation method. Diversity indices (Shannon–Wiener, Pielou evenness, Margalef richness, and Simpson dominance) were calculated based on the determined fatty acids derived from the phospholipid fraction. The microbial biomass ranged from 85.1 to 214.6 nmol g−1 dry soil, with the surface layers of F exhibiting the highest values (p < 0.01). Shannon diversity declined systematically from F > IF > EF. The microbial necromass varied from 11.3 to 23.2 g⋅kg−1. Fragmentation intensified the stratification of carbon pools, with organic carbon decreasing by approximately 14% from F to EF. Our results show that EFs possess a declining microbiome continuum that weakens their carbon sequestration capacity in urban forests. Full article
Show Figures

Figure 1

11 pages, 231 KiB  
Review
The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma
by Emma Vallee, Alyssa Steller, Ashley Childress, Alayna Koch and Scott Raskin
J. Mol. Pathol. 2025, 6(3), 17; https://doi.org/10.3390/jmp6030017 (registering DOI) - 1 Aug 2025
Abstract
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular [...] Read more.
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular tumor profiling, these tumors have been recategorized based on specific molecular findings that better lend themselves to prediction of treatment response and prognosis. pHGG is now categorized into four subtypes: H3K27-altered, H3G34-mutant, H3/IDH-WT, and infant-type high-grade glioma (iHGG). Molecular profiling has not only increased the specificity of diagnosis but also improved prognostication. Additionally, these molecular findings provide novel targets for individual tumor-directed therapy. While these therapies are largely still under investigation, continued investigation of distinct molecular markers in these tumors is imperative to extending event-free survival (EFS) and overall survival (OS) for patients with pHGG. Full article
(This article belongs to the Collection Feature Papers in Journal of Molecular Pathology)
25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 (registering DOI) - 1 Aug 2025
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Figure 1

17 pages, 588 KiB  
Article
The Effect of Methacrylate-POSS in Nanosilica Dispersion Addition on Selected Mechanical Properties of Photo-Cured Dental Resins and Nanocomposites
by Norbert Sobon, Michal Krasowski, Karolina Kopacz, Barbara Lapinska, Izabela Barszczewska-Rybarek, Patrycja Kula and Kinga Bociong
J. Compos. Sci. 2025, 9(8), 403; https://doi.org/10.3390/jcs9080403 (registering DOI) - 1 Aug 2025
Abstract
Background: This study aimed to assess the impact of methacrylate-functionalized polyhedral oligomeric silsesquioxanes dispersed in nanosilica (MA/Ns-POSS) on the mechanical properties of light-curable dental resins and composites. The primary goal was to evaluate how different concentrations of MA/Ns-POSS (0.5–20 wt.%) affect the hardness, [...] Read more.
Background: This study aimed to assess the impact of methacrylate-functionalized polyhedral oligomeric silsesquioxanes dispersed in nanosilica (MA/Ns-POSS) on the mechanical properties of light-curable dental resins and composites. The primary goal was to evaluate how different concentrations of MA/Ns-POSS (0.5–20 wt.%) affect the hardness, flexural strength, modulus, diametral tensile strength, polymerization shrinkage stress, and degree of conversion of these materials. Methods: A mixture of Bis-GMA, UDMA, TEGDMA, HEMA, and camphorquinone, with a tertiary amine as the photoinitiator, was used to create resin and composite samples, incorporating 45 wt.% silanized silica for the composites. Hardness (Vickers method, HV), flexural strength (FS), and flexural modulus (Ef) were assessed using three-point bending tests, while diametral tensile strength (DTS) polymerization shrinkage stresses (PSS), and degree of conversion (DC) analysis were analyzed for the composites. Results: The results showed that resins with 10 wt.% MA/Ns-POSS exhibited the highest Ef and FS values. Composite hardness peaked at 20 wt.% MA/Ns-POSS, while DTS increased up to 2.5 wt.% MA/Ns-POSS but declined at higher concentrations. PSS values decreased with increasing MA/Ns-POSS concentration, with the lowest values recorded at 15–20 wt.%. DC analysis also showed substantial improvement for 15–20 wt.% Conclusion: Incorporating MA/Ns-POSS improves the mechanical properties of both resins and composites, with 20 wt.% showing the best results. Further studies are needed to explore the influence of higher additive concentrations. Full article
(This article belongs to the Special Issue Innovations of Composite Materials in Prosthetic Dentistry)
Show Figures

Figure 1

18 pages, 3114 KiB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 (registering DOI) - 1 Aug 2025
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

12 pages, 2346 KiB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 (registering DOI) - 1 Aug 2025
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

16 pages, 848 KiB  
Review
Current Treatment of Heart Failure with Preserved Ejection Fraction
by Mauro Riccardi, Emilia D’Elia, Carlo M. Lombardi, Gianluigi Savarese, Mauro Gori, Fabrizio Oliva, Maurizio Volterrani, Michele Senni, Marco Metra and Riccardo M. Inciardi
J. Clin. Med. 2025, 14(15), 5406; https://doi.org/10.3390/jcm14155406 (registering DOI) - 31 Jul 2025
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with increasing prevalence and substantial morbidity and mortality. Recent advances in pharmacotherapy have transformed its management. This review summarizes current evidence supporting the use of sodium–glucose cotransporter 2 inhibitors, non-steroidal mineralocorticoid receptor [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with increasing prevalence and substantial morbidity and mortality. Recent advances in pharmacotherapy have transformed its management. This review summarizes current evidence supporting the use of sodium–glucose cotransporter 2 inhibitors, non-steroidal mineralocorticoid receptor antagonists, and glucagon-like peptide-1 receptor agonists, alongside selected use of angiotensin receptor–neprilysin inhibitors. Emphasis is placed on early initiation of disease-modifying therapies, phenotypic tailoring, and comorbidity-targeted strategies, especially in obese and diabetic patients. Together, these approaches define a new era of guideline-directed, personalized care for patients with HFpEF. Full article
Show Figures

Figure 1

23 pages, 480 KiB  
Article
Executive Functions and Reading Skills in Low-Risk Preterm Children
by Miguel Pérez-Pereira, Constantino Arce and Anastasiia Ogneva
Children 2025, 12(8), 1011; https://doi.org/10.3390/children12081011 - 31 Jul 2025
Abstract
Background/Objectives. Previous research with extremely and very preterm children indicates that these children obtain significantly lower results in executive functions (EFs) and in reading skills than full-term (FT) children. The comparison results do not seem to be so clear when other PT children [...] Read more.
Background/Objectives. Previous research with extremely and very preterm children indicates that these children obtain significantly lower results in executive functions (EFs) and in reading skills than full-term (FT) children. The comparison results do not seem to be so clear when other PT children in lower-risk conditions are studied. Many studies with typically developing and preterm (PT) children indicate that reading ability is determined, in part, by EFs. Therefore, the study of EFs and reading and their relationships in low-risk PT children is pertinent. Methods. In the present study, 111 PT children, classified into three groups with different ranges of gestational age (GA), and one group of 34 FT children participated in a longitudinal study, carried out from 4 to 9 years of age. The results obtained from the four groups in different EFs measured at 4, 5, and 8 years of age, and in reading skills at 9 years of age were compared. The possible effects of EFs on reading skills were studied through multiple linear regression analyses. Results. The results obtained indicate that no significant difference was found between FT children and any of the GA groups of PT children, either in EFs or reading skills. The effect of EFs on reading skills was low to moderate. Verbal and non-verbal working memory had a positive significant effect on decoding skills (letter names, same–different, and word reading), but not on reading comprehension processes. Higher-order EFs (cognitive flexibility and planning), as well as inhibitory control, showed positive effects on reading comprehension skills. The effects of the different EFs varied depending on the reading process. Conclusions. In conclusion, low-risk PT children do not differ from FT children in their competence in EFs or reading skills. There are long-lasting effects of EFs, measured several years before, on reading skills measured at 9 years of age. Full article
(This article belongs to the Special Issue Advances in Neurodevelopmental Outcomes for Preterm Infants)
Show Figures

Figure 1

15 pages, 606 KiB  
Article
Assessment of the Physical and Emotional Health-Related Quality of Life Among Congestive Heart Failure Patients with Preserved and Reduced Ejection Fraction at a Quaternary Care Teaching Hospital in Coastal Karnataka in India
by Rajesh Kamath, Vineetha Poojary, Nishanth Shekar, Kanhai Lalani, Tarushree Bari, Prajwal Salins, Gwendolen Rodrigues, Devesh Teotia and Sanjay Kini
Healthcare 2025, 13(15), 1874; https://doi.org/10.3390/healthcare13151874 - 31 Jul 2025
Abstract
Introduction: Congestive heart failure (CHF), a complex clinical syndrome characterized by the heart’s inability to pump blood effectively due to structural or functional impairments, is a growing public health concern, with profound implications for patients’ physical and emotional well-being. In India, the burden [...] Read more.
Introduction: Congestive heart failure (CHF), a complex clinical syndrome characterized by the heart’s inability to pump blood effectively due to structural or functional impairments, is a growing public health concern, with profound implications for patients’ physical and emotional well-being. In India, the burden of CHF is rising due to aging demographics and increasing prevalence of lifestyle-related risk factors. Among the subtypes of CHF, heart failure with preserved ejection fraction (HFpEF), i.e., heart failure with left ventricular ejection fraction of ≥50% with evidence of spontaneous or provokable increased left ventricular filling pressure, and heart failure with reduced ejection fraction (HFrEF), i.e., heart failure with left ventricular ejection fraction of 40% or less and is accompanied by progressive left ventricular dilatation and adverse cardiac remodeling, may present differing impacts on health-related quality of life (HRQoL), i.e., an individual’s or a group’s perceived physical and mental health over time, yet comparative data remains limited. This study assesses HRQoL among CHF patients using the Minnesota Living with Heart Failure Questionnaire (MLHFQ), one of the most widely used health-related quality of life questionnaires for patients with heart failure based on physical and emotional dimensions and identifies sociodemographic and clinical variables influencing these outcomes. Methods: A cross-sectional analytical study was conducted among 233 CHF patients receiving inpatient and outpatient care at the Department of Cardiology at a quaternary care teaching hospital in coastal Karnataka in India. Participants were enrolled using convenience sampling. HRQoL was evaluated through the MLHFQ, while sociodemographic and clinical characteristics were recorded via a structured proforma. Statistical analyses included descriptive measures, independent t-test, Spearman’s correlation and stepwise multivariable linear regression to identify associations and predictors. Results: The mean HRQoL score was 56.5 ± 6.05, reflecting a moderate to high symptom burden. Patients with HFpEF reported significantly worse HRQoL (mean score: 61.4 ± 3.94) than those with HFrEF (52.9 ± 4.64; p < 0.001, Cohen’s d = 1.95). A significant positive correlation was observed between HRQoL scores and age (r = 0.428; p < 0.001), indicating that older individuals experienced a higher burden of symptoms. HRQoL also varied significantly across NYHA functional classes (χ2 = 69.9, p < 0.001, ε2 = 0.301) and employment groups (χ2 = 17.0, p < 0.001), with further differences noted by education level, gender and marital status (p < 0.05). Multivariable linear regression identified age (B = 0.311, p < 0.001) and gender (B = –4.591, p < 0.001) as significant predictors of poorer HRQoL. Discussion: The findings indicate that patients with HFpEF experience significantly poorer HRQoL than those with HFrEF. Older adults and female patients reported greater symptom burden, underscoring the importance of demographic-sensitive care approaches. These results highlight the need for routine integration of HRQoL assessment into clinical practice and the development of comprehensive, personalized interventions addressing both physical and emotional health dimensions, especially for vulnerable subgroups. Conclusions: CHF patients, especially those with HFpEF, face reduced HRQoL. Key factors include age, gender, education, employment, marital status, and NYHA class, underscoring the need for patient-centered care. Full article
(This article belongs to the Special Issue Patient Experience and the Quality of Health Care)
Show Figures

Figure 1

19 pages, 7574 KiB  
Article
Effect of Natural Fiber Characteristics on Properties of Cementitious Composites: A Comparison of Recycled Pulp from Beverage Cartons, Bamboo, and Eucalyptus Fibers
by Phouthanouthong Xaysombath, Nattakan Soykeabkaew, Darunee Wattanasiriwech and Suthee Wattanasiriwech
Constr. Mater. 2025, 5(3), 50; https://doi.org/10.3390/constrmater5030050 (registering DOI) - 31 Jul 2025
Abstract
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF [...] Read more.
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF was rounded in shape and had the highest aspect ratio, while the ribbon-shaped EF exhibited the highest tensile strength index. The RPBC fibers were fibrillated and the shortest, with a ribbon shape. Flexural strength results showed that RPBCC achieved a maximum strength that was 47.6% higher than the control specimen (0% fiber), outperforming both BF- and EF-reinforced counterparts. This superior performance is attributed to the higher fibrillation level of the ribbon-shaped RPBC fibers, which promoted better fiber–matrix bonding. As the fiber content increased, the bulk density of EFC and BFC decreased linearly, while RPBC composites showed only a modest decrease in density. Porosity steadily increased in EFC and BFC, whereas a non-linear trend was observed in RPBCC, likely due to its unique morphology and fibrillation. Conversely, EFC exhibited significantly higher maximum fracture toughness (3600 J/m2 at 10 wt.%) compared to PBFCC (1600 J/m2 at 14 wt.%) and BFC (1400 J/m2 at 14 wt.%). This enhancement is attributed to extensive fiber pullout mechanisms and increased energy absorption during crack propagation. Overall, all composite types demonstrated flexural strength values above 4 MPa, placing them in the Grade I category. Those reinforced with 10–14% RPBC exhibited strengths of 11–12 MPa, categorizing them as Grade II according to ASTM C1186-02. Full article
Show Figures

Figure 1

17 pages, 919 KiB  
Systematic Review
Renal Biomarkers and Prognosis in HFpEF and HFrEF: The Role of Albuminuria and eGFR—A Systematic Review
by Claudia Andreea Palcău, Livia Florentina Păduraru, Cătălina Paraschiv, Ioana Ruxandra Poiană and Ana Maria Alexandra Stănescu
Medicina 2025, 61(8), 1386; https://doi.org/10.3390/medicina61081386 - 30 Jul 2025
Abstract
Background and Objectives: Heart failure (HF) and chronic kidney disease (CKD) frequently coexist and are closely interrelated, significantly affecting clinical outcomes. Among CKD-related markers, albuminuria and estimated glomerular filtration rate (eGFR) have emerged as key prognostic indicators in HF. However, their specific [...] Read more.
Background and Objectives: Heart failure (HF) and chronic kidney disease (CKD) frequently coexist and are closely interrelated, significantly affecting clinical outcomes. Among CKD-related markers, albuminuria and estimated glomerular filtration rate (eGFR) have emerged as key prognostic indicators in HF. However, their specific predictive value across different HF phenotypes—namely HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF)—remains incompletely understood. This systematic review aims to evaluate the prognostic significance of albuminuria and eGFR in patients with HF and to compare their predictive roles in HFpEF versus HFrEF populations. Materials and Methods: We conducted a systematic search of major databases to identify clinical studies evaluating the association between albuminuria, eGFR, and adverse outcomes in HF patients. Inclusion criteria encompassed studies reporting on cardiovascular events, all-cause mortality, or HF-related hospitalizations, with subgroup analyses based on ejection fraction. Data extraction and quality assessment were performed independently by two reviewers. Results: Twenty-one studies met the inclusion criteria, including diverse HF populations and various biomarker assessment methods. Both albuminuria and reduced eGFR were consistently associated with increased risk of mortality and hospitalization. In HFrEF populations, reduced eGFR demonstrated stronger prognostic associations, whereas albuminuria was predictive across both HF phenotypes. Heterogeneity in study design and outcome definitions limited comparability. Conclusions: Albuminuria and eGFR are valuable prognostic biomarkers in HF and may enhance risk stratification and clinical decision-making, particularly when integrated into clinical assessment models. Differential prognostic implications in HFpEF versus HFrEF highlight the need for phenotype-specific approaches. Further research is warranted to validate these findings and clarify their role in guiding personalized therapeutic strategies in HF populations. Limitations: The current evidence base consists primarily of observational studies with variable methodological quality and inconsistent reporting of effect estimates. Full article
(This article belongs to the Special Issue Early Diagnosis and Treatment of Cardiovascular Disease)
Show Figures

Figure 1

28 pages, 6349 KiB  
Article
Valorization of Waste from Lavender Distillation Through Optimized Encapsulation Processes
by Nikoletta Solomakou, Dimitrios Fotiou, Efthymia Tsachouridou and Athanasia M. Goula
Foods 2025, 14(15), 2684; https://doi.org/10.3390/foods14152684 - 30 Jul 2025
Abstract
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization [...] Read more.
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization included encapsulation efficiency (Ef), antioxidant activity (AA), moisture content, hygroscopicity, dissolution time, bulk density, and color parameters (L*, a*, b*). Co-crystallization outperformed ionic gelation across most criteria, achieving significantly higher Ef (>150%) and superior functional properties such as lower moisture content (<0.5%), negative hygroscopicity (−6%), and faster dissolution (<60 s). These features suggested enhanced physicochemical stability and suitability for applications requiring long shelf life and rapid solubility. In contrast, extruded beads exhibited high moisture levels (94.0–95.4%) but allowed better control over morphological features. The work introduced a mild-processing approach applied innovatively to the valorization of lavender distillation waste through structurally stable phenolic delivery systems. By systematically benchmarking two distinct encapsulation strategies under equivalent formulation conditions, this study advanced current understanding in bioactive microencapsulation and offers new tools for developing functional ingredients from aromatic plant by-products. Full article
Show Figures

Figure 1

15 pages, 1152 KiB  
Article
Nurse-Led, Remote Optimisation of Guideline-Directed Medical Therapy in Patients with Heart Failure and Reduced Ejection Fraction Across Australia
by Gabrielle Freedman, Racheal Watt, Enayet Karim Chowdhury, Kate Quinlan, David Eccleston, Andrea Driscoll, James Theuerle and Leighton Kearney
J. Clin. Med. 2025, 14(15), 5371; https://doi.org/10.3390/jcm14155371 - 30 Jul 2025
Viewed by 52
Abstract
Background/Objectives: Guidelines recommend patients with heart failure with reduced ejection fraction (HFrEF) receive four-pillar heart failure (4P-HF) therapy, which significantly reduces cardiac morbidity and mortality. However, implementing these guidelines effectively into clinical practice remains challenging. Methods: Patients with HFrEF on submaximal [...] Read more.
Background/Objectives: Guidelines recommend patients with heart failure with reduced ejection fraction (HFrEF) receive four-pillar heart failure (4P-HF) therapy, which significantly reduces cardiac morbidity and mortality. However, implementing these guidelines effectively into clinical practice remains challenging. Methods: Patients with HFrEF on submaximal 4P-HF therapy were identified from a large, multicentre Cardiology network database using a natural language processing tool, supported by manual file review. A nurse-led, remotely delivered, medication uptitration program aimed to optimise therapy in this real-world cohort. Results: The final cohort included 2004 patients with a mean age of 72.7 ± 11.6 years. Utilisation of 4P-HF increased from 11.1% at baseline to 49.8% post intervention, and each individual medication class increased significantly post intervention (all p < 0.001). The largest increase was observed with the use of sodium–glucose cotransporter 2 inhibitors, which rose from 17.3% to 73.9%, followed by mineralocorticoid receptor antagonists (51.6% to 65.7%), beta-blockers (88.4% to 97.0%), and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/angiotensin receptor blocker–neprilysin inhibitors (89.8% to 96.4%). In patients on submaximal therapy, barriers were documented in all cases. Following medication optimisation, left ventricular ejection function (LVEF) improved significantly (38.5% ± 10.8% vs. 42.5% ± 11.7, p < 0.001). Conclusions: This nurse-led, remotely delivered, medication optimisation program significantly improved the adoption of 4P-HF therapy and LVEF in patients with HFrEF. The program demonstrates a practical, scalable solution for the optimisation of HFrEF therapy across a large healthcare network. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

Back to TopTop