Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = EAC-1A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1034 KiB  
Article
Infratemporal Fossa Approach with Preservation of the Posterior Bony Wall of External Auditory Canal: Case Series and the Outcome
by Hye Ah Joo, Na-Kyum Park and Jong Woo Chung
J. Clin. Med. 2025, 14(15), 5294; https://doi.org/10.3390/jcm14155294 - 26 Jul 2025
Viewed by 352
Abstract
Objective: To evaluate the outcomes of a modified infratemporal fossa approach (ITFA) that preserves the posterior external auditory canal (EAC) in patients with tumors in the infratemporal fossa and skull base, focusing on postoperative hearing and facial nerve function. Methods: This retrospective study [...] Read more.
Objective: To evaluate the outcomes of a modified infratemporal fossa approach (ITFA) that preserves the posterior external auditory canal (EAC) in patients with tumors in the infratemporal fossa and skull base, focusing on postoperative hearing and facial nerve function. Methods: This retrospective study included nine patients who underwent ITFA with posterior EAC preservation for tumor removal while minimizing facial nerve rerouting. All surgeries were performed by a single surgeon. Preoperative and postoperative hearing levels, facial nerve function, tumor characteristics, and surgical outcomes were analyzed. Air-bone gaps (ABG) were assessed using pure tone audiometry, and facial nerve function was assessed using the House–Brackmann grading system. Results: The cohort consisted of eight female patients and one male patient, with a mean tumor size of 3.0 cm. Surgical outcomes were promising, with no statistically significant increase in postoperative ABG and well-preserved facial nerve function. Only one patient developed postoperative grade II facial palsy. A residual tumor was identified in one case with extensive meningioma, which has remained stable, and no recurrence or regrowth was noted during the follow-up period (mean: 3.7 years). The modified approach minimized complications related to conductive hearing loss and facial nerve dysfunction. Conclusions: The modified ITFA with posterior EAC preservation provides a promising alternative to conventional ITFA for managing deep-seated tumors. It preserves both hearing and facial nerve function while ensuring adequate tumor resection. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

13 pages, 1157 KiB  
Review
Precision Care in Screening, Surveillance, and Overall Management of Barrett’s Esophagus
by Yeshaswini Reddy, Madhav Desai, Bernadette Tumaliuan and Nirav Thosani
J. Pers. Med. 2025, 15(8), 327; https://doi.org/10.3390/jpm15080327 - 22 Jul 2025
Viewed by 326
Abstract
Barrett’s esophagus (BE), a metaplastic transformation of an esophageal squamous epithelium into an intestinal-type columnar epithelium, is the primary precursor to esophageal adenocarcinoma (EAC). Traditional management strategies have relied heavily on selective screening, tailored surveillance intervals, and early dysplasia detection and treatment algorithms. [...] Read more.
Barrett’s esophagus (BE), a metaplastic transformation of an esophageal squamous epithelium into an intestinal-type columnar epithelium, is the primary precursor to esophageal adenocarcinoma (EAC). Traditional management strategies have relied heavily on selective screening, tailored surveillance intervals, and early dysplasia detection and treatment algorithms. However, the heterogeneity in progression risk among BE patients necessitates a more nuanced, personalized approach involving precision care, tailoring decisions to individual patient characteristics, promises to enhance outcomes in BE through more targeted screening, personalized surveillance intervals, and risk-based therapeutic strategies. This review explores the current landscape and emerging trends in precision medicine for Barrett’s esophagus, highlighting genomic markers, digital pathology, and AI-driven models as tools to transform how we approach this complex disease and prevent progression to EAC. Full article
(This article belongs to the Special Issue Clinical Updates on Personalized Upper Gastrointestinal Endoscopy)
Show Figures

Figure 1

19 pages, 4902 KiB  
Article
Metabolic Profiling of Distinct TP53-Mutant Esophageal Adenocarcinoma Models Reveals Different Bioenergetic Dependencies
by Erica Cataldi-Stagetti, Nicola Rizzardi, Arianna Orsini, Bianca De Nicolo, Chiara Diquigiovanni, Luca Pincigher, Noah Moruzzi, Romana Fato, Christian Bergamini and Elena Bonora
Int. J. Mol. Sci. 2025, 26(14), 6869; https://doi.org/10.3390/ijms26146869 - 17 Jul 2025
Viewed by 754
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with rising incidence and poor prognosis. TP53, previously identified as the most frequently mutated gene in EAC in our studies, plays a central role in tumor suppression and regulation. However, the metabolic consequences of [...] Read more.
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with rising incidence and poor prognosis. TP53, previously identified as the most frequently mutated gene in EAC in our studies, plays a central role in tumor suppression and regulation. However, the metabolic consequences of TP53 mutations in EAC remain largely uncharacterized. We metabolically profiled three TP53-mutant EAC cell models (OE33, OE19, and FLO1) representing progressive stages of tumor differentiation and harboring distinct TP53 alterations. Our analyses revealed different metabolic phenotypes associated with TP53 status. OE33 cells predominantly use glycolytic metabolism but display limited adaptability to environmental changes, possibly due to a higher differentiation state. FLO1 cells exhibit a strong glycolytic dependence, elevated lactate production, and robust proliferation under acidic conditions, consistent with an aggressive and metastatic phenotype. OE19 cells preferentially utilize oxidative phosphorylation, demonstrated by resilience to glucose and glutamine deprivation, and ROS accumulation. These findings highlight the metabolic plasticity of EAC and suggest that TP53 mutation type might influence bioenergetic dependencies. Targeting these metabolic vulnerabilities may offer novel therapeutic avenues for personalized treatment in EAC. Full article
(This article belongs to the Special Issue Cancer Biology: From Genetic Aspects to Treatment)
Show Figures

Figure 1

16 pages, 3215 KiB  
Article
Proactive and Data-Driven Decision-Making Using Earned Value Analysis in Infrastructure Projects
by Bayram Ateş and Mohammad Azim Eirgash
Buildings 2025, 15(14), 2388; https://doi.org/10.3390/buildings15142388 - 8 Jul 2025
Viewed by 919
Abstract
Timely and informed decision-making is essential for the successful execution of construction projects, where delays and cost overruns frequently pose significant risks. Earned value analysis (EVA) provides a robust, integrated framework that combines scope, schedule, and cost performance to support proactive project control. [...] Read more.
Timely and informed decision-making is essential for the successful execution of construction projects, where delays and cost overruns frequently pose significant risks. Earned value analysis (EVA) provides a robust, integrated framework that combines scope, schedule, and cost performance to support proactive project control. This study investigates the effectiveness of EVA as a decision-support tool by applying it to two real-life construction case studies. Key performance indicators, including Cost Performance Index (CPI), Schedule Performance Index (SPI), Estimate at Completion (EAC), and Estimate to Complete (ETC), are calculated and analyzed over a specific monitoring period. The analysis revealed a 15.36% cost savings and a 10.42% schedule improvement during the monitored period. By comparing planned and actual performance data, the study demonstrates how EVA enables early detection of deviations, thereby empowering project managers to implement timely corrective actions. The findings highlight EVA’s practical utility in improving project transparency, enhancing cost and schedule control, and supporting strategic decision-making in real-world construction environments. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

15 pages, 2980 KiB  
Article
Transient Stability Enhancement of Virtual Synchronous Generator Through Analogical Phase Portrait Analysis
by Si Wu, Jun Wu, Hongyou Zhong and Yang Qi
Energies 2025, 18(13), 3495; https://doi.org/10.3390/en18133495 - 2 Jul 2025
Viewed by 225
Abstract
Virtual synchronous generator (VSG) control has been increasingly utilized for the grid integration of the voltage source inverter (VSI). Under large disturbances, such as voltage sags and grid faults, the VSG synchronization dynamic is highly nonlinear and cannot be evaluated by small-signal-based approaches. [...] Read more.
Virtual synchronous generator (VSG) control has been increasingly utilized for the grid integration of the voltage source inverter (VSI). Under large disturbances, such as voltage sags and grid faults, the VSG synchronization dynamic is highly nonlinear and cannot be evaluated by small-signal-based approaches. Conventionally, the equal area criterion (EAC) is utilized to analyze the transient stability of a synchronous machine or a VSG. However, it is found that the EAC is only valid under special scenarios when the damping effect is ignored. In this case, the EAC will provide conservative predictions and therefore put stringent requirements on the fault-clearing time. This paper reveals that the motion of a pendulum is essentially the same as the VSG swing equation. Due to this, the phase portrait approach, which was used to predict the pendulum motion, can be similarly applied for the VSG transient stability study. Based on the analogical phase portrait analysis, a damping coefficient tuning guideline is proposed, which always guarantees the synchronization stability as long as an equilibrium exists. The aforementioned theoretical findings are finally verified through a grid-connected VSG under the hardware-in-loop (HIL) environment. Full article
Show Figures

Figure 1

19 pages, 993 KiB  
Article
Amprenavir Mitigates Pepsin-Induced Transcriptomic Changes in Normal and Precancerous Esophageal Cells
by Pelin Ergun, Tina L. Samuels, Angela J. Mathison, Tianxiang Liu, Victor X. Jin and Nikki Johnston
Int. J. Mol. Sci. 2025, 26(13), 6182; https://doi.org/10.3390/ijms26136182 - 26 Jun 2025
Viewed by 604
Abstract
Gastroesophageal reflux disease (GERD) is associated with inflammatory and neoplastic changes in the esophageal epithelium. Despite widespread PPI use, esophageal adenocarcinoma (EAC) incidence continues to rise, implicating non-acidic reflux components such as pepsin in disease progression. We performed transcriptomic profiling to assess pepsin-induced [...] Read more.
Gastroesophageal reflux disease (GERD) is associated with inflammatory and neoplastic changes in the esophageal epithelium. Despite widespread PPI use, esophageal adenocarcinoma (EAC) incidence continues to rise, implicating non-acidic reflux components such as pepsin in disease progression. We performed transcriptomic profiling to assess pepsin-induced changes and the protective effect of amprenavir in vitro. Het-1A (normal) and BAR-T (Barrett’s) cells (n = 3) were treated at pH 7.0 with pepsin and/or 10 μM amprenavir for 1 h. RNA-seq identified DEGs (FDR ≤ 0.05, |log₂FC| ≥ 0.375), and Ingenuity Pathway Analysis revealed enriched pathways. Pepsin exposure altered mitochondrial function, oxidative phosphorylation, epithelial integrity, signaling, and inflammatory pathways in both cell lines. Amprenavir attenuated these transcriptomic perturbations, preserving mitochondrial and stress-response pathways. Notably, BAR-T cells exhibited heightened activation of wound-healing and epithelial repair pathways, whereas Het-1A cells showed greater mitochondrial and systemic stress pathway alterations. Pepsin drives transcriptomic dysregulation in esophageal epithelial cells under non-acidic conditions, and amprenavir shows potential to counteract peptic injury. Further studies are needed to validate these findings and explore amprenavir’s therapeutic utility in GERD management and EAC prevention. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Esophageal Inflammation, Injury, and Repair)
Show Figures

Figure 1

31 pages, 9076 KiB  
Article
Blast Performance of Multi-Layer Composite Door Panel with Energy Absorption Connectors
by Shahab Ahmad, Shayan Zeb, Yonghui Wang and Muhammad Umair
Buildings 2025, 15(12), 2073; https://doi.org/10.3390/buildings15122073 - 16 Jun 2025
Viewed by 405
Abstract
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy [...] Read more.
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy Absorption Connectors (SAFSCS-EACs) under near and far field blast loading using finite element analysis in LS-DYNA. Three dynamic response modes were observed based on the crushing strength of energy absorption connectors (EACs) for the SAFSCS-EAC composite door under both near and far field blasts. In addition, the membrane stretching phenomena was observed in the face steel plate. The AF shows a local densification in near field blasts and a global densification in far field blasts. For the SCS panel, a punching-like failure and a global flexural failure were observed in near and far field blasts, respectively. AF has a high energy absorption capacity as a first energy absorption layer, while the EAC also effectively dissipates blast energy through the rotation of the plastic hinges of curved steel plates, thereby reducing the damage to the SCS panel and increasing the door’s structural integrity. Moreover, to check the influence of the curved steel plate thickness of EACs and the core concrete thickness, a parametric study was carried out. The results showed that the blast resistance performance of the SAFSCS-EAC composite door could increase by appropriately designing the EAC curved steel plates’ thickness and ensuring that the compression displacement of the EAC under blast is close to its densification displacement. Additionally, increasing concrete thickness can reduce the degree of damage to the steel–concrete–steel composite panel during the blast, but it leads to a reduction in the energy dissipation of the EAC. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 556 KiB  
Article
Empirical Re-Investigation into the Export-Led Growth Hypothesis (ELGH): Evidence from EAC and SADC Economies
by Ojo Johnson Adelakun, Oluwafemi Opeyemi Ojo and Sakhile Mpungose
Economies 2025, 13(6), 175; https://doi.org/10.3390/economies13060175 - 16 Jun 2025
Viewed by 967
Abstract
The Export-Led Growth Hypothesis (ELGH) posits that expanding exports drive long-run economic growth. While this has held true for several Asian economies, its effectiveness across African regional blocs remains underexplored. This study investigates the validity of ELGH in the East African Community (EAC) [...] Read more.
The Export-Led Growth Hypothesis (ELGH) posits that expanding exports drive long-run economic growth. While this has held true for several Asian economies, its effectiveness across African regional blocs remains underexplored. This study investigates the validity of ELGH in the East African Community (EAC) and Southern African Development Community (SADC), assessing whether exports significantly contribute to economic growth in these regions. The analysis covers 22 EAC and SADC economies from 1990 to 2022—regions marked by structural transformation efforts, trade liberalisation, and participation in the AfCFTA. A dynamic panel data model based on an augmented Cobb-Douglas production function is estimated using the System Generalised Method of Moments (System GMM) to address endogeneity and reverse causality. Granger causality tests supplement the analysis. Exports and technology significantly enhance GDP growth, while labour and FDI are statistically insignificant. Trade openness negatively affects growth, suggesting vulnerability to external shocks. A bidirectional Granger causality exists between exports and GDP. This study offers the first dynamic, bloc-level empirical evaluation of ELGH across EAC and SADC, incorporating trade-related interactions. Findings affirm ELGH’s relevance and stress the need for export diversification, technological upgrading, and institutional reform for sustained growth in Africa. Full article
(This article belongs to the Special Issue Dynamic Macroeconomics: Methods, Models and Analysis)
Show Figures

Figure 1

25 pages, 4443 KiB  
Article
Experimental Investigation of the Influence of Climatic Conditions and Vehicle Dynamics on the Thermal Management System of a Fuel Cell Electric Vehicle
by Yannick Heynen, Ralf Liedtke, Michael Schier and Florian Heckert
Energies 2025, 18(11), 2995; https://doi.org/10.3390/en18112995 - 5 Jun 2025
Viewed by 555
Abstract
In this study, the cooling performance of fuel cell electric vehicles (FCEVs) with regard to thermal derating is investigated. Particularly in hot climate conditions, low operating temperature of the fuel cell stack and hence low temperature difference to the environment can result in [...] Read more.
In this study, the cooling performance of fuel cell electric vehicles (FCEVs) with regard to thermal derating is investigated. Particularly in hot climate conditions, low operating temperature of the fuel cell stack and hence low temperature difference to the environment can result in thermal derating of the fuel cell stack. Experimental investigations on a production vehicle with a fuel cell drive (Hyundai Nexo) are conducted to analyze the influence of climatic boundary conditions and a dynamic driving scenario on the thermal management system of the vehicle. Therefore, a new method based on energy balances is introduced to indirectly measure the average cooling air velocity at the cooling module. The results indicate that the two high-power radiator fans effectively maintain a high cooling airflow between a vehicle speed of approximately 30 and 100 km/h, leading to efficient heat rejection at the cooling module largely independent of vehicle speed. Furthermore, this study reveals that the efficiency of the fuel cell system is notably affected by ambient air temperature, attributed to the load on the electric air compressor (EAC) as well as on cooling system components like cooling pump and radiator fans. However, at the stack level, balance of plant (BoP) components demonstrate the ability to ensure ambient temperature-independent performance, likely due to reliable humidification control up to 45 °C. Additionally, a new method for determining thermal derating of FCEVs on roller dynamometer tests is presented. A real-world uphill drive under ambient temperatures exceeding 40 °C demonstrates derating occurring in 6.3% of the time, although a worst case with an aged stack and high payload is not investigated in this study. Finally, a time constant of 50 s is found to be suitable to correlate the average fuel cell stack power with a coolant temperature at the stack inlet, which gives information on the thermal inertia of the system observed and can be used for future simulation studies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 1026 KiB  
Article
A Clinical Validation of a Diagnostic Test for Esophageal Adenocarcinoma Based on a Novel Serum Glycoprotein Biomarker Panel: PromarkerEso
by Jordana Sheahan, Iris Wang, Peter Galettis, David I. Watson, Virendra Joshi, Michelle M. Hill, Richard Lipscombe, Kirsten Peters and Scott Bringans
Proteomes 2025, 13(2), 23; https://doi.org/10.3390/proteomes13020023 - 4 Jun 2025
Viewed by 654
Abstract
Background: Esophageal adenocarcinoma (EAC) diagnosis involves invasive and expensive endoscopy with biopsy, but rising EAC incidence has not been reduced by increased surveillance. This study aimed to develop and clinically validate a novel glycoprotein biomarker blood test for EAC, named PromarkerEso. Methods: Serum [...] Read more.
Background: Esophageal adenocarcinoma (EAC) diagnosis involves invasive and expensive endoscopy with biopsy, but rising EAC incidence has not been reduced by increased surveillance. This study aimed to develop and clinically validate a novel glycoprotein biomarker blood test for EAC, named PromarkerEso. Methods: Serum glycoprotein relative concentrations were measured using a lectin-based magnetic bead array pulldown method, with multiple reaction monitoring mass spectrometry in 259 samples across three independent cohorts. A panel of glycoproteins: alpha-1-antitrypsin, alpha-1-antichymotrypsin, complement C9 and plasma kallikrein, were combined with clinical factors (age, sex and BMI) in an algorithm to categorize the samples by the risk of EAC. Results: PromarkerEso demonstrated a strong discrimination of EAC from the controls (area under the curve (AUC) of 0.91 in the development cohort and 0.82 and 0.98 in the validation cohorts). The test exhibited a high sensitivity for EAC (98% in the development cohort, and 99.9% and 91% in the validation cohorts) and a high specificity (88% in the development cohort, and 86% and 99% in the validation cohorts). PromarkerEso identified individuals with and without EAC (96% and 95% positive and negative predictive values). Conclusions: This less invasive approach for EAC detection with the novel combination of these glycoprotein biomarkers and clinical factors coalesces in a potential step toward improved diagnosis. Full article
Show Figures

Figure 1

28 pages, 4244 KiB  
Article
Optimized Non-Integer with Disturbance Observer Frequency Control for Resilient Modern Airport Microgrid Systems
by Amr A. Raslan, Mokhtar Aly, Emad A. Mohamed, Waleed Alhosaini, Emad M. Ahmed, Loai S. Nasrat and Sayed M. Said
Fractal Fract. 2025, 9(6), 354; https://doi.org/10.3390/fractalfract9060354 - 28 May 2025
Viewed by 533
Abstract
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this [...] Read more.
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this context, maintaining proper frequency is essential for the reliable operation of AMGs, which helps maintain grid stability and reliable operation. This paper proposes a new hybrid disturbance observer-based controller with a fractional-order controller (DOBC/FOC) for operating AMGs with high levels of renewable energy integration and advanced frequency regulation (FR) capabilities. The proposed controller utilizes DOBC coupled with a non-integer FOC for load frequency control (LFC), optimized for peak performance under varying operational conditions. In addition, a decentralized control strategy is introduced to manage the participation of electric vehicles and lithium-ion battery systems within the airport’s energy ecosystem, enabling effective demand response and energy storage utilization. Furthermore, the parameters of these controllers are optimized simultaneously to ensure optimal performance in both transient and steady-state conditions. The proposed DOBC/FOC controller demonstrates strong performance and reliability according to simulation outcomes, showcasing its superior performance in maintaining frequency stability, reducing fluctuations, and ensuring continuous power supply in diverse operating scenarios, such as 55.5% and 76.5% in step load perturbations when compared to the utilization of electric vehicles (EVs) and electric aircraft (EAC), respectively. These results underline the potential of this approach in enhancing the resilience and sustainability of AMG and contributing to more intelligent and eco-friendly airport infrastructure. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

16 pages, 2651 KiB  
Article
The Effect of Photoisomerization on the Antioxidant Properties of Sinapic Acid and Methyl Sinapate in Different Solvents: A DFT/TD-DFT Study
by Lei Wang, Chaofan Sun and Lingling Wang
Antioxidants 2025, 14(6), 633; https://doi.org/10.3390/antiox14060633 - 25 May 2025
Viewed by 611
Abstract
The impact of photoisomerization on antioxidant properties holds significant implications for fields such as medicine, chemistry, and consumer products. This investigation employs multistate complete active space second-order perturbation theory (MS-CASPT2), complemented by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, to examine [...] Read more.
The impact of photoisomerization on antioxidant properties holds significant implications for fields such as medicine, chemistry, and consumer products. This investigation employs multistate complete active space second-order perturbation theory (MS-CASPT2), complemented by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, to examine the photoisomerization behavior of sinapic acid (SA) and methyl sinapate (MS) under ultraviolet (UV) irradiation, while systematically analyzing their antioxidant properties in the S1 state. The computational results, validated by two independent theoretical approaches, confirm that both SA and MS can undergo photoisomerization through conical intersection pathways, providing crucial insights into their non-radiative transition mechanisms. In the S0 state, cis-SA and cis-MS exhibit higher antioxidant activity, while in the S1 state, antioxidant performance is strongly solvent-dependent: trans-SA outperforms in ethyl acetate (Eac) and water, whereas cis-SA is more effective in methanol (MeOH). Notably, the natural population analysis (NPA) charges of all four compounds increase upon photoexcitation, suggesting that photoexcitation enhances antioxidant properties. This study addresses a critical gap in our understanding of the relationship between photoisomerization and antioxidant activity in natural phenolic compounds. Full article
Show Figures

Graphical abstract

21 pages, 5352 KiB  
Article
Optimization of Exposed Aggregate Concrete Mix Proportions for High Skid Resistance and Noise Reduction Performance
by Xudong Zha, Chengzhi Wu, Runzhou Luo and Yaqiang Liu
Appl. Sci. 2025, 15(11), 5881; https://doi.org/10.3390/app15115881 - 23 May 2025
Viewed by 379
Abstract
Conventional cement concrete pavements often suffer from rapid skid resistance degradation and excessive traffic noise, necessitating effective solutions. This study investigates exposed aggregate concrete (EAC) through orthogonal experimental methods to evaluate the effects of four mix design parameters—water–binder ratio, sand ratio, coarse aggregate [...] Read more.
Conventional cement concrete pavements often suffer from rapid skid resistance degradation and excessive traffic noise, necessitating effective solutions. This study investigates exposed aggregate concrete (EAC) through orthogonal experimental methods to evaluate the effects of four mix design parameters—water–binder ratio, sand ratio, coarse aggregate volume ratio, and proportion of aggregates >9.5 mm—on surface texture characteristics, skid resistance and noise reduction (SRNR) performance, and mechanical properties. The optimal EAC mix proportions were developed, and the correlations between surface texture characteristics and SRNR performance were established. Results indicate that the proportion of aggregates >9.5 mm significantly influences surface texture characteristics and SRNR performance. The optimal mix proportions (water–binder ratio: 0.43, sand ratio: 31%, coarse aggregate volume ratio: 42%, and proportion of aggregates >9.5 mm: 50%) exhibited superior mechanical properties, achieving a 31.5% increase in pendulum value and a 6.48 dB reduction in tire/surface noise compared to grooved conventional concrete. The noise reduction frequency range is mainly concentrated in the mid-high frequency range of 1.5~4.0 kHz, which is more sensitive to the human ear. High correlations were observed between the surface texture characteristics and SRNR performance. Specifically, noise value decreased progressively with increasing exposed aggregate depth, while the pendulum value exhibited a trend of initial decrease, followed by an increase and subsequent decrease in response to the elevated exposed aggregate area ratio. Compared to traditional cement concrete pavements, the optimized EAC, while maintaining mechanical properties, exhibits superior SRNR performance, providing a valuable reference for the construction of high SRNR cement concrete pavements. Full article
Show Figures

Figure 1

16 pages, 803 KiB  
Review
The Role of Microbiota in Upper Gastrointestinal Cancers
by Giovanni Marasco, Luigi Colecchia, Daniele Salvi, Angelo Bruni, Cecilia Capelli, Elton Dajti, Maria Raffaella Barbaro, Cesare Cremon, Vincenzo Stanghellini and Giovanni Barbara
Cancers 2025, 17(10), 1719; https://doi.org/10.3390/cancers17101719 - 21 May 2025
Viewed by 862
Abstract
The gut microbiota significantly impacts the development and progression of upper gastrointestinal (GI) cancers, including esophageal and gastric cancers. Microbial dysbiosis contributes to carcinogenesis through mechanisms such as inflammation, immune modulation, and direct DNA damage. Techniques for sampling oral, esophageal, and gastric microbiota [...] Read more.
The gut microbiota significantly impacts the development and progression of upper gastrointestinal (GI) cancers, including esophageal and gastric cancers. Microbial dysbiosis contributes to carcinogenesis through mechanisms such as inflammation, immune modulation, and direct DNA damage. Techniques for sampling oral, esophageal, and gastric microbiota vary, with standardization being essential for reliable results. Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC) are associated with an enrichment of Gram-negative bacteria, promoting inflammation and cancer progression. Esophageal squamous cell carcinoma (ESCC) also shows distinct microbial patterns, with reduced diversity and increased harmful bacteria like Porphyromonas gingivalis and Fusobacterium nucleatum. In gastric cancer (GC), Helicobacter pylori (HP) and non-HP gastric microbiota play significant roles, with diverse microbial communities contributing to cancer development through nitrate reduction, immune modulation, and inflammation. Emerging evidence highlights the role of non-HP bacteria in promoting carcinogenesis, with specific taxa like Fusobacterium nucleatum and Lactobacillus influencing tumor growth and immune evasion. Further research is needed to elucidate the complex interactions between gut microbiota and upper GI cancers, paving the way for novel diagnostic and therapeutic approaches. Understanding these microbial dynamics offers potential for microbiota-based interventions, improving the early detection, prognosis, and treatment of upper GI cancers. This comprehensive review summarizes the available evidence on the role of microbiota in upper GI oncology and the need for continued exploration in this field. Full article
(This article belongs to the Special Issue Developments in the Management of Gastrointestinal Malignancies)
Show Figures

Figure 1

13 pages, 2395 KiB  
Article
Lunar Regolith Improvement by Inducing Interparticle Adhesion with Capillary Forces
by Karol Brzeziński, Joanna Julia Sokołowska and Bartłomiej Przybyszewski
Materials 2025, 18(10), 2390; https://doi.org/10.3390/ma18102390 - 20 May 2025
Viewed by 1008
Abstract
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research [...] Read more.
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research was conducted using the lunar regolith simulant (EAC-1A) reproducing the PSD of real lunar soil delivered from the Moon. LRS was subjected to water and elevated temperature (equal to the highest temperature on the Moon) to produce specimens of consolidated material, CCR (Capillary-Consolidated Regolith) and to test flexural strength. In order to adapt to potentially small stresses, tests were performed according to the modified EN 196-1 procedure intended for Portland cement testing: specimens scaled to 20 mm × 20 mm × 80 mm (new molds with Polytetrafluoroethylene/Teflon® coatings reducing adhesion were created), supports spacing in the three-point flexural test reduced to 50 mm and apparatus adjusted to precisely apply small loads. CCR developed flexural strength exceeding 0.025 MPa. Then, analogous tests were performed using LRS subjected to grinding in a disc mill prior to consolidation. It was shown that simple mechanical grinding enabled the improvement of interparticle adhesion with capillary forces, resulting in improved flexural strength of the consolidated material (0.123 MPa). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop