Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,148)

Search Parameters:
Keywords = E165R gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3840 KiB  
Article
Identification of CaVβ1 Isoforms Required for Neuromuscular Junction Formation and Maintenance
by Amélie Vergnol, Aly Bourguiba, Stephanie Bauché, Massiré Traoré, Maxime Gelin, Christel Gentil, Sonia Pezet, Lucile Saillard, Pierre Meunier, Mégane Lemaitre, Julianne Perronnet, Frederic Tores, Candice Gautier, Zoheir Guesmia, Eric Allemand, Eric Batsché, France Pietri-Rouxel and Sestina Falcone
Cells 2025, 14(15), 1210; https://doi.org/10.3390/cells14151210 - 6 Aug 2025
Abstract
Voltage-gated Ca2+ channels (VGCCs) are regulated by four CaVβ subunits (CaVβ1–CaVβ4), each showing specific expression patterns in excitable cells. While primarily known for regulating VGCC function, CaVβ proteins also have channel-independent roles, including gene expression modulation. Among these, CaVβ1 is expressed in [...] Read more.
Voltage-gated Ca2+ channels (VGCCs) are regulated by four CaVβ subunits (CaVβ1–CaVβ4), each showing specific expression patterns in excitable cells. While primarily known for regulating VGCC function, CaVβ proteins also have channel-independent roles, including gene expression modulation. Among these, CaVβ1 is expressed in skeletal muscle as multiple isoforms. The adult isoform, CaVβ1D, localizes at the triad and modulates CaV1 activity during Excitation–Contraction Coupling (ECC). In this study, we investigated the lesser-known embryonic/perinatal CaVβ1 isoforms and their roles in neuromuscular junction (NMJ) formation, maturation, and maintenance. We found that CaVβ1 isoform expression is developmentally regulated through differential promoter activation. Specifically, CaVβ1A is expressed in embryonic muscle and reactivated in denervated adult muscle, alongside the known CaVβ1E isoform. Nerve injury in adult muscle triggers a shift in promoter usage, resulting in re-expression of embryonic/perinatal Cacnb1A and Cacnb1E transcripts. Functional analyses using aneural agrin-induced AChR clustering on primary myotubes demonstrated that these isoforms contribute to NMJ formation. Additionally, their expression during early post-natal development is essential for NMJ maturation and long-term maintenance. These findings reveal previously unrecognized roles of CaVβ1 isoforms beyond VGCC regulation, highlighting their significance in neuromuscular system development and homeostasis. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

25 pages, 3822 KiB  
Article
Comparative Transcriptome and MicroRNA Profiles of Equine Mesenchymal Stem Cells, Fibroblasts, and Their Extracellular Vesicles
by Sebastian Sawicki, Monika Bugno-Poniewierska, Jakub Żurowski, Tomasz Szmatoła, Ewelina Semik-Gurgul, Michał Bochenek, Elżbieta Karnas and Artur Gurgul
Genes 2025, 16(8), 936; https://doi.org/10.3390/genes16080936 (registering DOI) - 5 Aug 2025
Abstract
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in [...] Read more.
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in intercellular communication. Methods: This study compared the transcriptomic profiles (mRNA and miRNA) of equine MSCs derived from adipose tissue (AT-MSCs), bone marrow (BM-MSCs), and ovarian fibroblasts (as a differentiated control). Additionally, miRNAs present in EVs secreted by these cells were characterized using next-generation sequencing. Results: All cell types met ISCT criteria for MSCs, including CD90 expression, lack of MHC II, trilineage differentiation, and adherence. EVs were isolated using ultracentrifugation and validated with nanoparticle tracking analysis and flow cytometry (CD63, CD81). Differential expression analysis revealed distinct mRNA and miRNA profiles across cell types and their secreted EVs, correlating with tissue origin. BM-MSCs showed unique regulation of genes linked to early development and osteogenesis. EVs contained diverse RNA species, including miRNA, mRNA, lncRNA, rRNA, and others. In total, 227 and 256 mature miRNAs were detected in BM-MSCs and AT-MSCs, respectively, including two novel miRNAs per MSC type. Fibroblasts expressed 209 mature miRNAs, including one novel miRNA also found in MSCs. Compared to fibroblasts, 60 and 92 differentially expressed miRNAs were identified in AT-MSCs and BM-MSCs, respectively. Conclusions: The results indicate that MSC tissue origin influences both transcriptomic profiles and EV miRNA content, which may help to interpret their therapeutic potential. Identifying key mRNAs and miRNAs could aid in future optimizing of MSC-based therapies in horses. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

