Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = Differential Evolution (DE) optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7946 KiB  
Article
Service Composition Optimization Method for Sewing Machine Cases Based on an Improved Multi-Objective Artificial Hummingbird Algorithm
by Gan Shi, Shanhui Liu, Keqiang Shi, Langze Zhu, Zhenjie Gao and Jiayue Zhang
Processes 2025, 13(8), 2433; https://doi.org/10.3390/pr13082433 - 31 Jul 2025
Viewed by 86
Abstract
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure [...] Read more.
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure and production process of sewing machine cases are analyzed; a framework for service composition optimization in the sewing machine cases manufacturing service platform is established; the required manufacturing resource service composition is determined; and a dual-objective service composition optimization mathematical model that considers Quality of Service (QoS) indicators and flexibility indicators is constructed. Opposition-based learning strategies, roulette wheel selection strategies, and improved differential evolution strategies are embedded in the multi-objective artificial hummingbird algorithm, and the improved artificial hummingbird algorithm (ORAHA_DE) is used to solve the sewing machine cases manufacturing service composition optimization model. The experimental results show the effectiveness and superiority of this composition optimization method in solving the sewing machine cases manufacturing composition optimization problem while avoiding entrapment in a local optimum during the solution process, thereby achieving the composition optimization of sewing machine cases collaborative manufacturing services. Full article
Show Figures

Figure 1

46 pages, 125285 KiB  
Article
ROS-Based Autonomous Driving System with Enhanced Path Planning Node Validated in Chicane Scenarios
by Mohamed Reda, Ahmed Onsy, Amira Y. Haikal and Ali Ghanbari
Actuators 2025, 14(8), 375; https://doi.org/10.3390/act14080375 - 27 Jul 2025
Viewed by 169
Abstract
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that [...] Read more.
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that supports the modular development and integration of these layers. Among them, the path-planning and control layers remain particularly challenging due to several limitations. Classical path planners often struggle with non-smooth trajectories and high computational demands. Meta-heuristic optimization algorithms have demonstrated strong theoretical potential in path planning; however, they are rarely implemented in real-time ROS-based systems due to integration challenges. Similarly, traditional PID controllers require manual tuning and are unable to adapt to system disturbances. This paper proposes a ROS-based ADS architecture composed of eight integrated nodes, designed to address these limitations. The path-planning node leverages a meta-heuristic optimization framework with a cost function that evaluates path feasibility using occupancy grids from the Hector SLAM and obstacle clusters detected through the DBSCAN algorithm. A dynamic goal-allocation strategy is introduced based on the LiDAR range and spatial boundaries to enhance planning flexibility. In the control layer, a modified Pure Pursuit algorithm is employed to translate target positions into velocity commands based on the drift angle. Additionally, an adaptive PID controller is tuned in real time using the Differential Evolution (DE) algorithm, ensuring robust speed regulation in the presence of external disturbances. The proposed system is practically validated on a four-wheel differential drive robot across six scenarios. Experimental results demonstrate that the proposed planner significantly outperforms state-of-the-art methods, ranking first in the Friedman test with a significance level less than 0.05, confirming the effectiveness of the proposed architecture. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

26 pages, 4750 KiB  
Article
Service Composition and Optimal Selection for Industrial Software Integration with QoS and Availability
by Yangzhen Cao, Shanhui Liu, Chaoyang Li, Hongen Yang and Yuanyang Wang
Appl. Sci. 2025, 15(14), 7754; https://doi.org/10.3390/app15147754 - 10 Jul 2025
Viewed by 205
Abstract
To address the growing demand for industrial software in the digital transformation of small and medium-sized enterprises (SMEs) in the manufacturing sector, and to ensure the stable integration and operation of multi-source heterogeneous industrial software under complex conditions—such as heterogeneous compatibility, component dependencies, [...] Read more.
To address the growing demand for industrial software in the digital transformation of small and medium-sized enterprises (SMEs) in the manufacturing sector, and to ensure the stable integration and operation of multi-source heterogeneous industrial software under complex conditions—such as heterogeneous compatibility, component dependencies, and uncertainty disturbances—this study established a comprehensive evaluation index system for service composition and optimal selection (SCOS). The system incorporated key criteria including service time, service cost, service reputation, service delivery quality, and availability. Based on this, a bi-objective SCOS model was established with the goal of maximizing both quality of service (QoS) and availability. To efficiently solve the proposed model, a hybrid enhanced multi-objective Gray Wolf Optimizer (HEMOGWO) was developed. This algorithm integrated Tent chaotic mapping and a Levy flight-enhanced differential evolution (DE) strategy. Extensive experiments were conducted, including performance evaluation on 17 benchmark functions and case studies involving nine industrial software integration scenarios of varying scales. Comparative results against state-of-the-art, multi-objective, optimization algorithms—such as MOGWO, MOEA/D_DE, MOPSO, and NSGA-III—demonstrate the effectiveness and feasibility of the proposed approach. Full article
Show Figures

Figure 1

50 pages, 23293 KiB  
Article
Optimal Dimensional Synthesis of Ackermann and Watt-I Six-Bar Steering Mechanisms for Two-Axle Four-Wheeled Vehicles
by Yaw-Hong Kang, Da-Chen Pang and Dong-Han Zheng
Machines 2025, 13(7), 589; https://doi.org/10.3390/machines13070589 - 7 Jul 2025
Viewed by 245
Abstract
This study investigates the dimensional synthesis of steering mechanisms for front-wheel-drive, two-axle, four-wheeled vehicles using two metaheuristic optimization algorithms: Differential Evolution with golden ratio (DE-gr) and Improved Particle Swarm Optimization (IPSO). The vehicle under consideration has a track-to-wheelbase ratio of 0.5 and an [...] Read more.
This study investigates the dimensional synthesis of steering mechanisms for front-wheel-drive, two-axle, four-wheeled vehicles using two metaheuristic optimization algorithms: Differential Evolution with golden ratio (DE-gr) and Improved Particle Swarm Optimization (IPSO). The vehicle under consideration has a track-to-wheelbase ratio of 0.5 and an inner wheel steering angle of 70 degrees. The mechanisms synthesized include the Ackermann steering mechanism and two variants (Type I and Type II) of the Watt-I six-bar steering mechanisms, also known as central-lever steering mechanisms. To ensure accurate steering and minimize tire wear during cornering, adherence to the Ackermann steering condition is enforced. The objective function combines the mean squared structural error at selected steering positions with a penalty term for violations of the Grashoff inequality constraint. Each optimization run involved 100 or 200 iterations, with numerical experiments repeated 100 times to ensure robustness. Kinematic simulations were conducted in ADAMS v2015 to visualize and validate the synthesized mechanisms. Performance was evaluated based on maximum structural error (steering accuracy) and mechanical advantage (transmission efficiency). The results indicate that the optimized Watt-I six-bar steering mechanisms outperform the Ackermann mechanism in terms of steering accuracy. Among the Watt-I variants, the Type II designs demonstrated superior performance and convergence precision compared to the Type I designs, as well as improved results compared to prior studies. Additionally, the optimal Type I-2 and Type II-2 mechanisms consist of two symmetric Grashof mechanisms, can be classified as non-Ackermann-like steering mechanisms. Both optimization methods proved easy to implement and showed reliable, efficient convergence. The DE-gr algorithm exhibited slightly superior overall performance, achieving optimal solutions in seven cases compared to four for the IPSO method. Full article
(This article belongs to the Special Issue The Kinematics and Dynamics of Mechanisms and Robots)
Show Figures

Figure 1

26 pages, 10064 KiB  
Article
TCDE: Differential Evolution for Topographical Contour-Based Prediction to Solve Multimodal Optimization Problems
by Zhen Cheng, Yun Zhang, Caifu Fan, Xingwei Gao, Haohan Jia and Lei Jiang
Appl. Sci. 2025, 15(13), 7557; https://doi.org/10.3390/app15137557 - 5 Jul 2025
Viewed by 290
Abstract
Multimodal optimization problems represent a category of complex optimization challenges characterized by the presence of multiple global optimal solutions. Addressing these problems requires an algorithm that can not only efficiently locate and identify as many peaks as possible but also pinpoint the precise [...] Read more.
Multimodal optimization problems represent a category of complex optimization challenges characterized by the presence of multiple global optimal solutions. Addressing these problems requires an algorithm that can not only efficiently locate and identify as many peaks as possible but also pinpoint the precise coordinates of these peaks with a high degree of accuracy. Evolutionary algorithms are frequently employed to tackle multimodal optimization problems, and their heuristic approach often leads to the high-probability discarding of suboptimal individuals generated during the evolutionary process. If all individuals are utilized to depict the contours of the problem space, the contours will be depicted increasingly accurately as the algorithm iterates. By optimizing in this way, the results will become increasingly accurate. Therefore, in this paper, a topographical-contour-based differential evolution (TCDE) method is introduced to address multimodal optimization problems. The method initially applies DE for terrain exploration, followed by the construction of terrain contours to obtain more accurate landform representation, and it finally employs a niching search to investigate the landforms for optimal peaks. Experiments were conducted on a set of eight widely recognized benchmark functions with 15 excellent optimization algorithms, including both DE and non-DE multimodal optimization approaches. The outcomes of these experiments conclusively demonstrate the superior performance of the TCDE algorithm over its counterparts. Full article
(This article belongs to the Special Issue Machine Learning and Soft Computing: Current Trends and Applications)
Show Figures

Figure 1

41 pages, 883 KiB  
Article
Dependent-Chance Goal Programming for Sustainable Supply Chain Design: A Reinforcement Learning-Enhanced Salp Swarm Approach
by Yassine Boutmir, Rachid Bannari, Achraf Touil, Mouhsene Fri and Othmane Benmoussa
Sustainability 2025, 17(13), 6079; https://doi.org/10.3390/su17136079 - 2 Jul 2025
Viewed by 263
Abstract
The Sustainable Supply Chain Network Design Problem (SSCNDP) is to determine the optimal network configuration and resource allocation that achieve the trade-off among economic, environmental, social, and resilience objectives. The Sustainable Supply Chain Network Design Problem (SSCNDP) involves determining the optimal network configuration [...] Read more.
The Sustainable Supply Chain Network Design Problem (SSCNDP) is to determine the optimal network configuration and resource allocation that achieve the trade-off among economic, environmental, social, and resilience objectives. The Sustainable Supply Chain Network Design Problem (SSCNDP) involves determining the optimal network configuration and resource allocation that allows trade-off among economic, environmental, social, and resilience objectives. This paper addresses the SSCNDP under hybrid uncertainty, which combines objective randomness got from historical data, and subjective beliefs induced by expert judgment. Building on chance theory, we formulate a dependent-chance goal programming model that specifies target probability levels for achieving sustainability objectives and minimizes deviations from these targets using a lexicographic approach. To solve this complex optimization problem, we develop a hybrid intelligent algorithm that combines uncertain random simulation with Reinforcement Learning-enhanced Salp Swarm Optimization (RL-SSO). The proposed RL-SSO algorithm is benchmarked against standard metaheuristics—Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and standard SSO, across diverse problem instances. Results show that our method consistently outperforms these techniques in both solution quality and computational efficiency. The paper concludes with managerial insights and discusses limitations and future research directions. Full article
(This article belongs to the Special Issue Sustainable Operations and Green Supply Chain)
Show Figures

Figure 1

22 pages, 853 KiB  
Article
Parameter Adaptive Differential Evolution Based on Individual Diversity
by Rongle Yan, Liming Zheng and Xiaolin Jin
Symmetry 2025, 17(7), 1016; https://doi.org/10.3390/sym17071016 - 27 Jun 2025
Viewed by 267
Abstract
Differential evolution (DE) has emerged as a numerical optimization technique due to its conceptual simplicity and demonstrated effectiveness across diverse problem domains. However, the algorithm’s performance remains critically dependent on appropriate control parameter settings. This paper introduces a novel diversity-based parameter adaptation (div) [...] Read more.
Differential evolution (DE) has emerged as a numerical optimization technique due to its conceptual simplicity and demonstrated effectiveness across diverse problem domains. However, the algorithm’s performance remains critically dependent on appropriate control parameter settings. This paper introduces a novel diversity-based parameter adaptation (div) mechanism, generates two sets of symmetrical parameters, F and CR, adaptively first, and then dynamically selects the final parameters based on individual diversity rankings. It employs a straightforward approach to identify the more effective option from two sets of symmetrical parameters. Comprehensive experimental evaluation demonstrated that the div mechanism significantly enhanced the performance of the DE algorithm. Furthermore, by incorporating div, our enhanced algorithm exhibited superior optimization capability compared to five state-of-the-art DE variants. The results show that, among the 145 cases studied, DTDE-div outperformed others in 92 cases and underperformed in 32 cases, with the lowest performance ranking of 2.59. Consequently, DTDE-div demonstrated superior performance compared to other advanced DE variants. The results highlight the effectiveness of div in enhancing solution precision while preventing premature convergence. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 28445 KiB  
Article
Enhanced Multi-Threshold Otsu Algorithm for Corn Seedling Band Centerline Extraction in Straw Row Grouping
by Yuanyuan Liu, Yuxin Du, Kaipeng Zhang, Hong Yan, Zhiguo Wu, Jiaxin Zhang, Xin Tong, Junhui Chen, Fuxuan Li, Mengqi Liu, Yueyong Wang and Jun Wang
Agronomy 2025, 15(7), 1575; https://doi.org/10.3390/agronomy15071575 - 27 Jun 2025
Viewed by 228
Abstract
Straw row grouping is vital in conservation tillage for precision seeding, and accurate centerline extraction of the seedling bands enhances agricultural spraying efficiency. However, the traditional single-threshold Otsu segmentation struggles with adaptability and accuracy under complex field conditions. To overcome these issues, this [...] Read more.
Straw row grouping is vital in conservation tillage for precision seeding, and accurate centerline extraction of the seedling bands enhances agricultural spraying efficiency. However, the traditional single-threshold Otsu segmentation struggles with adaptability and accuracy under complex field conditions. To overcome these issues, this study proposes an adaptive multi-threshold Otsu algorithm optimized by a Simulated Annealing-Enhanced Differential Evolution–Whale Optimization Algorithm (SADE-WOA). The method avoids premature convergence and improves population diversity by embedding the crossover mechanism of Differential Evolution (DE) into the Whale Optimization Algorithm (WOA) and introducing a vector disturbance strategy. It adaptively selects thresholds based on straw-covered image features. Combined with least-squares fitting, it suppresses noise and improves centerline continuity. The experimental results show that SADE-WOA accurately separates soil regions while preserving straw texture, achieving higher between-class variance and significantly faster convergence than the other tested algorithms. It runs at just one-tenth of the time of the Grey Wolf Optimizer and one-ninth of that of DE and requires only one-sixth to one-seventh of the time needed by DE-GWO. During centerline fitting, the mean yaw angle error (MEA) ranged from 0.34° to 0.67°, remaining well within the 5° tolerance required for agricultural navigation. The root-mean-square error (RMSE) fell between 0.37° and 0.73°, while the mean relative error (MRE) stayed below 0.2%, effectively reducing the influence of noise and improving both accuracy and robustness. Full article
Show Figures

Figure 1

15 pages, 327 KiB  
Article
A Modified Differential Evolution for Source Localization Using RSS Measurements
by Yunjie Tao, Lincan Li and Shengming Chang
Sensors 2025, 25(12), 3787; https://doi.org/10.3390/s25123787 - 17 Jun 2025
Viewed by 375
Abstract
In wireless sensor networks, evolutionary algorithms have emerged as pivotal tools for addressing complex localization challenges inherent in non-convex and nonlinear maximum likelihood estimation problems associated with received signal strength (RSS) measurements. While differential evolution (DE) has demonstrated notable efficacy in optimizing multimodal [...] Read more.
In wireless sensor networks, evolutionary algorithms have emerged as pivotal tools for addressing complex localization challenges inherent in non-convex and nonlinear maximum likelihood estimation problems associated with received signal strength (RSS) measurements. While differential evolution (DE) has demonstrated notable efficacy in optimizing multimodal cost functions, conventional implementations often grapple with suboptimal convergence rates and susceptibility to local optima. To overcome these limitations, this paper proposes a novel enhancement of DE by integrating opposition-based learning (OBL) principles. The proposed method introduces an adaptive scaling factor that dynamically balances global exploration and local exploitation during the evolutionary process, coupled with a penalty-augmented cost function to effectively utilize boundary information while eliminating explicit constraint handling. Comparative evaluations against state-of-the-art techniques—including semidefinite programming, linear least squares, and simulated annealing—reveal significant improvements in both convergence speed and positioning precision. Experimental results under diverse noise conditions and network configurations further validate the robustness and superiority of the proposed approach, particularly in scenarios characterized by high environmental uncertainty or sparse anchor node deployments. Full article
Show Figures

Figure 1

41 pages, 8353 KiB  
Article
Optimizing LoRaWAN Gateway Placement in Urban Environments: A Hybrid PSO-DE Algorithm Validated via HTZ Simulations
by Kanar Alaa Al-Sammak, Sama Hussein Al-Gburi, Ion Marghescu, Ana-Maria Claudia Drăgulinescu, Cristina Marghescu, Alexandru Martian, Nayef A. M. Alduais and Nawar Alaa Hussein Al-Sammak
Technologies 2025, 13(6), 256; https://doi.org/10.3390/technologies13060256 - 17 Jun 2025
Viewed by 844
Abstract
With rapid advancements in the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) play a crucial role in expanding IoT’s capabilities while using minimal energy. Among the various LPWAN technologies, LoRaWAN (Long-Range Wide-Area Network) is particularly notable for its capacity to enable long-range, [...] Read more.
With rapid advancements in the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) play a crucial role in expanding IoT’s capabilities while using minimal energy. Among the various LPWAN technologies, LoRaWAN (Long-Range Wide-Area Network) is particularly notable for its capacity to enable long-range, low-rate communications with low power needs. This study investigates how to optimize the placement of LoRaWAN gateways by using a combination of Particle Swarm Optimization (PSO) and Differential Evolution (DE). The approach is validated through simulations driven by HTZ to evaluate network performance in urban settings. Centered around the area of the Politehnica University of Bucharest, this research examines how different gateway placements on various floors of a building affect network coverage and packet loss. The experiment employs Adeunis Field Test Devices (FTDs) and Dragino LG308-EC25 gateways, systematically testing two spreading factors, SF7 and SF12, to assess their effectiveness in terms of signal quality and reliability. An innovative optimization algorithm, GateOpt PSODE, is introduced, which combines PSO and DE to optimize gateway placements based on real-time network performance metrics, like the Received Signal Strength Indicator (RSSI), the Signal-to-Noise Ratio (SNR), and packet loss. The findings reveal that strategically positioning gateways, especially on higher floors, significantly improves communication reliability and network efficiency, providing a solid framework for deploying LoRaWAN networks in intricate urban environments. Full article
Show Figures

Figure 1

16 pages, 8564 KiB  
Article
Robotic Tack Welding Path and Trajectory Optimization Using an LF-IWOA
by Bingqi Jia, Haihong Pan, Lei Zhang, Yifan Yang, Huaxin Chen and Lin Chen
Actuators 2025, 14(6), 287; https://doi.org/10.3390/act14060287 - 10 Jun 2025
Viewed by 714
Abstract
Robotic tack welding poses challenges in path optimization due to local optimum entrapment, limited adaptability, and high-dimensional complexity. To overcome these challenges, a Lévy flight-enhanced improved whale optimization algorithm (LF-IWOA) was developed. The algorithm combines elite opposition-based learning (EOBL), differential evolution (DE), and [...] Read more.
Robotic tack welding poses challenges in path optimization due to local optimum entrapment, limited adaptability, and high-dimensional complexity. To overcome these challenges, a Lévy flight-enhanced improved whale optimization algorithm (LF-IWOA) was developed. The algorithm combines elite opposition-based learning (EOBL), differential evolution (DE), and Lévy flight (LF) to improve global exploration capability, increase population diversity, and improve convergence. Additionally, a dynamic trajectory optimization model is designed to consider joint-level constraints, including velocity, acceleration, and jerk. The performance of LF-IWOA was evaluated using two industrial workpieces with varying welding point distributions. Comparative experiments with metaheuristic algorithms, such as the genetic algorithm (GA), WOA and other recent nature-inspired methods, show that LF-IWOA consistently achieves shorter paths and faster convergence. For Workpiece 1, the algorithm reduces the welding path by up to 25.53% compared to the genetic algorithm, with an average reduction of 14.82% across benchmarks. For Workpiece 2, the optimized path is 18.41% shorter than the baseline. Moreover, the dynamic trajectory optimization strategy decreases execution time by 26.83% and reduces mechanical energy consumption by 15.40% while maintaining smooth and stable joint motion. Experimental results demonstrated the effectiveness and practical applicability of the LF-IWOA in robotic welding tasks. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

43 pages, 5359 KiB  
Article
A Hybrid Whale Optimization Approach for Fast-Convergence Global Optimization
by Athanasios Koulianos, Antonios Litke and Nikolaos K. Papadakis
J. Exp. Theor. Anal. 2025, 3(2), 17; https://doi.org/10.3390/jeta3020017 - 6 Jun 2025
Viewed by 399
Abstract
In this paper, we introduce the Levy Flight-enhanced Whale Optimization Algorithm with Tabu Search elements (LWOATS), an innovative hybrid optimization approach that enhances the standard Whale Optimization Algorithm (WOA) with advanced local search techniques and elite solution management to improve performance on global [...] Read more.
In this paper, we introduce the Levy Flight-enhanced Whale Optimization Algorithm with Tabu Search elements (LWOATS), an innovative hybrid optimization approach that enhances the standard Whale Optimization Algorithm (WOA) with advanced local search techniques and elite solution management to improve performance on global optimization problems. Techniques from the Tabu Search algorithm are adopted to balance the exploration and exploitation phases, while an elite reintroduction strategy is implemented to retain and refine the best solutions. The efficient optimization of LWOATS is further aided by the utilization of Levy flights and local search based on the Nelder–Mead simplex method. An Orthogonal Experimental Design (OED) analysis was employed to fine-tune the algorithm’s parameters. LWOATS was tested against three different algorithm sets: fundamental algorithms, advanced Differential Evolution (DE) variants, and improved WOA variants. Wilcoxon tests demonstrate the promising performance of LWOATS, showing improvements in convergence speed, accuracy, and robustness compared to traditional WOA and other metaheuristic algorithms. After extensive testing against a challenging set of benchmark functions and engineering optimization problems, we conclude that our proposed method is well suited for tackling high-dimensional optimization tasks and constrained optimization problems, providing substantial computational efficiency gains and improved overall solution quality. Full article
Show Figures

Figure 1

32 pages, 13709 KiB  
Article
An Innovative Inversion Method of Potato Canopy Chlorophyll Content Based on the AFFS Algorithm and the CDE-EHO-GBM Model
by Xiaofei Yang, Qiao Li, Honghui Li, Hao Zhou, Jinyan Zhang and Xueliang Fu
Agriculture 2025, 15(11), 1181; https://doi.org/10.3390/agriculture15111181 - 29 May 2025
Viewed by 530
Abstract
Chlorophyll content is an important indicator for estimating potato growth. However, there are still some research gaps in the inversion of canopy chlorophyll content using unmanned aerial vehicle (UAV) remote sensing. For example, it faces limitations of the growth cycle, low parameter accuracy, [...] Read more.
Chlorophyll content is an important indicator for estimating potato growth. However, there are still some research gaps in the inversion of canopy chlorophyll content using unmanned aerial vehicle (UAV) remote sensing. For example, it faces limitations of the growth cycle, low parameter accuracy, and single feature selection, and there is a lack of efficient and precise systematic research methods. In this study, an improved Adaptive-Forward Feature Selection (AFFS) algorithm was developed by combining remote sensing data and measured data to optimize the input Vegetation Index (VI) variables. Gradient Boosting Machine (GBM) model parameters were optimized using a hybrid strategy improved Elephant Herd Optimization (EHO) algorithm (CDE-EHO) that combines Differential Evolution (DE) and Cauchy Mutation (CM). The CDE-EHO method optimizes the GBM model, achieving maximum accuracy, according to the testing results. The optimal coefficients of determination (R2) values of the prediction set are 0.663, 0.683, and 0.906, respectively, the Root Mean Squared Error (RMSE) values are 2.673, 3.218, and 2.480, respectively, and the Mean Absolute Error (MAE) values are 2.052, 2.732, and 1.928, respectively, during the seedling stage, tuber expansion stage and cross-growth stage. This approach has significantly enhanced the inversion model’s prediction performance as compared to earlier research. The chlorophyll content in the potato canopy has been accurately extracted in this work, offering fresh perspectives and sources for further research in this area. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

32 pages, 2404 KiB  
Review
Bio-Inspired Metaheuristics in Deep Learning for Brain Tumor Segmentation: A Decade of Advances and Future Directions
by Shoffan Saifullah, Rafał Dreżewski, Anton Yudhana, Wahyu Caesarendra and Nurul Huda
Information 2025, 16(6), 456; https://doi.org/10.3390/info16060456 - 29 May 2025
Cited by 1 | Viewed by 870
Abstract
Accurate segmentation of brain tumors in magnetic resonance imaging (MRI) remains a challenging task due to heterogeneous tumor structures, varying intensities across modalities, and limited annotated data. Deep learning has significantly advanced segmentation accuracy; however, it often suffers from sensitivity to hyperparameter settings [...] Read more.
Accurate segmentation of brain tumors in magnetic resonance imaging (MRI) remains a challenging task due to heterogeneous tumor structures, varying intensities across modalities, and limited annotated data. Deep learning has significantly advanced segmentation accuracy; however, it often suffers from sensitivity to hyperparameter settings and limited generalization. To overcome these challenges, bio-inspired metaheuristic algorithms have been increasingly employed to optimize various stages of the deep learning pipeline—including hyperparameter tuning, preprocessing, architectural design, and attention modulation. This review systematically examines developments from 2015 to 2025, focusing on the integration of nature-inspired optimization methods such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and novel hybrids including CJHBA and BioSwarmNet into deep learning-based brain tumor segmentation frameworks. A structured multi-query search strategy was executed using Publish or Perish across Google Scholar and Scopus databases. Following PRISMA guidelines, 3895 records were screened through automated filtering and manual eligibility checks, yielding a curated set of 106 primary studies. Through bibliometric mapping, methodological synthesis, and performance analysis, we highlight trends in algorithm usage, application domains (e.g., preprocessing, architecture search), and segmentation outcomes measured by metrics such as Dice Similarity Coefficient (DSC), Jaccard Index (JI), Hausdorff Distance (HD), and ASSD. Our findings demonstrate that bio-inspired optimization significantly enhances segmentation accuracy and robustness, particularly in multimodal settings involving FLAIR and T1CE modalities. The review concludes by identifying emerging research directions in hybrid optimization, real-time clinical applicability, and explainable AI, providing a roadmap for future exploration in this interdisciplinary domain. Full article
(This article belongs to the Section Review)
Show Figures

Figure 1

35 pages, 1491 KiB  
Article
Overcoming Stagnation in Metaheuristic Algorithms with MsMA’s Adaptive Meta-Level Partitioning
by Matej Črepinšek, Marjan Mernik, Miloš Beković, Matej Pintarič, Matej Moravec and Miha Ravber
Mathematics 2025, 13(11), 1803; https://doi.org/10.3390/math13111803 - 28 May 2025
Viewed by 461
Abstract
Stagnation remains a persistent challenge in optimization with metaheuristic algorithms (MAs), often leading to premature convergence and inefficient use of the remaining evaluation budget. This study introduces MsMA, a novel meta-level strategy that externally monitors MAs to detect stagnation [...] Read more.
Stagnation remains a persistent challenge in optimization with metaheuristic algorithms (MAs), often leading to premature convergence and inefficient use of the remaining evaluation budget. This study introduces MsMA, a novel meta-level strategy that externally monitors MAs to detect stagnation and adaptively partitions computational resources. When stagnation occurs, MsMA divides the optimization run into partitions, restarting the MA for each partition with function evaluations guided by solution history, enhancing efficiency without modifying the MA’s internal logic, unlike algorithm-specific stagnation controls. The experimental results on the CEC’24 benchmark suite, which includes 29 diverse test functions, and on a real-world Load Flow Analysis (LFA) optimization problem demonstrate that MsMA consistently enhances the performance of all tested algorithms. In particular, Self-Adapting Differential Evolution (jDE), Manta Ray Foraging Optimization (MRFO), and the Coral Reefs Optimization Algorithm (CRO) showed significant improvements when paired with MsMA. Although MRFO originally performed poorly on the CEC’24 suite, it achieved the best performance on the LFA problem when used with MsMA. Additionally, the combination of MsMA with Long-Term Memory Assistance (LTMA), a lookup-based approach that eliminates redundant evaluations, resulted in further performance gains and highlighted the potential of layered meta-strategies. This meta-level strategy pairing provides a versatile foundation for the development of stagnation-aware optimization techniques. Full article
Show Figures

Figure 1

Back to TopTop