Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (704)

Search Parameters:
Keywords = Differential Pulse Voltammetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4040 KiB  
Review
Progress in Electrode Materials for the Detection of Nitrofurazone and Nitrofurantoin
by Mohammad Aslam, Saood Ali, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(8), 482; https://doi.org/10.3390/bios15080482 - 24 Jul 2025
Viewed by 111
Abstract
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and [...] Read more.
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and human health. Thus, various advanced materials such as graphene, carbon nanotubes, metal oxides, MXenes, layered double hydroxides (LDHs), polymers, metal–organic frameworks (MOFs), metal-based composites, etc. are widely used for the development of nitrofurazone and nitrofurantoin sensors. This review article summarizes the progress in the fabrication of electrode materials for nitrofurazone and nitrofurantoin sensing applications. The performance of the various electrode materials for nitrofurazone and nitrofurantoin monitoring are discussed. Various electrochemical sensing techniques such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), amperometry (AMP), cyclic voltammetry (CV), and chronoamperometry (CA) are discussed for the determination of NFZ and NFT. It is observed that DPV, SWV, and AMP/CA are more sensitive techniques compared to LSV and CV. The challenges, future perspectives, and limitations of NFZ and NFT sensors are also discussed. It is believed that present article may be useful for electrochemists as well materials scientists who are working to design electrode materials for electrochemical sensing applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

19 pages, 4583 KiB  
Article
Glutathione and Magnetic Nanoparticle-Modified Nanochannels for the Detection of Cadmium (II) in Cereal Grains
by Wei Hu, Xinyue Xiang, Donglei Jiang, Na Zhang and Lifeng Wang
Magnetochemistry 2025, 11(7), 61; https://doi.org/10.3390/magnetochemistry11070061 - 21 Jul 2025
Viewed by 183
Abstract
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane [...] Read more.
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane with a composite of glutathione (GSH) and ferric oxide nanoparticles (Fe3O4), denoted as GSH@Fe3O4. This modified membrane was then integrated with a screen-printed carbon electrode (SPCE) to construct the GSH@Fe3O4/GSH@AAO/SPCE sensing platform. The performance of the sensor was evaluated using differential pulse voltammetry (DPV), which demonstrated a strong linear correlation between the peak current response and the concentration of Cd2+ in the range of 5–120 μg/L. The calibration equation was IDPV(μA) = −0.31 + 0.98·CCd2+(μg/L), with an excellent correlation coefficient (R2 = 0.999, n = 3). The calculated limit of detection (LOD) was as low as 0.1 μg/L, indicating the high sensitivity of the system. These results confirm the successful construction of the GSH@Fe3O4/GSH@AAO/SPCE portable nanochannel sensor. This innovative sensing platform provides a rapid, sensitive, and user-friendly approach for the on-site monitoring of heavy metal contamination in agricultural products, especially grains. Full article
Show Figures

Figure 1

14 pages, 11910 KiB  
Article
Electrochemical Immunosensor Using COOH-Functionalized 3D Graphene Electrodes for Sensitive Detection of Tau-441 Protein
by Sophia Nazir, Muhsin Dogan, Yinghui Wei and Genhua Pan
Biosensors 2025, 15(7), 465; https://doi.org/10.3390/bios15070465 - 19 Jul 2025
Viewed by 370
Abstract
Early diagnosis of Alzheimer’s disease (AD) is essential for effective treatment; however current diagnostic methods are often complex, costly, and unsuitable for point-of-care testing. Graphene-based biosensors offer an alternative due to their affordability, versatility, and high conductivity. However, graphene’s conductivity can be compromised [...] Read more.
Early diagnosis of Alzheimer’s disease (AD) is essential for effective treatment; however current diagnostic methods are often complex, costly, and unsuitable for point-of-care testing. Graphene-based biosensors offer an alternative due to their affordability, versatility, and high conductivity. However, graphene’s conductivity can be compromised when its carbon lattice is oxidized to introduce functional groups for biomolecule immobilization. This study addresses this challenge by developing an electrochemical immunosensor using carboxyl-modified commercial graphene foam (COOH-GF) electrodes. The conductivity of graphene is preserved by enabling efficient COOH modification through π–π non-covalent interactions, while antibody immobilization is optimized via EDC-NHS carbodiimide chemistry. The immunosensor detects tau-441, an AD biomarker, using differential pulse voltammetry (DPV), achieving a detection range of 1 fM–1 nM, with a limit of detection (LOD) of 0.14 fM both in PBS and human serum. It demonstrates high selectivity against other AD-related proteins, including tau-217, tau-181, amyloid beta (Aβ1-40 and Aβ1-42), and 1% BSA. These findings underscore its potential as a highly sensitive, cost-effective tool for early AD diagnosis. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

13 pages, 1647 KiB  
Article
Electrochemical Sensing of Hg2+ Ions Using an SWNTs/Ag@ZnBDC Composite with Ultra-Low Detection Limit
by Gajanan A. Bodkhe, Bhavna Hedau, Mayuri S. More, Myunghee Kim and Mahendra D. Shirsat
Chemosensors 2025, 13(7), 259; https://doi.org/10.3390/chemosensors13070259 - 16 Jul 2025
Viewed by 301
Abstract
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag [...] Read more.
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag nanoparticles and SWNTs without disrupting the crystalline structure of ZnBDC. Meanwhile, field-emission scanning electron microscopy and energy-dispersive spectroscopy mapping revealed a uniform elemental distribution. Thermogravimetric analysis indicated enhanced thermal stability. Electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) demonstrated improved charge transfer properties. Electrochemical sensing investigations using differential pulse voltammetry revealed that the SWNTs/Ag@ZnBDC-modified glassy carbon electrode exhibited high selectivity toward Hg2+ ions over other metal ions (Cd2+, Co2+, Cr3+, Fe3+, and Zn2+), with optimal performance at pH 4. The sensor displayed a linear response in the concentration range of 0.1–1.0 nM (R2 = 0.9908), with a calculated limit of detection of 0.102 nM, slightly close to the lowest tested point, confirming its high sensitivity for ultra-trace Hg2+ detection. The outstanding sensitivity, selectivity, and reproducibility underscore the potential of SWNTs/Ag@ZnBDC as a promising electrochemical platform for detecting trace levels of Hg2+ in environmental monitoring. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

13 pages, 1563 KiB  
Article
A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid
by Yashuang Hei, Lisi Ba, Xingwei Shi, Huanhuan Guo, Sisi Wen, Bingxiao Zheng, Wenjie Gu and Zhiju Zhao
Molecules 2025, 30(14), 2980; https://doi.org/10.3390/molecules30142980 - 15 Jul 2025
Viewed by 254
Abstract
Ascorbic acid (AA) is a vital biomarker for human metabolic processes, and many diseases are strongly linked to aberrant variations in its content. It is crucial to detect the levels of AA with sensitivity, speed, and accuracy. In this work, three-dimensional honeycomb-like porous [...] Read more.
Ascorbic acid (AA) is a vital biomarker for human metabolic processes, and many diseases are strongly linked to aberrant variations in its content. It is crucial to detect the levels of AA with sensitivity, speed, and accuracy. In this work, three-dimensional honeycomb-like porous carbons derived from discarded walnut (green) husks (DWGH-HCPCs) were synthesized using a process involving hydrothermal treatment, freeze-drying, and carbonization. The DWGH-HCPCs, with a high specific surface area of 419.72 m2 g−1, large pore volume of 0.35 cm3 g−1 and high density of defective sites, are used to fabricate the electrochemical sensor for the detection of AA. The electrochemical performance of the DWGH-HCPC-modified glassy carbon electrode (GCE) (DWGH-HCPC/GCE) was investigated through chronoamperometry, differential pulse voltammetry, and cyclic voltammetry. Compared with the GCE, the DWGH-HCPC/GCE exhibits higher sensitivities (34.7 μA mM−1 and 22.7 μA mM−1), a wider linear range (10–1040 μM and 1040–3380 μM), and a lower detection limit (0.26 μM) for AA detection. Specifically, the real sample concentrations of AA in beverages and artificial urine were successfully identified by DWGH-HCPC/GCE. Additionally, the DWGH-HCPC/GCE demonstrated great feasibility in the simultaneous detection of AA, dopamine (DA), and uric acid (UA). Therefore, as a green, eco-friendly, and low-cost electrode modifier, DWGH-HCPCs have broad prospects in the development of electrochemical sensing platforms for food and medical applications. Full article
Show Figures

Figure 1

16 pages, 3149 KiB  
Article
Electrochemical Sensing of Dopamine Neurotransmitter by Deep Eutectic Solvent–Carbon Black–Crosslinked Chitosan Films: Charge Transfer Kinetic Studies and Biological Sample Analysis
by Alencastro Gabriel Ribeiro Lopes, Rafael Matias Silva, Orlando Fatibello-Filho and Tiago Almeida Silva
Chemosensors 2025, 13(7), 254; https://doi.org/10.3390/chemosensors13070254 - 12 Jul 2025
Viewed by 338
Abstract
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely [...] Read more.
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely determine the DA levels in urine samples, a simple and low-cost sensor is proposed in this work. The proposed sensor design is based on crosslinked chitosan films combining carbon black (CB) and deep eutectic solvents (DESs), incorporated onto the surface of a glassy carbon electrode (GCE). Fourier Transform Infrared Spectroscopy (FT-IR) was applied to characterize the produced DESs and their precursors, while the films were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor modified with CB and DES–ethaline (DES (ETHA)-CB/GCE) showed a significantly enhanced analytical signal for DA using differential pulse voltammetry under the optimized working conditions. Moreover, a better heterogeneous electron transfer rate constant (k0) was obtained, about 45 times higher than that of the bare GCE. The proposed sensor achieved a linear response range of 0.498 to 26.8 µmol L−1 and limits of detection and quantification of 80.7 and 269 nmol L−1, respectively. Moreover, the sensor was successfully applied in the quantification of DA in the synthetic urine samples, with recovery results close to 100%. Furthermore, the sensor presented good precision, as shown from the repeatability tests. The presented method to electrochemically detect DA has proven to be efficient and simple compared to the conventional methods commonly reported. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 365
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

15 pages, 3241 KiB  
Article
Cu@Pt Core–Shell Nanostructures for Ammonia Oxidation: Bridging Electrocatalysis and Electrochemical Sensing
by Bommireddy Naveen and Sang-Wha Lee
Inorganics 2025, 13(7), 241; https://doi.org/10.3390/inorganics13070241 - 11 Jul 2025
Viewed by 314
Abstract
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). [...] Read more.
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). The designed electrocatalyst exhibited high catalytic activity towards AOR, achieving high current density at very low potentials (−0.3 V vs. Ag/AgCl), with a lower Tafel slope of 16.4 mV/dec. The catalyst also demonstrated high electrochemical stability over 1000 potential cycles with a regeneration efficiency of 78%. In addition to catalysis, Cu@Pt/PGE facilitated very sensitive and selective electrochemical detection of ammonia nitrogen by differential pulse voltammetry, providing an extensive linear range (1 μM to 1 mM) and a low detection limit of 0.78 μM. The dual functionality of Cu@Pt highlights its potential in enhancing ammonia-based fuel cells and monitoring ammonia pollution in aquatic environments, thereby contributing to the development of sustainable energy and environmental technologies. Full article
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Reduced Graphene Oxide/β-Cyclodextrin Nanocomposite for the Electrochemical Detection of Nitrofurantoin
by Al Amin, Gajapaneni Venkata Prasad, Venkatachalam Vinothkumar, Seung Joo Jang, Da Eun Oh and Tae Hyun Kim
Chemosensors 2025, 13(7), 247; https://doi.org/10.3390/chemosensors13070247 - 10 Jul 2025
Viewed by 403
Abstract
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman [...] Read more.
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Moreover, the electrochemical behavior of the modified electrodes was thoroughly examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with the rGO/β-CD-modified glassy carbon electrode (GCE) demonstrating superior electron transfer capability. Key experimental parameters, including scan rate, material loading, and solution pH, were systematically optimized. After optimizing the experimental conditions, the modified sensor showed excellent electrocatalytic performance and selectivity toward NFT, achieving a broad linear detection range from 0.5 to 120 μM, a low limit of detection (LOD) of 0.048 μM, and a high sensitivity of 12.1 µA µM–1 cm–2 using differential pulse voltammetry (DPV). Furthermore, the fabricated electrode exhibited good anti-interference ability, stability, precision, and real-time applicability for NFT detection in a wastewater sample. These results highlight the potential of the rGO/β-CD nanocomposite as a high-performance platform for electrochemical sensing applications. Full article
Show Figures

Figure 1

15 pages, 1611 KiB  
Article
Angiotensin-Converting Enzyme Inhibitory Activity of Selected Phenolic Acids, Flavonoids, Their O-Glucosides, and Low-Molecular-Weight Phenolic Metabolites in Relation to Their Oxidation Potentials
by Danuta Zielińska, Małgorzata Starowicz, Małgorzata Wronkowska and Henryk Zieliński
Metabolites 2025, 15(7), 443; https://doi.org/10.3390/metabo15070443 - 1 Jul 2025
Viewed by 256
Abstract
Background/Objectives: In this study, the angiotensin-converting enzyme (ACE) inhibitory activity of selected phenolic acids, flavonoids, their O-glucosides, and low-molecular-weight phenolic metabolites was addressed to show their importance against blood hypertension. Methods: A fluorescence assay was used for the determination of [...] Read more.
Background/Objectives: In this study, the angiotensin-converting enzyme (ACE) inhibitory activity of selected phenolic acids, flavonoids, their O-glucosides, and low-molecular-weight phenolic metabolites was addressed to show their importance against blood hypertension. Methods: A fluorescence assay was used for the determination of the ACE inhibitory activity, whereas the first anodic peak oxidation potential (Epa) was provided by the differential pulse voltammetry (DPV) method. The relationship between the ACE inhibitory activity and Epa was evaluated. Results: Phenolic acids showed a very low ACE inhibitory activity, and their rank was chlorogenic acid > p-coumaric acid > sinapic acid > gentisic acid > ferulic acid > syringic acid > vanillic acid > protocatechuic acid > caffeic acid. The low-molecular-weight phenolic metabolites of flavonoids showed a moderate ACE inhibitory activity. In contrast, flavonoid aglicones had the highest ACE inhibitory activity, and the order was luteolin > quercetin > kaempferol > cyanidin > delphinidin > pelargonin > naringenin. A lower inhibition activity was noted for quercetin-3-O-glucoside, luteolin-4′-O-glucosides, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucosides, whereas a higher ACE inhibition activity was observed for 7-O-glucosides of luteolin, apigenin, and kaempferol. A lack of correlation was found between the IC50 of phenolic acids, low-molecular-weight phenolic metabolites, and their Epa values. In contrast, weak positive correlations were found between the IC50 of aglicons, 3-O-glucosides, 7-O-glucosides, and their Epa values provided by the DPV (r = 0.61, r = 0.66 and r = 0.88, respectively). Conclusions: This study expands our knowledge of the ACE inhibitory activity of phenolic compounds. Full article
(This article belongs to the Special Issue Flavonoids: Novel Therapeutic Potential for Chronic Diseases)
Show Figures

Figure 1

14 pages, 1587 KiB  
Article
Electrochemical Disposable Printed Aptasensor for Sensitive Ciprofloxacin Monitoring in Milk Samples
by Daniela Nunes da Silva, Thaís Cristina de Oliveira Cândido and Arnaldo César Pereira
Chemosensors 2025, 13(7), 235; https://doi.org/10.3390/chemosensors13070235 - 28 Jun 2025
Viewed by 407
Abstract
An electrochemical aptasensor was developed for the rapid and sensitive detection of ciprofloxacin (CPX) in milk samples. The device was fabricated on a polyethylene terephthalate (PET) substrate using a screen-printing technique with carbon-based conductive ink. Gold nanoparticles (AuNPs) were incorporated to enhance aptamer [...] Read more.
An electrochemical aptasensor was developed for the rapid and sensitive detection of ciprofloxacin (CPX) in milk samples. The device was fabricated on a polyethylene terephthalate (PET) substrate using a screen-printing technique with carbon-based conductive ink. Gold nanoparticles (AuNPs) were incorporated to enhance aptamer immobilization and facilitate electron transfer at the electrode surface. The sensor’s analytical performance was optimized by adjusting key parameters, including AuNP volume, DNA aptamer concentration, and incubation times for both the aptamer and the blocking agent (6-mercapto-1-hexanol, MCH). Differential pulse voltammetry (DPV) measurements demonstrated a linear response ranging from 10 to 50 nmol L−1 and a low detection limit of 3.0 nmol L−1. When applied to real milk samples, the method achieved high recovery rates (101.4–106.7%) with a relative standard deviation below 3.1%, confirming its robustness. This disposable and cost-effective aptasensor represents a promising tool for food safety monitoring, with potential for adaptation to detect other pharmaceutical residues in dairy products. Full article
Show Figures

Figure 1

13 pages, 6629 KiB  
Article
A Disposable Dopamine Sensor Based on Oxidized Cellulose Nanofibril-Modified SPCE
by Feriel Boussema, Sondes Bourigua, Zayneb Jebali, Hatem Majdoub, Nicole Jaffrezic-Renault and Hamdi Ben Halima
Micromachines 2025, 16(7), 743; https://doi.org/10.3390/mi16070743 - 25 Jun 2025
Viewed by 359
Abstract
Dopamine is a major catecholamine neurotransmitter that plays an essential role in the functioning of the human central nervous system. Imbalances in dopamine levels are associated with neurological disorders and depression. Thus, measuring the concentration of DA in human body fluids is significantly [...] Read more.
Dopamine is a major catecholamine neurotransmitter that plays an essential role in the functioning of the human central nervous system. Imbalances in dopamine levels are associated with neurological disorders and depression. Thus, measuring the concentration of DA in human body fluids is significantly important. In this work, TEMPO-oxidized cellulose nanofibrils (TOCNFs) extracted from marram grass (Ammophilia arenaria), harvested in the central western part of Tunisia, were utilized to modify disposable screen-printed carbon electrodes (SPCEs) for the sensitive detection of dopamine in biological fluids. Differential pulse voltammetry (DPV) measurements displayed a sensitivity of 7.92 µA/µM and a detection limit of 10 nM. The disposable TOCNF-modified SPCE presents a charge transfer coefficient, α, comparable to that of a TOCNF/graphene/AgNP composite-modified GCE. Moreover, it exhibits good repeatability (RSD = 1.9%), good reproducibility (RSD = 2.3%), and appreciable storage stability (91% of its initial response after 3 weeks). The prepared disposable sensor showed satisfactory recovery of dopamine in human urine samples. Full article
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
A Carbon Nanofiber Electrochemical Sensor Made of FeMn@C for the Rapid Detection of Tert-Butyl Hydroquinone in Edible Oil
by Yan Xiao, Yi Zhang, Zhigui He, Liwen Zhang, Tongfei Wang, Tingfan Tang, Jiaxing Chen and Hao Cheng
Molecules 2025, 30(13), 2725; https://doi.org/10.3390/molecules30132725 - 25 Jun 2025
Viewed by 298
Abstract
Overuse of tert-butylhydroquinone (TBHQ) as a food antioxidant has the potential to pollute the environment and threaten human health. Therefore, it is imperative to develop precise and rapid methods to detect TBHQ in food products. In this study, Fe- and Mn-doped Prussian blue [...] Read more.
Overuse of tert-butylhydroquinone (TBHQ) as a food antioxidant has the potential to pollute the environment and threaten human health. Therefore, it is imperative to develop precise and rapid methods to detect TBHQ in food products. In this study, Fe- and Mn-doped Prussian blue analogs (FeMn-PBAs) were prepared by co-precipitation, FeMn-PBAs/PAN was prepared by electrostatic spinning, and a novel FeMn@C/CNFs composite was prepared by carbonization in nitrogen. Bimetallic FeMn doping has been shown to reduce vacancy defects and enhance the structural stability of PBA. Furthermore, electrostatic spinning has been demonstrated to reduce the agglomeration of PBA nanoparticles, which are electrode-modifying materials with high stability and good electrical conductivity. The morphological and structural characteristics of the FeMn@C/CNF composites were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical behavior of tert-butyl hydroquinone in FeMn@C/CNFs was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronocoulometry (CC). The results demonstrate that the sensor exhibits excellent repeatability, reproducibility, and anti-interference capabilities. The prepared electrochemical sensor can be effectively utilized for the detection of TBHQ in food samples such as soybean and peanut oil samples, proving its strong potential for practical applications. Full article
(This article belongs to the Special Issue Advances in Food Analytical Methods)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 543
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

19 pages, 5722 KiB  
Article
Comparing Operational Approaches (Spectrophotometric, Electroanalytic and Chromatographic) to Quantify the Concentration of Emerging Contaminants: The Limit of Detection, the Uncertainty of Measurement, Applicability and Open Problems
by Marconi Sandro Franco de Oliveira, Jorge Leandro Aquino de Queiroz, Danyelle Medeiros de Araújo, Mayra Kerolly Sales Monteiro, Karen Giovanna Duarte Magalhaes, Carlos Alberto Martínez-Huitle and Elisama Vieira dos Santos
Coatings 2025, 15(6), 719; https://doi.org/10.3390/coatings15060719 - 14 Jun 2025
Viewed by 454
Abstract
In this study, a boron-doped diamond (BDD) sensor was used to study the electroanalytical behavior of emerging contaminants (ECs), such as caffeine, paracetamol and methyl orange. BDD shows strong resolving power for the superimposed voltammetric response of ECs in well-resolved peaks with increased [...] Read more.
In this study, a boron-doped diamond (BDD) sensor was used to study the electroanalytical behavior of emerging contaminants (ECs), such as caffeine, paracetamol and methyl orange. BDD shows strong resolving power for the superimposed voltammetric response of ECs in well-resolved peaks with increased peak current. Differential pulse voltammetry, which is an electroanalytical technique, was compared with two reference techniques including absorption spectrophotometry in the UV-vis region and high-performance liquid chromatography (HPLC) in the detection and quantification of ECs. The results obtained were satisfactory, as the complete removal of ECs was achieved in all applied processes. The detection limits were 0.69 mg L−1, 0.84 mg L−1 and 0.46 mg L−1 for CAF, PAR and MO, respectively. The comparison of electroanalysis results with those obtained by UV-vis and HPLC established and confirmed the potential applicability of the technique for determining CAF, PAR and MO analytes in synthetic effluents and environmental water samples (tap water, groundwater and lagoon water). The electrochemical approach can therefore be highlighted for its low consumption of reagents, ease of operation, time of analysis and excellent precision and accuracy, because these are characteristics that enable the use of this technique as another means of determining analytes in effluents. Full article
(This article belongs to the Special Issue Functional Coatings in Electrochemistry and Electrocatalysis)
Show Figures

Graphical abstract

Back to TopTop