37 pages, 5366 KiB  
Article
Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder
by Zuzanna Lewandowska-Pietruszka, Magdalena Figlerowicz and Katarzyna Mazur-Melewska
Microorganisms 2025, 13(8), 1822; https://doi.org/10.3390/microorganisms13081822 - 4 Aug 2025
Abstract
Autism Spectrum Disorder (ASD) is frequently accompanied by gastrointestinal disturbances, dietary selectivity, and altered stress responses, with growing evidence pointing to gut–brain axis involvement. While intestinal microbiota has been extensively studied, the role of the oral microbiota remains underexplored. This study investigates the [...] Read more.
Autism Spectrum Disorder (ASD) is frequently accompanied by gastrointestinal disturbances, dietary selectivity, and altered stress responses, with growing evidence pointing to gut–brain axis involvement. While intestinal microbiota has been extensively studied, the role of the oral microbiota remains underexplored. This study investigates the associations between oral microbiota composition and behavioral, gastrointestinal, dietary, and neuroendocrine parameters in children with ASD. A total of 45 children aged 2–18 years comprised the study group. Data collection included oral swabs for 16S rRNA gene sequencing, salivary cortisol sampling, dietary records, and standardized behavioral assessments using the Vineland Adaptive Behavior Scale. A total of 363 microbial species across 11 phyla were identified. Significant correlations were observed between specific bacterial taxa and functional gastrointestinal disorders (FGIDs), dietary patterns, salivary cortisol rhythms, and functioning. Children with FGIDs, food selectivity, or macronutrient imbalances exhibited enriched pro-inflammatory taxa (e.g., Selenomonas, Megasphaera), whereas those with typical cortisol secretion or higher adaptive functioning showed greater microbial diversity and abundance of health-associated genera (e.g., Bifidobacterium dentium). These findings suggest that oral microbiota profiles may reflect systemic physiological and neurobehavioral traits in children with ASD. Further longitudinal studies are needed to clarify causal relationships and support the development of microbiota-targeted interventions. Full article
(This article belongs to the Special Issue Focus on Pediatric Infectious Diseases)
Show Figures

Figure 1

14 pages, 3622 KiB  
Article
Environmental DNA Metabarcoding as a Tool for Fast Fish Assessment in Post-Cleanup Activities: Example from Two Urban Lakes in Zagreb, Croatia
by Matej Vucić, Thomas Baudry, Dušan Jelić, Ana Galov, Željko Pavlinec, Lana Jelić, Biljana Janev Hutinec, Göran Klobučar, Goran Slivšek and Frédéric Grandjean
Fishes 2025, 10(8), 375; https://doi.org/10.3390/fishes10080375 - 4 Aug 2025
Viewed by 30
Abstract
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the [...] Read more.
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the 12S rRNA gene. The results indicated that the cleanup efforts were largely successful, as several IAS previously recorded in these lakes were not detected (Ameiurus melas, Lepomis gibbosus, and Hypophthalmichthys spp.). However, some others persisted in low relative abundances, such as grass carp (Ctenopharyngodon idella), topmouth gudgeon (Pseudorasbora parva), and prussian/crucian carp (Carassius sp.). Species composition differed between lakes, with common carp (Cyprinus carpio) dominating Maksimir First Lake, while chub (Squalius cephalus) was prevalent in Maksimir Second Lake. Unexpected eDNA signals from salmonid and exotic species suggest potential input from upstream sources, human activity, or the nearby Zoo Garden. These findings underscore the utility of eDNA metabarcoding in biodiversity monitoring and highlight the need for continuous surveillance and adaptive management strategies to ensure long-term IAS control. Full article
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix
by Tania Elizabeth Velásquez-Chávez, Jorge Sáenz-Mata, Jesús Josafath Quezada-Rivera, Rubén Palacio-Rodríguez, Gisela Muro-Pérez, Alan Joel Servín-Prieto, Mónica Hernández-López, Pablo Preciado-Rangel, María Teresa Salazar-Ramírez, Juan Carlos Ontiveros-Chacón and Cristina García-De la Peña
Microbiol. Res. 2025, 16(8), 177; https://doi.org/10.3390/microbiolres16080177 - 1 Aug 2025
Viewed by 109
Abstract
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition [...] Read more.
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition of the substrate and the gut of E. fetida at three time points (weeks 0, 6, and 12). The V3–V4 region of the 16S rRNA gene was sequenced, and microbial diversity was characterized using QIIME2. Significant differences in alpha diversity (observed features, Shannon index, and phylogenetic diversity) and beta diversity indicated active microbial succession. Proteobacteria, Bacteroidota, and Actinobacteriota were the dominant phyla, with abundances varying across habitats and over time. A significant enrichment of Proteobacteria, Bacteroidota, and the genera Chryseolinea, Flavobacterium, and Sphingomonas was observed in the manure treatments. In contrast, Actinobacteriota, Firmicutes, and the genera Methylobacter, Brevibacillus, Enhygromyxa, and Bacillus, among others, were distinctive of the gut samples and contributed to their dissimilarity from the manure treatments. Simultaneously, the physicochemical parameters indicated progressive substrate stabilization and nutrient enrichment. Notably, the organic matter and total organic carbon contents decreased (from 79.47% to 47.80% and from 46.10% to 27.73%, respectively), whereas the total nitrogen content increased (from 1.70% to 2.23%); these effects reduced the C/N ratio, which is a recognized indicator of maturity, from 27.13 to 12.40. The macronutrient contents also increased, with final values of 1.41% for phosphorus, 1.50% for potassium, 0.89% for magnesium, and 2.81% for calcium. These results demonstrate that vermicomposting modifies microbial communities and enhances substrate quality, supporting its use as a biofertilizer for sustainable agriculture, soil restoration, and agrochemical reduction. Full article
Show Figures

Figure 1

16 pages, 2820 KiB  
Article
AiiA Lactonase Suppresses ETEC Pathogenicity Through 3OC12-HSL Quenching in a Murine Model
by Yang Yang, Ji Shao, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microbiol. Res. 2025, 16(8), 166; https://doi.org/10.3390/microbiolres16080166 - 31 Jul 2025
Viewed by 120
Abstract
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). [...] Read more.
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). In synthetic gut microbiota, 3OC12-HSL selectively augmented E. coli colonization (37.6% 16S rDNA increase at 12 h). Murine studies revealed 3OC12-HSL reduced jejunal villus height (381.5 μm vs. 543.2 μm in controls), elevated serum LPS, D-lactate, and DAO, and altered microbial composition (Firmicutes/Bacteroidetes imbalance). The lactonase AiiA reversed these effects by degrading 3OC12-HSL. It abrogated bacterial growth stimulation (in vitro CFU restored to baseline), normalized microbiota diversity (Shannon index recovered to control levels), suppressed pro-inflammatory cytokines (IL-6/TNF-α reduction), and restored intestinal integrity (villus length: 472.5 μm, 20.5% increase vs. ETEC-infected mice). Our findings establish AiiA as a potent quorum-quenching agent that counteracts ETEC virulence via targeted signal inactivation, highlighting its translational value. Full article
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
Composition and Structure of Gut Microbiota of Wild and Captive Epinephelus morio via 16S rRNA Analysis and Functional Prediction
by Grecia Montalvo-Fernández, Joanna M. Ortiz-Alcantara, Claudia Durruty-Lagunes, Laura Espinosa-Asuar, Mariela Beatriz Reyes-Sosa and María Leticia Arena-Ortiz
Microorganisms 2025, 13(8), 1792; https://doi.org/10.3390/microorganisms13081792 - 31 Jul 2025
Viewed by 189
Abstract
The gut microbiota plays an essential role in the host’s metabolism. Its composition and structure depend on biological and environmental factors. This work was designed to identify the composition and structure of the wild and captive red grouper (Epinephelus morio) microbiota [...] Read more.
The gut microbiota plays an essential role in the host’s metabolism. Its composition and structure depend on biological and environmental factors. This work was designed to identify the composition and structure of the wild and captive red grouper (Epinephelus morio) microbiota and make predictions regarding its metabolic functions. Our hypothesis stated that wild and captive individuals would share the most abundant taxonomic groups, forming a core microbiota, and individuals in captivity might have exclusive taxonomic groups. Metagenomic DNA was extracted from the intestinal contents of wild and captive individuals. The 16S rRNA gene was amplified and sequenced using Illumina pair-end technology. QIIME2 pipeline was used for sequence analysis and alpha and beta diversity assessment. PICRUSt was used to infer metabolic functions. Twenty-nine phyla were identified; the most abundant were Pseudomonadota, Bacillota, Fusobacteriota, and Actinomycetota. The dominant genera were Photobacterium, Vibrio, Cetobacterium, and Escherichia-Shigella. The metabolic prediction analysis suggested that the Epinephelus morio gut microbiota is related to food digestion, the immune system, antioxidant enzymes, antibiotic resistance, and vitamin B12 transport. We concluded that the microbiota of E. morio established in captivity is sensitive to environmental changes such as water pollution, which can cause a decrease in diversity. Full article
(This article belongs to the Special Issue Aquatic Microorganisms and Their Application in Aquaculture)
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 470
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

11 pages, 2215 KiB  
Article
Dysbiosis in the Nasal Mycobiome of Infants Born in the Aftermath of Hurricane Maria
by Ruochen Wang, David de Ángel Solá, Félix E. Rivera-Mariani, Benjamín Bolaños Rosero, Nicolás Rosario Matos and Leyao Wang
Microorganisms 2025, 13(8), 1784; https://doi.org/10.3390/microorganisms13081784 - 31 Jul 2025
Viewed by 397
Abstract
Hurricanes and flooding events substantially elevate indoor fungal spore levels, which have been associated with increased risks of developing childhood asthma and other adverse respiratory outcomes. Although environmental fungal compositions following major hurricanes have been well characterized, the fungal communities within the nasal [...] Read more.
Hurricanes and flooding events substantially elevate indoor fungal spore levels, which have been associated with increased risks of developing childhood asthma and other adverse respiratory outcomes. Although environmental fungal compositions following major hurricanes have been well characterized, the fungal communities within the nasal cavity (i.e., the nasal mycobiome) of exposed individuals remain unexplored. We collected nasal swab samples from infants following Hurricane Maria in San Juan, Puerto Rico, during two periods (March to August 2018 and February to September 2019). We processed a total of 58 samples (26 from the first year and 32 from the second year post-Hurricane Maria) and performed internally transcribed spacer (ITS) rRNA gene sequencing to characterize and compare the infant nasal mycobiome between the two groups. Although alpha-diversity did not differ significantly, beta-diversity analyses revealed significantly different fungal compositions between the two groups (p <0.01). Infants exposed during the first year post-Hurricane Maria had significantly higher abundances of Alternaria, Eutypella, Schizophyllum, and Auricularia, compared to infants from the second year. Alternaria was also more prevalent in the first-year than in the second-year infants (42% vs. 9%, p = 0.01). Our study provides evidence linking early-life hurricane exposures to elevated risks of developing childhood asthma. Full article
(This article belongs to the Special Issue Fungi and Health)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 226
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

15 pages, 3534 KiB  
Article
Detection and Genomic Characteristics of NDM-19- and QnrS11-Producing O101:H5 Escherichia coli Strain Phylogroup A: ST167 from a Poultry Farm in Egypt
by Ahmed M. Soliman, Hazem Ramadan, Toshi Shimamoto, Tetsuya Komatsu, Fumito Maruyama and Tadashi Shimamoto
Microorganisms 2025, 13(8), 1769; https://doi.org/10.3390/microorganisms13081769 - 29 Jul 2025
Viewed by 469
Abstract
This study describes the first complete genomic sequence of an NDM-19 and QnrS11-producing multidrug-resistant (MDR) Escherichia coli isolate collected from a fecal swab from a poultry farm in 2019 in Egypt. The blaNDM-19 was identified by PCR screening and DNA sequencing. The [...] Read more.
This study describes the first complete genomic sequence of an NDM-19 and QnrS11-producing multidrug-resistant (MDR) Escherichia coli isolate collected from a fecal swab from a poultry farm in 2019 in Egypt. The blaNDM-19 was identified by PCR screening and DNA sequencing. The isolate was then subjected to antimicrobial susceptibility testing, conjugation and transformation experiments, and complete genome sequencing. The chromosome of strain M2-13-1 measures 4,738,278 bp and encodes 4557 predicted genes, with an average G + C content of 50.8%. M2-13-1 is classified under ST167, serotype O101:H5, phylogroup A, and shows an MDR phenotype, having minimum inhibitory concentrations (MICs) of 64 mg/L for both meropenem and doripenem. The genes blaNDM-19 and qnrS11 are present on 49,816 bp IncX3 and 113,285 bp IncFII: IncFIB plasmids, respectively. M2-13-1 harbors genes that impart resistance to sulfonamides (sul1), trimethoprim (dfrA14), β-lactams (blaTEM-1B), aminoglycosides (aph(6)-Id, aph(3′)-Ia, aph(3″)-Ib, aac(3)-IV, and aph(4)-Ia), tetracycline (tet(A)), and chloramphenicol (floR). It was susceptible to aztreonam, colistin, fosfomycin, and tigecycline. The genetic context surrounding blaNDM-19 includes ISAba125-IS5-blaNDM-19-bleMBL-trpF-hp1-hp2-IS26. Hierarchical clustering of the core genome MLST (HierCC) indicated M2-13-1 clusters with global ST167 E. coli lineages, showing HC levels of 100 (HC100) core genome allelic differences. Plasmids of the IncX3 group and the insertion sequence (ISAba125) are critical vehicles for the dissemination of blaNDM and its related variants. To our knowledge, this is the first genomic report of a blaNDM-19/IncX3-carrying E. coli isolate of animal origin globally. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Figure 1

16 pages, 3286 KiB  
Article
Poxvirus K3 Orthologs Regulate NF-κB-Dependent Inflammatory Responses by Targeting the PKR–eIF2α Axis in Multiple Species
by Huibin Yu, Mary Eloise L. Fernandez, Chen Peng, Dewi Megawati, Greg Brennan, Loubna Tazi and Stefan Rothenburg
Vaccines 2025, 13(8), 800; https://doi.org/10.3390/vaccines13080800 - 28 Jul 2025
Viewed by 306
Abstract
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by [...] Read more.
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by viral inhibitors remain largely unexplored. This study aimed to characterize the conserved antiviral and inflammatory roles of mammalian PKR orthologs and investigate their modulation by poxviral inhibitors. Methods: Using reporter gene assays and quantitative RT-PCR, we assessed the impact of 17 mammalian PKR orthologs on general translation inhibition, stress-responsive translation, and NF-κB-dependent induction of target genes. Congenic human and rabbit cell lines infected with a myxoma virus strain lacking PKR inhibitors were used to compare the effects of human and rabbit PKR on viral replication and inflammatory responses. Site-directed mutagenesis was employed to determine key residues responsible for differential sensitivity to the viral inhibitor M156. Results: All 17 mammalian PKR orthologs significantly inhibited general translation, strongly activated stress-responsive ATF4 translation, and robustly induced NF-κB target genes. Inhibition of these responses was specifically mediated by poxviral K3 orthologs that effectively suppressed PKR activation. Comparative analyses showed human and rabbit PKRs similarly inhibited virus replication and induced cytokine transcripts. Amino acid swaps between rabbit PKRs reversed their sensitivity to viral inhibitor M156 and NF-κB activation. Conclusions: Our data show that the tested PKR orthologs exhibit conserved dual antiviral and inflammatory regulatory roles, which can be antagonized by poxviral K3 orthologs that exploit eIF2α mimicry to modulate the PKR-NF-κB axis. Full article
(This article belongs to the Special Issue Antiviral Immunity and Vaccine Development)
Show Figures

Figure 1

20 pages, 5747 KiB  
Article
Functional Study of the BMP Signaling Pathway in Appendage Regeneration of Exopalaemon carinicauda
by Chaofan Xing, Yong Li, Zhenxiang Chen, Qingyuan Hu, Jiayi Sun, Huanyu Chen, Qi Zou, Yingying Li, Fei Yu, Chao Wang, Panpan Wang and Xin Shen
Biology 2025, 14(8), 940; https://doi.org/10.3390/biology14080940 - 25 Jul 2025
Viewed by 407
Abstract
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages [...] Read more.
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages of appendage regeneration in individuals of the same family of E. carinicauda. A total of 6460 differentially expressed genes (DEGs) were identified between the samples collected at 0 h post-autotomy (D0) and those collected at 18 h post-autotomy (D18h). Additionally, 7740 DEGs were identified between D0 and 14 d post-autotomy (D14d), with 3382 DEGs identified between D18h and D14d. Among them, differentially expressed genes such as EcR, RXR, BMP1, and Smad4 are related to muscle growth or molting and may be involved in the regeneration process. qRT-PCR results revealed that EcBMPR2 was expressed at relatively high levels in the gonad and ventral nerve cord tissues and that the highest level of expression was detected in the regenerative basal tissue at 24 h post-autotomy. In situ hybridization results indicated strong signals of this gene in the cells at the wound site at 72 h post-autotomy. Following knockdown of EcBMPR2, the expression levels of both EcBMPR1B and EcSmad1 were significantly downregulated, and long-term interference with the EcBMPR2 gene resulted in a significantly slower appendage regeneration process compared to the control group. When the downstream transcription factor EcSmad1 was knocked down, the two receptor genes EcBMPR2 and EcBMPR1B were downregulated, whereas EcBMP7 was upregulated. After inhibiting the BMP signaling pathway, the degree of cell aggregation at the autotomy site in the experimental group was significantly lower than that in the control group, the wound healing rate was delayed, and the blastema regeneration time was prolonged from 5 d to 7 d. Collectively, these results indicate that the BMP signaling pathway plays a critical role in the early stages of appendage regeneration in E. carinicauda. This study provides important theoretical insights for understanding limb regeneration in crustaceans. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

19 pages, 6698 KiB  
Article
Characterization of the Four Rosa L. Species from Kazakhstan Based on Complete Plastomes and Nuclear Ribosomal Internal Transcribed Spacer (ITS) Sequences
by Moldir Yermagambetova, Akzhunis Imanbayeva, Margarita Ishmuratova, Aidar Sumbembayev and Shyryn Almerekova
Genes 2025, 16(8), 852; https://doi.org/10.3390/genes16080852 - 22 Jul 2025
Viewed by 324
Abstract
Background: Rosa L. is an economically significant genus with species that are notable for their rich content of phenolic compounds. Despite its importance, the taxonomy of Rosa remains complex and unresolved. Methods: We sequenced, assembled, and performed comparative analyses of the complete plastomes [...] Read more.
Background: Rosa L. is an economically significant genus with species that are notable for their rich content of phenolic compounds. Despite its importance, the taxonomy of Rosa remains complex and unresolved. Methods: We sequenced, assembled, and performed comparative analyses of the complete plastomes of four Rosa species: R. acicularis, R. iliensis, R. laxa, and R. spinosissima. In addition to the plastome, we sequenced the nuclear ribosomal internal transcribed spacer (ITS). Results: Plastomes ranged in size from 157,148 bp (R. iliensis) to 157,346 bp (R. laxa). In each plastome, 136 genes were annotated, comprising 90 protein-coding, 38 tRNA, and eight rRNA genes. A total of 905 SSRs were identified, ranging from 224 (R. acicularis) to 229 in R. spinosissima. Nine highly variable regions were detected, including two coding genes (rps16 and ycf1) and seven intergenic spacers (ycf3-trnS(GGA), trnT(UGU)-trnL(UAA), rpl14-rpl16, trnR(UCU)-atpA, trnD(GUC), trnG(UCC)-trnfM(CAU), and psbE-petL). Maximum Likelihood (ML) phylogenetic analyses based on the complete plastome and ycf1 gene datasets consistently resolved the Rosa species into three major clades, with strong bootstrap support. In contrast, the ML tree based on ITS resolved species into four clades but showed lower bootstrap values, indicating reduced resolution compared to plastid datasets. Conclusions: Our findings underscore the value of plastome data in resolving phylogenetic relationships within the genus Rosa. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop