Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = EDLC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1803 KB  
Article
Layer-by-Layer Hybrid Film of PAMAM and Reduced Graphene Oxide–WO3 Nanofibers as an Electroactive Interface for Supercapacitor Electrodes
by Vanderley F. Gomes Junior, Danilo A. Oliveira, Paulo V. Morais and José R. Siqueira Junior
Nanoenergy Adv. 2025, 5(4), 22; https://doi.org/10.3390/nanoenergyadv5040022 - 12 Dec 2025
Viewed by 278
Abstract
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes [...] Read more.
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes has gained attention for enhancing the energy storage performance of supercapacitors. In this work, we report the fabrication and electrochemical performance of nanostructured multilayer films based on the electrostatic Layer-by-Layer (LbL) self-assembly of poly (amidoamine) (PAMAM) dendrimers alternated with tungsten oxide (WO3) nanofibers dispersed in reduced graphene oxide (rGO). The films were deposited onto indium tin oxide (ITO) substrates and subsequently subjected to electrochemical reduction. UV-Vis spectroscopy confirmed the linear growth of the multilayers, while atomic force microscopy (AFM) revealed homogeneous surface morphology and thickness control. Electrochemical characterization by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed a predominantly electrical double-layer capacitive (EDLC) behavior. From the GCD measurements (PAMAM/rGO-WO3)20 films achieved an areal capacitance of ≈2.20 mF·cm−2, delivering an areal energy density of ≈0.17 µWh·cm−2 and an areal power density of ≈2.10 µW·cm−2, demonstrating efficient charge storage in an ultrathin electrode architecture. These results show that the synergistic integration of PAMAM dendrimers, reduced graphene oxide, and WO3 nanofibers yields a promising strategy for designing high-performance electrode materials for next-generation supercapacitors. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

10 pages, 2311 KB  
Article
CVD-Grown Carbon Nanofibers on Knitted Carbon Fabric for Enhanced Supercapacitor Performance
by Xiaojing Jia, Jiangsan Wang and Jing Dang
Crystals 2025, 15(12), 1049; https://doi.org/10.3390/cryst15121049 - 11 Dec 2025
Viewed by 345
Abstract
The escalating demand for high-performance energy storage devices has driven extensive research into flexible electrode materials for supercapacitors. Integrating structured carbon nanomaterials with flexible substrates to construct binder-free electrode architectures represents a promising strategy for improving supercapacitor capacitance and rate capability. However, achieving [...] Read more.
The escalating demand for high-performance energy storage devices has driven extensive research into flexible electrode materials for supercapacitors. Integrating structured carbon nanomaterials with flexible substrates to construct binder-free electrode architectures represents a promising strategy for improving supercapacitor capacitance and rate capability. However, achieving stable, binder-free integration of structure-controlled nanostructured carbon materials with flexible substrates remains a critical challenge. In this study, we report a direct synthesis approach for one-dimensional (1D) carbon nanofibers (CNFs) on commercial flexible carbon fabric (CF) via chemical vapor deposition (CVD). The resulting CNFs exhibit two typical average diameters—approximately 25 nm and 50 nm—depending on the growth temperature, with both displaying highly graphitized structures. Electrochemical characterization of the CNFs/CF composites in 1 M H2SO4 electrolyte revealed typical electric double-layer capacitor (EDLC) behavior. Notably, the 25 nm-CNFs/CF electrode achieves a high specific capacitance of 87.5 F/g, significantly outperforming the 50 nm-CNFs/CF electrode, which reaches 50.2 F/g. Compared with previously reported carbon nanotube CNTs/CF electrodes, the 25 nm-CNFs/CF electrode exhibits superior capacitance and lower resistance. Full article
(This article belongs to the Special Issue Advanced Catalytic Materials in Energy and Environment)
Show Figures

Figure 1

16 pages, 8596 KB  
Article
Green Synthesis of Activated Carbons from Coconut Coir Dust via Steam Activation for Supercapacitor Electrode Applications
by Jirayu Kongtip, Natapol Kanjulkeat, Thanapol Ninneit, Norapat Phanapadipong, Nattapat Chaiammart, Apiluck Eiad-ua, Ratiporn Munprom and Gasidit Panomsuwan
Chemistry 2025, 7(6), 184; https://doi.org/10.3390/chemistry7060184 - 24 Nov 2025
Viewed by 864
Abstract
Activated carbons derived from coconut coir dust were synthesized via a two-step process combining carbonization and steam activation for application as electrode materials in supercapacitors. The influence of carbonization temperature (500–700 °C) on the morphological, structural, textural, and electrochemical properties of the resulting [...] Read more.
Activated carbons derived from coconut coir dust were synthesized via a two-step process combining carbonization and steam activation for application as electrode materials in supercapacitors. The influence of carbonization temperature (500–700 °C) on the morphological, structural, textural, and electrochemical properties of the resulting activated carbons was systematically investigated. Increasing the carbonization temperature led to a progressive collapse of the cellular structure and formation of a more compact and thermally stable carbon matrix, while the overall morphology remained largely unchanged after steam activation. The steam-activated carbon prepared from the carbonized sample at 700 °C (SA-CCD-7) exhibited the highest specific surface area (889 m2 g−1) and a well-developed hierarchical micro–mesoporous structure. Structural analyses confirmed the amorphous nature and an increase in structural disorder after activation, consistent with the enhanced pore development. Electrochemical measurements in 6 M KOH using a three-electrode system revealed that the SA-CCD-7 displayed a typical electric double-layer capacitor (EDLC) behavior, delivering the highest specific capacitance of 86 F g−1 at 1 A g−1 and retaining 81% of its initial capacitance at 20 A g−1, demonstrating excellent rate capability. The symmetric coin-cell supercapacitor device assembled with SA-CCD-7 as the electrodes achieved an energy density of 0.9–1.2 Wh kg−1 and a power density of 50–2500 W kg−1, along with remarkable cycling stability over 10,000 cycles with negligible capacitance loss. These findings highlight steam activation of coconut coir dust as a simple, scalable, and eco-friendly approach for producing biomass-derived carbon electrodes for sustainable energy storage applications. Full article
(This article belongs to the Special Issue Advanced Biomass Utilization for Sustainable Chemical Synthesis)
Show Figures

Figure 1

15 pages, 2241 KB  
Article
Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors
by Chinaza E. Nwanno, Ram Chandra Gotame, John Watt, Winson Kuo and Wenzhi Li
Nanomaterials 2025, 15(19), 1506; https://doi.org/10.3390/nano15191506 - 1 Oct 2025
Cited by 1 | Viewed by 1277
Abstract
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate [...] Read more.
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate pre-treatments, simplifying electrode design and enhancing electrical integration. The resulting VACNTs form a dense, uniform, and porous array with strong adhesion to the Cu substrate, minimizing contact resistance and improving conductivity. Electrochemical analysis shows gravimetric specific capacitance (Cgrav) and areal specific capacitance (Careal) of 8 F g−1 and 3.5 mF cm−2 at a scan rate of 5 mV/s, with low equivalent series resistance (3.70 Ω) and charge transfer resistance (0.48 Ω), enabling efficient electron transport and rapid ion diffusion. The electrode demonstrates excellent rate capability and retains 92% of its initial specific capacitance after 3000 charge–discharge cycles, indicating strong cycling stability. These results demonstrate the potential of directly grown VACNT-based electrodes for high-performance EDLCs, particularly in applications requiring rapid charge–discharge cycles and sustained energy delivery. Full article
Show Figures

Graphical abstract

28 pages, 5785 KB  
Review
From Thermosetting Resins to Energy Devices: A Review on Polybenzoxazine-Derived Materials for Supercapacitors
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Batteries 2025, 11(9), 345; https://doi.org/10.3390/batteries11090345 - 19 Sep 2025
Cited by 1 | Viewed by 1085
Abstract
Polybenzoxazines (PBZs) have garnered significant attention as a versatile class of precursors for the development of advanced carbon-based materials, particularly in the field of electrochemical energy storage. This review comprehensively examines recent progress in the synthesis, structural design, and application of polybenzoxazine-derived materials [...] Read more.
Polybenzoxazines (PBZs) have garnered significant attention as a versatile class of precursors for the development of advanced carbon-based materials, particularly in the field of electrochemical energy storage. This review comprehensively examines recent progress in the synthesis, structural design, and application of polybenzoxazine-derived materials for supercapacitor electrodes. Owing to their intrinsic nitrogen content, tunable functionality, and excellent thermal and mechanical stability, polybenzoxazines serve as ideal precursors for producing nitrogen-doped porous carbons with high surface areas and desirable electrochemical properties. This review discusses the influence of molecular design, polymerization conditions, and carbonization parameters on the resulting microstructure and performance of the materials. Furthermore, the electrochemical behavior of these materials in both electric double-layer capacitors (EDLCs) and pseudocapacitors is analyzed in detail. Challenges such as optimizing pore architecture, improving conductivity, and achieving scalable synthesis are also addressed. This article highlights emerging trends and offers perspectives on the future development of polybenzoxazine-derived materials for next-generation high-performance supercapacitors. Full article
Show Figures

Figure 1

29 pages, 5210 KB  
Article
Ion Conduction Dynamics, Characterization, and Application of Ionic Liquid Tributyl Methyl Phosphonium Iodide (TMPI)-Doped Polyethylene Oxide Polymer Electrolyte
by Suneyana Rawat, Monika Michalska, Pramod K. Singh, Karol Strzałkowski, Nisha Pal, Markus Diantoro, Diksha Singh and Ram Chandra Singh
Polymers 2025, 17(14), 1986; https://doi.org/10.3390/polym17141986 - 19 Jul 2025
Cited by 1 | Viewed by 876
Abstract
The increasing demand for high-performance energy storage devices has stimulated interest in advanced electrolyte materials. Among them, ionic liquids (ILs) stand out for their thermal stability, wide electrochemical windows, and good ionic conductivity. When doped into polymeric matrices, these [...] Read more.
The increasing demand for high-performance energy storage devices has stimulated interest in advanced electrolyte materials. Among them, ionic liquids (ILs) stand out for their thermal stability, wide electrochemical windows, and good ionic conductivity. When doped into polymeric matrices, these ionic liquids form hybrid polymeric electrolytes that synergize the benefits of both liquid and solid electrolytes. This study explores a polymeric electrolyte based on polyethylene oxide (PEO) doped with tributylmethylphosphonium iodide (TMPI) and ammonium iodide (NH4I), focusing on its synthesis, structural and electrical properties, and performance in energy storage devices such as dye-sensitized solar cells and supercapacitors. Strategies to improve its ionic conductivity, mechanical and chemical stability, and electrode compatibility are also discussed, along with future directions in this field. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

37 pages, 2969 KB  
Review
Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications
by Liying Li, Guiyu Jin, Jian Shen, Mengyan Guo, Jiacheng Song, Yiming Li and Jian Xiong
Gels 2025, 11(7), 548; https://doi.org/10.3390/gels11070548 - 15 Jul 2025
Cited by 3 | Viewed by 3513
Abstract
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical [...] Read more.
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical systems as its primary focus, analyzing fundamental charge-storage mechanisms and establishing structure–property–application relationships critical to energy storage performance. We critically assess synthesis methodologies, emphasizing how stage-specific parameters govern structural/functional traits, and detail multifunctional modification strategies (e.g., heteroatom doping, composite engineering) that enhance electrochemical behavior through pore architecture optimization, surface chemistry tuning, and charge-transfer kinetics acceleration. Electrochemical applications are extensively explored, including the following: 1. Energy storage: supercapacitors (dual EDLC/pseudocapacitive mechanisms) and battery hybrids. 2. Electrocatalysis: HER, OER, ORR, and CO2 reduction reaction (CO2RR). 3. Electrochemical processing: capacitive deionization (CDI) and electrosorption. Beyond this core scope, we briefly acknowledge CA versatility in ancillary domains: environmental remediation (heavy metal removal, oil/water separation), flame retardancy, microwave absorption, and CO2 capture. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

21 pages, 4572 KB  
Article
Enhancing Grid Stability in Microgrid Systems with Vehicle-to-Grid Support and EDLC Supercapacitors
by Adrián Criollo, Dario Benavides, Paul Arévalo, Luis I. Minchala-Avila and Diego Morales-Jadan
Batteries 2025, 11(6), 231; https://doi.org/10.3390/batteries11060231 - 15 Jun 2025
Cited by 1 | Viewed by 1802
Abstract
Grid stability in microgrids represents a critical challenge, particularly with the increasing integration of variable renewable energy sources and the loss of systematic inertia. This study analyzes the use of vehicle-to-grid (V2G) technology and supercapacitors as complementary solutions to improve grid stability. A [...] Read more.
Grid stability in microgrids represents a critical challenge, particularly with the increasing integration of variable renewable energy sources and the loss of systematic inertia. This study analyzes the use of vehicle-to-grid (V2G) technology and supercapacitors as complementary solutions to improve grid stability. A hybrid approach is proposed in which electric vehicles act as temporary storage units, supplying energy to regulate grid frequency. Supercapacitors, due to their rapid charging and discharging capabilities, are used to mitigate power fluctuations and provide immediate support during peak demand. The proposed management model integrates two strategies for frequency control, leveraging the linear relationship between power and frequency. Power smoothing is combined with Kalman filter-based frequency control, allowing for accurate estimation of the dynamic system state, even in the presence of noise or load fluctuations. This methodology improves grid stability and frequency regulation accuracy. A frequency variability analysis is also included, highlighting grid disturbance events related to renewable-energy penetration and demand changes. Furthermore, the effectiveness of the Kalman filter in improving grid stability control, ensuring an efficient dynamic response, is highlighted. The results obtained demonstrate that the combination of V2G and supercapacitors contributes significantly to reducing grid disturbances, optimizing energy efficiency, and enhancing system reliability. Full article
(This article belongs to the Special Issue Innovations in Batteries for Renewable Energy Storage in Remote Areas)
Show Figures

Figure 1

18 pages, 9722 KB  
Article
Biomass-Derived Activated Porous Carbon from Foxtail Millet Husk to Utilizing High-Performance Symmetric Supercapacitor Applications
by Perumal Rajivgandhi, Vediyappan Thirumal, Alagan Sekar and Jinho Kim
Nanomaterials 2025, 15(8), 575; https://doi.org/10.3390/nano15080575 - 10 Apr 2025
Cited by 8 | Viewed by 2392
Abstract
This study successfully demonstrates the synthesis of foxtail millet carbon-activated (FMCA) materials using a two-step carbonization process from foxtail millet husk (FMH). The pre-carbonized biomass-derived millet husk was chemically activated with KOH at 500 °C and subsequently carbonized in an inert argon atmosphere [...] Read more.
This study successfully demonstrates the synthesis of foxtail millet carbon-activated (FMCA) materials using a two-step carbonization process from foxtail millet husk (FMH). The pre-carbonized biomass-derived millet husk was chemically activated with KOH at 500 °C and subsequently carbonized in an inert argon atmosphere at 800 °C in a tubular furnace. XRD analysis revealed a diffraction peak at 2θ = 23.67°, corresponding to the (002) plane, indicating the presence of graphitic structures. The Raman analysis of FMCA materials showed an intensity ratio (IG/ID) of 1.13, signifying enhanced graphitic ordering and structural stability. The as-prepared FMC and FMCA electrode materials demonstrate efficient charge storage electrochemical symmetric devices. Electrochemical analysis revealed the charge–discharge curves and a specific capacitance of Csp (FMC//FMC) 55.47 F/g and (FMCA//FMCA) 82.94 F/g at 0.5 A/g. Additionally, the FMCA//FMCA symmetric device exhibits superior performance with a higher capacity retention of 94.89% over 5000 cycles. The results confirm the suitability of FMCA for energy storage applications, particularly in electrochemical double-layer capacitors (EDLCs), making it a promising material for next-generation supercapacitors. Full article
Show Figures

Figure 1

19 pages, 1163 KB  
Article
A Modified Nearest Level Control Scheme for Improved Submodule Current Sharing in a CHB Converter with Integrated EDLCs
by Viktor Döhlen and Kent Bertilsson
Energies 2025, 18(7), 1697; https://doi.org/10.3390/en18071697 - 28 Mar 2025
Viewed by 597
Abstract
This study investigates a Cascaded H-Bridge converter with Electric Double-Layer Capacitors as integrated energy storage components. As the DC-link voltages are variable, the modulation index and number of submodules contributing to the active power delivery vary according to state of charge. The nearest [...] Read more.
This study investigates a Cascaded H-Bridge converter with Electric Double-Layer Capacitors as integrated energy storage components. As the DC-link voltages are variable, the modulation index and number of submodules contributing to the active power delivery vary according to state of charge. The nearest level control algorithm for this application is studied, and expressions for the duty cycle of conventional Nearest Level Modulation are derived. A modification of the sort and select algorithm to determine which submodule is to be inserted and bypassed when using the Nearest Level Control algorithm is proposed to distribute the activation time and the experienced RMS current of the submodules. Expressions for the duty cycle of each inserted submodule for the proposed algorithm is presented and compared to the conventional. Simulation experiments of current sharing between submodules under active power delivery for the conventional and proposed Nearest Level Control is conducted for an 11- level, 41-level and 61-level converter. Simulation experiments show a reduction in RMS current for the submodule experiencing the highest thermal stress. Over the course of power delivery and increasing modulation index, the peak RMS current increase for the conventional nearest level modulation while it is kept constant for the proposed modulation scheme. Full article
(This article belongs to the Special Issue Advances in Design and Control of Power Electronic Systems)
Show Figures

Figure 1

26 pages, 5528 KB  
Review
Pseudocapacitive Storage in High-Performance Flexible Batteries and Supercapacitors
by Zhenxiao Lu and Xiaochuan Ren
Batteries 2025, 11(2), 63; https://doi.org/10.3390/batteries11020063 - 7 Feb 2025
Cited by 15 | Viewed by 5133
Abstract
Attention to electrochemical energy storage (EES) devices continues to grow as the demand increases for energy storage systems in the storage and transmission of renewable energy. The expanded market requirement for mobile electronics devices and flexible electronic devices also calls for efficient energy [...] Read more.
Attention to electrochemical energy storage (EES) devices continues to grow as the demand increases for energy storage systems in the storage and transmission of renewable energy. The expanded market requirement for mobile electronics devices and flexible electronic devices also calls for efficient energy suppliers. EES devices applying pseudocapacitive materials and generated pseudocapacitive storage are gaining increasing focus because they are capable of overcoming the capacity limitations of electrical double-layer capacitors (EDLCs) and offsetting the rate performance of batteries. The pseudocapacitive storage mechanism generally occurs on the surface or near the surface of the electrode materials, which could avoid the slow ion diffusion process. Developing materials with beneficial nanostructures and optimized phases supporting pseudocapacitive storage would efficiently improve the energy density and charging rate for EES devices, such as batteries and flexible supercapacitors. This review offers a detailed assessment of pseudocapacitance, including classification, working mechanisms, analysis methods, promotion routes and advanced applications. The future challenges facing the effective utilization of pseudocapacitive mechanisms in upcoming energy storage devices are also discussed. Full article
Show Figures

Figure 1

15 pages, 11911 KB  
Article
Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors
by Mingcheng Li, Zheng Liu, Dan Wu, Huihao Wu and Kuikui Xiao
Nanomaterials 2025, 15(2), 83; https://doi.org/10.3390/nano15020083 - 7 Jan 2025
Cited by 4 | Viewed by 1446
Abstract
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing. Incorporating transition metal catalysts like [...] Read more.
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing. Incorporating transition metal catalysts like Ni, Co, and Fe alters the morphology, pore structure, graphitization degree, and nitrogen doping types/proportions. Electrochemical tests reveal a superior capacitance of 159.5 F g−1 at a scan rate of 1 mV s−1 and rate performance in Fe-catalyzed N-doped porous carbon (Fe-NDPC). Advanced analysis shows Fe-NDPC’s high graphitic nitrogen content and graphitization degree, boosting its electric double-layer capacitance (EDLC) and pseudocapacitance. Its abundant micro- and mesopores increase the surface area fourfold compared to non-catalyzed samples, favoring EDLC and fast electrolyte transport. This study guides catalyst application in carbon materials for supercapacitors, illuminating how catalysts influence nitrogen-doped porous carbon structure and performance. Full article
Show Figures

Graphical abstract

10 pages, 1662 KB  
Article
A Protic Ionic Liquid Promoted Gel Polymer Electrolyte for Solid-State Electrochemical Energy Storage
by Jiaxing Liu, Zan Wang, Zhihao Yang, Meiling Liu and Hongtao Liu
Materials 2024, 17(23), 5948; https://doi.org/10.3390/ma17235948 - 5 Dec 2024
Cited by 1 | Viewed by 1710
Abstract
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). [...] Read more.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.7 V), and good ionic conductivity (2.43 × 10−2 S cm−1 at 20 °C). EDLC, using this novel GPE film, shows high specific capacitance (81 F g−1) as well as good retention above 90% of the initial capacitance after 4500 cycles. The engineered protic ionic liquid GPE is, hopefully, applicable to high-performance solid-state electrochemical energy storage. Full article
Show Figures

Figure 1

14 pages, 4650 KB  
Article
Nickel–Cobalt Layered Double Hydroxide Nanosheet-Decorated 3D Interconnected Porous Ni/SiC Skeleton for Supercapacitor
by Han-Wei Chang, Chia-Hsiang Lee, Shih-Hao Yang, Kuo-Chuang Chiu, Tzu-Yu Liu and Yu-Chen Tsai
Molecules 2024, 29(23), 5664; https://doi.org/10.3390/molecules29235664 - 29 Nov 2024
Cited by 7 | Viewed by 2138
Abstract
In this study, a three-dimensional (3D) interconnected porous Ni/SiC skeleton (3D Ni/SiC) was synthesized by binder-free hydrogen bubble template-assisted electrodeposition in an electrolyte containing Ni2+ ions and SiC nanopowders. This 3D Ni/SiC skeleton served as a substrate for directly synthesizing nickel–cobalt layered [...] Read more.
In this study, a three-dimensional (3D) interconnected porous Ni/SiC skeleton (3D Ni/SiC) was synthesized by binder-free hydrogen bubble template-assisted electrodeposition in an electrolyte containing Ni2+ ions and SiC nanopowders. This 3D Ni/SiC skeleton served as a substrate for directly synthesizing nickel–cobalt layered double hydroxide (LDH) nanosheets via electrodeposition, allowing the formation of a nickel–cobalt LDH nanosheet-decorated 3D Ni/SiC skeleton (NiCo@3D Ni/SiC). The multiscale hierarchical structure of NiCo@3D Ni/SiC was attributed to the synergistic interaction between the pseudocapacitor (3D Ni skeleton and Ni–Co LDH) and electrochemical double-layer capacitor (SiC nanopowders). It provided a large specific surface area to expose numerous active Ni and Co sites for Faradaic redox reactions, resulting in an enhanced pseudocapacitance. The as-fabricated NiCo@3D Ni/SiC structure demonstrated excellent rate capability with a high areal capacitance of 1565 mF cm−2 at a current density of 1 mA cm−2. Additionally, symmetrical supercapacitor devices based on this structure successfully powered commercial light-emitting diodes, indicating the potential of as-fabricated NiCo@3D Ni/SiC in practical energy storage applications. Full article
Show Figures

Graphical abstract

11 pages, 4905 KB  
Article
Hierarchically Graphitic Carbon Structure Derived from Metal Ions Impregnated Harmful Inedible Seaweed as Energy-Related Material
by Yun-Mi Song, Hui Gyeong Park and Jung-Soo Lee
Materials 2024, 17(18), 4643; https://doi.org/10.3390/ma17184643 - 21 Sep 2024
Cited by 1 | Viewed by 1872
Abstract
This study explored the development of hierarchical graphitic carbon structures (HGCs) from harmful inedible seaweed waste harvested in the summer. Elevated sea temperatures during the summer increase the cellulose content of seaweeds, making them unsuitable for consumption. By utilizing seaweed biomass, this study [...] Read more.
This study explored the development of hierarchical graphitic carbon structures (HGCs) from harmful inedible seaweed waste harvested in the summer. Elevated sea temperatures during the summer increase the cellulose content of seaweeds, making them unsuitable for consumption. By utilizing seaweed biomass, this study addresses critical marine environmental issues and provides a sustainable solution for promising electrode materials for energy storage devices. The fabrication process involved impregnating seaweed with Ni ions, followed by annealing to create a highly crystalline carbon structure. Subsequent etching produced numerous nano-sized pores and a large surface area (806 m2/g), significantly enhancing the number of electrically active sites. The resulting HGCs exhibited a high capacitance and maintained their capacity even after 10,000 cycles in fast-current systems. This innovative approach not only mitigates the environmental burden of seaweed waste but also offers a sustainable method for converting it into efficient energy storage materials. Full article
(This article belongs to the Special Issue Synthesis and Characterization Techniques for Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop