Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (227)

Search Parameters:
Keywords = DP780 steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5693 KB  
Article
Effect of a Single-Sided Magnetic Field on Microstructure and Properties of Resistance Spot Weld Nuggets in H1000/DP590 Dissimilar Steels
by Qiaobo Feng, Jiale Li, Detian Xie and Yongbing Li
Metals 2025, 15(11), 1259; https://doi.org/10.3390/met15111259 - 18 Nov 2025
Viewed by 129
Abstract
H1000 stainless steel is defined as a nickel-saving austenitic stainless steel, characterized by high strength and high elongation. DP590 steel is widely used in the manufacturing of vehicle bodies. DP590 dual-phase steel is classified as a high-strength low-alloy steel, known for its high [...] Read more.
H1000 stainless steel is defined as a nickel-saving austenitic stainless steel, characterized by high strength and high elongation. DP590 steel is widely used in the manufacturing of vehicle bodies. DP590 dual-phase steel is classified as a high-strength low-alloy steel, known for its high strength and good formability. To address issues such as nugget deviation, inhomogeneous mixing of the internal nugget microstructure, and interfacial fracture during tensile-shear testing in resistance spot-welded joints of these dissimilar materials, a unilateral magnetic-assisted resistance spot-welding process was proposed. The influence of the external magnetic field on various properties of the joint was systematically investigated. The results indicate that the application of an external magnetic field significantly enhances the strength of H1000/DP590 dissimilar spot-welded joints, with joint strength increasing by approximately 14% and energy absorption capacity improving by about 30%. These improvements are attributed to the electromagnetic stirring effect induced by the magnetic field, through which the effective nugget diameter was enlarged, the microstructure was homogenized, and the macroscopic morphology of the nugget was modified. As a result, the bonding area between the nugget and the base metal is expanded, and the fracture mode of the joint is shifted from interfacial failure to partial button failure, thereby enhancing the mechanical properties of the joint. Full article
(This article belongs to the Special Issue Welding and Joining Technology of Dissimilar Metal Materials)
Show Figures

Figure 1

15 pages, 3672 KB  
Article
Direct Experimental Calibration of Hosford–Coulomb and Modified Mohr–Coulomb Damage Criteria in AHSS Using Digital Image Correlation
by Rui Pereira, Nuno Peixinho and Sérgio L. Costa
Metals 2025, 15(11), 1238; https://doi.org/10.3390/met15111238 - 11 Nov 2025
Viewed by 222
Abstract
This study presents a Digital Image Correlation (DIC)-based experimental framework for the calibration of the Hosford-Coulomb (HC) and Modified-Mohr Coulomb (MMC) damage initiation criteria in an Advanced High Strength Steel (AHSS) DP1000. Three characteristic loading conditions in sheet metal forming—pure shear, uniaxial tension, [...] Read more.
This study presents a Digital Image Correlation (DIC)-based experimental framework for the calibration of the Hosford-Coulomb (HC) and Modified-Mohr Coulomb (MMC) damage initiation criteria in an Advanced High Strength Steel (AHSS) DP1000. Three characteristic loading conditions in sheet metal forming—pure shear, uniaxial tension, and plane strain tension—were reproduced using flat specimens in a universal tensile testing machine, thus eliminating the need for costly and time-consuming tooling systems. An additional notch tension specimen was employed to validate the stress-state sensitivity of the proposed calibration approach. By integrating full-field strain data from DIC with tensile test results, stress–strain relationships were directly obtained without finite element modeling. The results confirm the effectiveness of dogbone, mini shear, and plane strain tension specimens in achieving proportional loading path histories up to fracture initiation, with constant stress state evolution during deformation. Comparison of the HC and MMC damage criteria reveals similar fracture loci, with the HC model exhibiting slightly higher resistance between shear and uniaxial tension conditions. This study discusses the suitability of a fully experimental DIC-based methodology for the calibration of stress-state-dependent damage initiation criteria. The results highlight the ability of the proposed methodology as a simplified and lower time-consuming alternative to traditional numerical assisted frameworks. Full article
(This article belongs to the Special Issue Feature Papers in Metal Failure Analysis)
Show Figures

Figure 1

17 pages, 5927 KB  
Article
Evaluation of the Possibility of Using Non-Conventional Technological Approaches for the Heat Treatment of Hot-Rolled DP Steel
by Alexandros Banis, Jasmien Flore Arijs and Roumen H. Petrov
Metals 2025, 15(11), 1230; https://doi.org/10.3390/met15111230 - 7 Nov 2025
Viewed by 315
Abstract
This study investigates the transformation behavior of advanced high-strength dual-phase (DP) steel subjected to thermal cycling, aiming to support improved automotive steel-processing technologies in terms of properties, cost, and speed. The heat treatment applied consisted of 1–7 cycles through the intercritical region at [...] Read more.
This study investigates the transformation behavior of advanced high-strength dual-phase (DP) steel subjected to thermal cycling, aiming to support improved automotive steel-processing technologies in terms of properties, cost, and speed. The heat treatment applied consisted of 1–7 cycles through the intercritical region at a conventional heating rate. Results were compared with the conventional dual-phase steel treatment currently used in industry, as well as with variants that combine thermal cycling and fast heating, the latter offering potential for carbon-free methods. The goal is to gain a deeper understanding of the transformations that occur in the material and the potential benefits that may result. Characterization was performed using dilatometry, electron microscopy techniques, and Vickers hardness testing. Findings show the initial ferrite–martensite microstructure remained largely unchanged after cycling, though preferential austenite nucleation within ferrite and Mn segregation remained. The resulting microstructure consisted of ferrite, bainite, martensite, and retained austenite. Crystallographic orientation analysis revealed texture memory effects, with preferred orientations persisting after multiple cycles. Grain refinement occurred mainly in transformed zones, while ferrite showed slight growth with more cycles, correlating with a reduced bainite/martensite fraction. Hardness increased significantly after the first cycle but declined with subsequent cycles, reflecting a reduction in bainite/martensite fraction. It is found that when up to two cycles are used, the process can be beneficial for the steel properties; otherwise, other alternatives, such as fast heating, can be applied to optimize production. Full article
Show Figures

Figure 1

23 pages, 5021 KB  
Article
Corrosion Behavior of Advanced High-Strength Steels (AHSS) in Chloride Solutions for Automotive Applications
by Facundo Almeraya-Calderón, Marvin Montoya-Rangel, Demetrio Nieves-Mendoza, Jesus Manuel Jáquez-Muñoz, Abel Diaz-Olivares, Maria Lara-Banda, Erick Maldonado-Bandala, Francisco Estupinan-Lopez, Jose Cabral-Miramontes, Javier Olguin-Coca and Citlalli Gaona-Tiburcio
Metals 2025, 15(10), 1116; https://doi.org/10.3390/met15101116 - 8 Oct 2025
Cited by 1 | Viewed by 489
Abstract
The automotive industry utilizes high-strength low-alloy (HSLA) steels and advanced high-strength steels (AHSS) to manufacture various components, including front and rear rails, chassis, and roll bars, among others. In countries where de-icing salts are used, these steels are exposed to a localized corrosive [...] Read more.
The automotive industry utilizes high-strength low-alloy (HSLA) steels and advanced high-strength steels (AHSS) to manufacture various components, including front and rear rails, chassis, and roll bars, among others. In countries where de-icing salts are used, these steels are exposed to a localized corrosive environment. This research aims to characterize the corrosion behavior of AHSS [dual-phase (DP), ferrite–bainite (FB), and complex-phase (CP)] using electrochemical techniques such as cyclic potentiodynamic polarization (CPP) curves and electrochemical noise (EN), by immersing the steels in NaCl, CaCl2, and MgCl2 solutions. Optical microscopy (OM) is used to observe the microstructure of the tested samples. The CPP corrosion behavior of AHSS exposed to chloride solutions exhibits corrosion densities in the range of 10−2 and 10−3 mA/cm2. The results generally indicated that AHSS are susceptible to localized corrosion due to the presence of positive hysteresis in the CPP. Zn results show that DP780 presented higher corrosion resistance, with 845 Ω·cm2, whereas FB780 presented 253 Ω·cm2 when exposed to NaCl. Additionally, the type of corrosion is localized. Full article
(This article belongs to the Special Issue Advanced High-Performance Steels: From Fundamental to Applications)
Show Figures

Figure 1

16 pages, 6351 KB  
Article
The Role of La–Ti–Al–O Complex Inclusions in Microstructure Refinement and Toughness Enhancement of the Coarse-Grained Heat-Affected Zone in High-Heat-Input Welding
by Qiuming Wang, Jiangli He, Qingfeng Wang and Riping Liu
Metals 2025, 15(10), 1105; https://doi.org/10.3390/met15101105 - 3 Oct 2025
Viewed by 357
Abstract
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), [...] Read more.
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), and limited acicular ferrite (AF). This study investigates the effect of lanthanum (La) addition to Nb–Ti steel, leading to the formation of composite inclusions with a LaAlO3·TiN core surrounded by MnS/MnC precipitates. Unlike conventional Al2O3·MnS inclusions in Nb–Ti steel, these La-modified inclusions promote enhanced AF nucleation. This not only refines prior austenite grains but also reduces detrimental microstructural constituents such as GBF and FSP. As a result, the impact energy at −40 °C significantly improves from 23 J (Nb–Ti steel) to 137 J (Nb–Ti–La steel). Moreover, the inclusions exhibit an increase in size but a decrease in number density. The Nb–Ti–La variant demonstrates a higher AF volume fraction and increased AF density within the CGHAZ. The refined grain structure, along with an increased proportion of high-angle grain boundaries, effectively impedes secondary crack propagation. These microstructural modifications contribute to a substantial improvement in the low-temperature impact toughness of welded joints. Full article
Show Figures

Figure 1

15 pages, 5342 KB  
Article
Transfer Learning-Based Multi-Sensor Approach for Predicting Keyhole Depth in Laser Welding of 780DP Steel
by Byeong-Jin Kim, Young-Min Kim and Cheolhee Kim
Materials 2025, 18(17), 3961; https://doi.org/10.3390/ma18173961 - 24 Aug 2025
Cited by 1 | Viewed by 896
Abstract
Penetration depth is a critical factor determining joint strength in butt welding; however, it is difficult to monitor in keyhole-mode laser welding due to the dynamic nature of the keyhole. Recently, optical coherence tomography (OCT) has been introduced for real-time keyhole depth measurement, [...] Read more.
Penetration depth is a critical factor determining joint strength in butt welding; however, it is difficult to monitor in keyhole-mode laser welding due to the dynamic nature of the keyhole. Recently, optical coherence tomography (OCT) has been introduced for real-time keyhole depth measurement, though accurate results require meticulous calibration. In this study, deep learning-based models were developed to estimate penetration depth in laser welding of 780 dual-phase (DP) steel. The models utilized coaxial weld pool images and spectrometer signals as inputs, with OCT signals serving as the output reference. Both uni-sensor models (based on coaxial pool images) and multi-sensor models (incorporating spectrometer data) were developed using transfer learning techniques based on pre-trained convolutional neural network (CNN) architectures including MobileNetV2, ResNet50V2, EfficientNetB3, and Xception. The coefficients of determination values (R2) of the uni-sensor CNN transfer learning models without fine-tuning ranged from 0.502 to 0.681, and the mean absolute errors (MAEs) ranged from 0.152 mm to 0.196 mm. In the fine-tuning models, R2 decreased by more than 17%, and MAE increased by more than 11% compared to the previous models without fine-tuning. In addition, in the multi-sensor model, R2 ranged from 0.900 to 0.956, and MAE ranged from 0.058 mm to 0.086 mm, showing better performance than uni-sensor CNN transfer learning models. This study demonstrated the potential of using CNN transfer learning models for predicting penetration depth in laser welding of 780DP steel. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

21 pages, 4331 KB  
Article
An Experimental and Simulation Study on the Effect of Adhesive in Weld Bonded Spot Weld Joints
by Aravinthan Arumugam, Cosmas Pandit Pagwiwoko, Alokesh Pramanik and Animesh Kumar Basak
Metals 2025, 15(9), 938; https://doi.org/10.3390/met15090938 - 24 Aug 2025
Viewed by 1041
Abstract
The use of weld bond (WB) joints in automotive manufacturing is gaining popularity for joining similar and dissimilar materials. This study investigated the effect of Sikaflex-252 (Sika Australia Pty Ltd, Perth, Australia) adhesive in DP600 similar steel joints and DP600 and AISI 316 [...] Read more.
The use of weld bond (WB) joints in automotive manufacturing is gaining popularity for joining similar and dissimilar materials. This study investigated the effect of Sikaflex-252 (Sika Australia Pty Ltd, Perth, Australia) adhesive in DP600 similar steel joints and DP600 and AISI 316 stainless steel dissimilar steel joints. An increase in welding current from 7 kA to 10 kA increased the weld diameter and tensile shear strength in the RSW joints and the WB joints. WB joints had bigger weld diameters of 5.39 mm and 4.84 mm, higher tensile shear strengths of 12.3 kN and 6.85 kN, and higher energy absorption before failure of 32.6 J and 24.6 J at 10 kA compared to joints at 7 kA for similar and dissimilar joints, respectively. The use of adhesive increased heat generation at 10 kA welding current, due to the increase in dynamic resistance. At 7 kA welding current, the adhesive could not produce sufficient heat for spot weld development. The use of adhesive narrowed the weldability lobe in dissimilar RSW and WB joints and showed changes in failure mode. In similar RSW joints and WB joints, weldability lobe changes were not observed, and RSW and WB joints had the same fracture mode for the same welding current. WB welds have reduced stress distribution across the weld nugget compared to RSW welds because of the bigger weld diameter of 5.39 mm and lesser sheet bending of 1.13 mm. WB joint failure comprises the adhesive failure at the start and later the spot weld failure, while RSW joint failure is purely due to spot weld failure. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

16 pages, 30287 KB  
Article
Converting Iron-Bearing Tailings from Recycling of Urban Steel Scrap to Direct Reduced Iron via Magnetic Separation Followed by Hydrogen Reduction Under Microwave Irradiation
by Tianle Yin, Zhiwei Peng, Weiguang Tian, Wanlong Fan and Huimin Tang
Metals 2025, 15(8), 924; https://doi.org/10.3390/met15080924 - 21 Aug 2025
Viewed by 795
Abstract
In this study, the feasibility of converting iron-bearing tailings from urban steel scrap recycling to value-added direct reduced iron (DRI) via magnetic separation followed by hydrogen reduction under microwave irradiation was investigated, with an emphasis on the effect of reduction temperature. The experimental [...] Read more.
In this study, the feasibility of converting iron-bearing tailings from urban steel scrap recycling to value-added direct reduced iron (DRI) via magnetic separation followed by hydrogen reduction under microwave irradiation was investigated, with an emphasis on the effect of reduction temperature. The experimental results showed that by magnetic separation, the tailings sample with an iron content of 15.42 wt% could transit to a high-grade magnetic concentrate with an iron content of 60.04 wt% and good microwave absorption capability, as revealed by its short microwave penetration depth (Dp). After hydrogen reduction under microwave irradiation, the main iron-bearing phases, including magnetite, hematite, limonite, and martite, had stepwise deoxidation into metallic iron. As the reduction temperature increased from 750 °C to 1050 °C, the total iron content (TFe), reduction degree and iron metallization degree of the product increased rapidly and then became stable due to difficult reduction of FeO. As the reduction process proceeded, the dispersed iron particles gradually aggregated. At the optimum temperature of 950 °C, the reduction degree and iron metallization degree reached 90.10% and 88.71%, respectively. Meanwhile, the pore size, microporous volume, and specific surface area of the product were 1.943 nm, 1.767 × 10−5 cm3/g, and 0.3961 m2/g, respectively. The saturation magnetization (MS) and coercivity (HC) of the product remained 170.94 emu/g and 46.25 Oe, respectively. The product can act as a potential feedstock for electric arc furnace (EAF) steelmaking. Full article
(This article belongs to the Special Issue Metal Recovery and Separation from Scraps and Wastes)
Show Figures

Figure 1

16 pages, 8293 KB  
Article
Thermodynamic Modeling of Microstructural Design of Lightweight Ferritic Steels
by Tamiru Hailu Kori, Adam Skowronek, Jarosław Opara, Ana Paula Domingos Cardoso and Adam Grajcar
Metals 2025, 15(8), 912; https://doi.org/10.3390/met15080912 - 16 Aug 2025
Viewed by 828
Abstract
Ferritic lightweight steels are an emerging class of low-density steels (LDSs) with promising mechanical properties. The study aimed to develop two ferritic lightweight steels with different Mn concentrations. Al was incorporated to achieve the lightweighting effect due to its relatively low atomic mass [...] Read more.
Ferritic lightweight steels are an emerging class of low-density steels (LDSs) with promising mechanical properties. The study aimed to develop two ferritic lightweight steels with different Mn concentrations. Al was incorporated to achieve the lightweighting effect due to its relatively low atomic mass of substitutional solutions. The C concentration was kept at a minimum level to avoid the precipitation of carbides and the Mn addition was intended to increase solid solution strengthening. Thermodynamic calculations (Thermo-Calc) were employed to design the composition, analyze the phase constituents, and predict the phase transformation behavior. Microstructural investigation and hardness tests were conducted to experimentally verify the calculations. Both produced alloys exhibited a fully ferritic microstructure. Compared to industrially produced DP980 steel, a density reduction of about 7.2% and 8.3% was attained for the Fe-0.04C-5.5Al-1.6Mn-0.075Nb and Fe-0.04C-5.6Al-5.5Mn-0.08Nb steels, respectively. The steel with the higher Mn content showed increased hardness attributed to its solution strengthening effect. An increase in the hardness values was also measured with the progress in hot-rolling thickness reductions for both alloys. The alloying elements influenced the microstructural characteristics, phase transformation behavior, density, and hardness of the newly designed lightweight steels. Full article
(This article belongs to the Special Issue Thermodynamic Modeling of Phase Equilibrium in Metallic Materials)
Show Figures

Figure 1

24 pages, 8575 KB  
Article
Space Charge Structures on Spherical Hollow Electrodes
by Florin Enescu, Codrina Ionita, Dan Gheorghe Dimitriu and Roman Schrittwieser
Plasma 2025, 8(3), 30; https://doi.org/10.3390/plasma8030030 - 25 Jul 2025
Viewed by 725
Abstract
In this article, we present an overview of our investigations on the formation and behavior of space charge structures in an argon discharge plasma on gridded and smooth spherical hollow electrodes with and without orifices. Four experiments are described, in which we have [...] Read more.
In this article, we present an overview of our investigations on the formation and behavior of space charge structures in an argon discharge plasma on gridded and smooth spherical hollow electrodes with and without orifices. Four experiments are described, in which we have used the following: (1) one spherical gridded sphere with one orifice, (2) one hollow smooth stainless steel sphere with two opposing orifices, (3) two smooth polished stainless steel spherical electrodes without orifices, (4) two smooth polished stainless steel spherical electrodes with opposing orifices. The experiments were conducted at the University of Innsbruck in a stainless steel cylindrical chamber (the former Innsbruck DP machine—IDP), and at the Alexandru Ioan Cuza University of Iaşi (Romania) in a Pyrex Vacuum Chamber (PCH). As diagnostics, we have used mainly optical emission spectroscopy to determine electron temperature and density. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

25 pages, 3886 KB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Cited by 1 | Viewed by 846
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 8314 KB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 988
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

22 pages, 16747 KB  
Article
Development of a Technique for Toughness Estimation in Dual-Phase Steels Using Representative Volume Elements
by Amin Latifi Vanjani, Hari M. Simha and Alexander Bardelcik
Metals 2025, 15(7), 788; https://doi.org/10.3390/met15070788 - 11 Jul 2025
Viewed by 494
Abstract
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. [...] Read more.
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. To estimate the flow behavior beyond uniform elongation, the stress-modified fracture strain in a non-local damage model was implemented in Abaqus. Damage parameters were calibrated using Finite Element (FE) simulations of purely ferritic tensile specimens. The damage parameters remained unchanged, except for the coefficient of triaxiality. This coefficient was adjusted based on the average triaxiality of ferrite elements at the instability point of the uniaxially loaded RVEs for each DP steel grade. The proposed approach comprises two steps: micron-sized RVEs to predict the flow behavior up to the point of uniform elongation and the average triaxiality and full-scale tensile-test simulations to predict the rest of the curves. The results show that the damage parameters calibrated for high-strain ferrite effectively estimate the absorbed energy during failure in tension tests. This approach is also geometry-independent; varying the geometry of the tensile specimen, including miniature or notched specimens, still yields predicted absorbed energies that are in good agreement with the experimental results. Full article
Show Figures

Figure 1

29 pages, 8611 KB  
Article
Study of Corrosion Resistance of Hybrid Structure of DP980 Two-Phase Steel and Laser-Welded 6013-T4 Aluminum Alloy
by Antonio Faria Neto, Erica Ximenes Dias, Francisco Henrique Cappi Freitas, Cristina Sayuri Fukugauchi, Erick Siqueira Guidi, Marcelo Sampaio Martins, Antonio Jorge Abdalla and Marcelo dos Santos Pereira
J. Manuf. Mater. Process. 2025, 9(7), 237; https://doi.org/10.3390/jmmp9070237 - 9 Jul 2025
Viewed by 1036
Abstract
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy [...] Read more.
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy and DP980 steel were evaluated for their morphology, microhardness, and corrosion resistance. Corrosion resistance was assessed using the electrochemical noise technique over time in 0.1 M Na2SO4 and 3.5% NaCl solutions. The wavelet function was applied to remove the DC trend, and energy diagrams were generated to identify the type of corrosive process occurring on the electrodes. Corrosion on the electrodes was also monitored using photomicrographic images. Analysis revealed an aluminum–steel mixture in the melting zone, along with the presence of AlFe, AlFe3, and AlI3Fe4 intermetallic compounds. The highest Vickers microhardness was observed in the heat-affected zone, adjacent to the melt zone, where a martensitic microstructure was identified. The 6013-T4 aluminum alloy demonstrated the highest corrosion resistance in both media. Conversely, the electrochemical noise resistance was similar for the DP980 steel and the weld bead, indicating that the laser welding process does not significantly impact this property. The energy diagrams showed that localized pitting corrosion was the predominant form of corrosion. However, generalized and mixed corrosion were also observed, which corroborated the macroscopic analysis of the electrodes. Full article
Show Figures

Figure 1

21 pages, 9556 KB  
Article
DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation
by Rafael Guetter Bohatch, Alex Raimundo de Oliveira, Chetan P. Nikhare, Ravilson Antonio Chemin Filho and Paulo Victor Prestes Marcondes
J. Manuf. Mater. Process. 2025, 9(7), 234; https://doi.org/10.3390/jmmp9070234 - 8 Jul 2025
Viewed by 1012
Abstract
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry [...] Read more.
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

Back to TopTop