Space Charge Structures on Spherical Hollow Electrodes
Abstract
1. Introduction
2. Materials and Methods
- Iki—intensity of line for electronic transition between the levels k and I;
- gkAki (s−1)—transition probability;
- λ (nm)—wavelength;
- Z—partition function;
- Ei,k (cm−1)—energy of lower and upper level, respectively;
- kBTe (J)—thermal energy;
- ne (m−3)—electron density;
- +,*—refers to ion and neutral species, respectively;
- me (kg)—mass of electron;
- N0—total number of atoms.
3. Results and Discussion
3.1. Experiment #1—Plasma Evolution Around and Inside a Gridded Sphere in the IDP
3.1.1. Visual Observations
3.1.2. Spectroscopy
3.2. Experiment #2—Single Sphere with Two Opposing Orifices
3.2.1. Current-Voltage Characteristic and Visual Observations
3.2.2. Spectroscopy
3.3. Reproducibility of the Experiments
3.4. Experiment #3—Spectral Investigations in a Cathode Discharge Between Two Smooth Polished Stainless Steel Spheres Without Orifices in the IDP
3.4.1. Visual Observations
- For V = −630 V (Figure 13a), strongly glowing and distinct spheroids of plasma appear around each of the spherical electrodes. However, these structures do not follow exactly the spherical metal surfaces of the cathodes. Having the same potential, they repel each other, resulting in some eccentricity of the plasma structures with respect to the shape of the spheres.
- If the bias is increased to V = −396 V, we observe that the structures tend to approach each other (Figure 13b).
- Then, we see plasma overlapping for V ≅ –290 V (Figure 13c).
3.4.2. Spectroscopy
3.5. Experiment #4—Electrical and Spectral Investigation on Two Spherical Cathode Discharges with Opposing Orifices in the Pyrex Vacuum CHamber of Iași (PCH)
3.5.1. Visual Observations
3.5.2. Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piel, A. Plasma Boundaries. In Plasma Physics. An Introduction to Laboratory, Space, and Fusion Plasma, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2017; Chapter 7; pp. 175–209. [Google Scholar] [CrossRef]
- Fukuyama, T.; Hagimine, K.; Miyazaki, R. Improvement of phase synchronization between chaotic oscillators with external force in a laboratory plasma. J. Phys. Soc. Jpn. 2017, 86, 095003. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Bulíř, J.; Fekete, L.; Vondráček, M.; Novotný, M.; Craciun, V.; Lancok, J. In situ optical and electrical analysis of transient plasmas generated by ns-laser ablation of Ag nanostructured film production. Vacuum 2021, 193, 110528. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, P.; Zhang, X.; Lei, J.; Ding, W. Laboratory plasma devices for space physics investigation. Rev. Sci. Instrum. 2021, 92, 071101. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, Y.; Ding, W.; Sun, A.; Karadag, B.; Deng, Z.; Geng, J. Discharge characteristics and mode transition of a ring-cusp magnetically confined plasma bridge neutralizer. J. Appl. Phys. 2022, 132, 083301. [Google Scholar] [CrossRef]
- Joseph, R.; Impey, C.; Planchon, O.; del Gaudio, R.; Abu Safa, M.; Sumanarathna, A.R.; Ansbro, E.; Duvall, D.; Bianciardi, G.; Gibson, C.H.; et al. Extraterrestrial life in the thermosphere: Plasmas, UAP, pre-life, fourth state of matter. J. Mod. Phys. 2024, 15, 322–374. [Google Scholar] [CrossRef]
- Lin, C.-Y. Evaluation of adequate type of non-thermal plasma for treating oil sludge to produce refined fuel. Processes 2025, 13, 1822. [Google Scholar] [CrossRef]
- Schrittwieser, R.; Eder, G. (Eds.) Proceedings of the Second Symposium on Plasma Double Layers and Related Topics, Innsbruck, Austria, 5–6 July 1984; Institute for Theoretical Physics, University of Innsbruck: Innsbruck, Austria, 1984. [Google Scholar]
- Schrittwieser, R. (Ed.) Proceedings of the Fourth Symposium on Double Layers and Other Nonlinear Potential Structures in Plasmas, Innsbruck, Austria, 6–8 July, 1992; World Scientific: Singapore, 1993. [Google Scholar]
- Song, B.; D’Angelo, N.; Merlino, R.L. On anode spots, double layers and plasma contactors. J. Phys. D Appl. Phys. 1991, 24, 1789–1795. [Google Scholar] [CrossRef]
- Conde, L.; León, L. Multiple double layers in a glow discharge. Phys. Plasmas 1994, 1, 2441–2447. [Google Scholar] [CrossRef]
- Hassall, G.; Allen, J.E. Space charge layers in a double plasma machine. J. Phys. D Appl. Phys. 1997, 30, 381–399. [Google Scholar] [CrossRef]
- Baalrud, S.D.; Longmier, B.; Hershkowitz, N. Equilibrium states of anodic double layers. Plasma Sources Sci. Technol. 2009, 18, 035002. [Google Scholar] [CrossRef]
- Chen, F.F. Physical mechanism of current-free double layers. Phys. Plasmas 2006, 13, 034502. [Google Scholar] [CrossRef]
- Charles, C. A review of recent laboratory double layer experiments. Plasma Sources Sci. Technol. 2007, 16, R1–R25. [Google Scholar] [CrossRef]
- Sut, P.; Gogoi, P.; Borgohain, B.; Adhikary, N.C.; Bailung, H. Investigation of fireball assisted double layer produced in a DC discharge plasma. Phys. Lett. A 2024, 498, 129335. [Google Scholar] [CrossRef]
- Teodorescu-Soare, C.T.; Irimiciuc, S.A.; Ionita, C.; Dimitriu, D.G.; Hodoroaba, B.; O’Hara, T.; Vasilovici, O.; Amarandi, L.; Schrittwieser, R.W. Concentric double hollow grid cathode discharges. Int. J. Mass Spectrom. 2019, 436, 83–90. [Google Scholar] [CrossRef]
- Konrad-Soare, C.T.; Enescu, F.; Dimitriu, D.G.; Dobromir, M.; Teodorescu-Soare, E.G.; Mazzanti, F.; Irimiciuc, S.A.; Ionita, C.; Schrittwieser, R. Concentric double hollow grid cathode discharges. Spectral investigations and phenomenological approach. Plasma Sources Sci. Technol. 2021, 30, 085006. [Google Scholar] [CrossRef]
- Hardiment, T.; Bowden, M.D. Influence of cathode grid geometry upon mode structure of a transparent cathode discharge. Phys. Plasmas 2020, 27, 043506. [Google Scholar] [CrossRef]
- Bose, S.; Paul, M.K. Study of self-organized criticality in a coaxial plasma source with gridded cathode. Contrib. Plasma Phys. 2022, 62, e202100173. [Google Scholar] [CrossRef]
- Oertl, M.; Popa, G. Single and multiple reflection of ion-acoustic waves and solitons from a bipolar wall. Plasma Phys. Control. Fusion 1988, 30, 529–536. [Google Scholar] [CrossRef]
- Ignatescu, V.; Dimitriu, D.G.; Ionita, C.; Lozneanu, E.; Sanduloviciu, M.; Schrittwieser, R. The influence of the background plasma density on the dynamics of a fireball in a DP-machine. Rom. Rep. Phys. 2002, 54, 177–184. [Google Scholar]
- Agheorghiesei, C.; Chiorescu, C.; Popa, G.; Ionita, C.; Schrittwieser, R. Ion beam generation in a DP system. Rom. Rep. Phys. 2002, 54, 229–234. [Google Scholar]
- Teodorescu-Soare, C.T.; Dimitriu, D.G.; Ionita, C.; Schrittwieser, R.W. Experimental investigations of the nonlinear dynamics of a complex space-charge configuration inside and around a grid cathode with hole. Phys. Scr. 2016, 91, 034002. [Google Scholar] [CrossRef]
- Schrittwieser, R.; Ionita, C.; Teodorescu-Soare, C.T.; Vasilovici, O.; Gurlui, S.; Irimiciuc, S.A.; Dimitriu, D.G. Spectral and electrical diagnosis of complex space-charge structures excited by a spherical grid cathode with orifice. Phys. Scr. 2017, 92, 044001. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Konrad-Soare, C.T.; Dimitriu, D.G.; Ionita, C.; Schrittwieser, R.W. On the interactions between three fireballs in low-temperature plasma. Plasma Sources Sci. Technol. 2022, 31, 084005. [Google Scholar] [CrossRef]
- Taylor, R.J.; MacKenzie, K.R.; Ikezi, H. A large double plasma device for plasma beam and wave studies. Rev. Sci. Instrum. 1972, 43, 1675–1678. [Google Scholar] [CrossRef]
- Niculescu, O.; Dimitriu, D.G. On the generation of stable complex oscillations in low temperature plasma. Rom. J. Phys. 2009, 54, 577–584. [Google Scholar]
- Enescu, F.; Cucu, R.G.; Dimitriu, D.G.; Ionita, C.; Schrittwieser, R.W. Space charge structures on gridded coaxial cylinders. In Proceedings of the XXXVth International Conference on Phenomena in Ionized Gases (ICPIG), Egmond aan Zee, The Netherlands, 9–14 July 2023. [Google Scholar]
- NIST Atomic Spectra Database (Version 5.12). Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 28 April 2025).
Plasma Species | λ (nm) | Aki (s−1) | Ei (eV) | Ek (eV) | gk |
---|---|---|---|---|---|
Ar I (neutral) | 696.543 | 6.40 × 106 | 11.548 | 13.329 | 3 |
Ar I (neutral) | 738.398 | 8.50 × 106 | 11.624 | 13.302 | 5 |
Ar I (neutral) | 763.511 | 2.45 × 107 | 11.548 | 13.172 | 5 |
Ar I (neutral) | 811.531 | 3.30 × 107 | 11.548 | 13.076 | 7 |
Ar I (neutral) | 842.465 | 2.15 × 107 | 11.624 | 13.095 | 5 |
Ar II (ion) | 392.571 | 1.40 × 108 | 21.127 | 24.284 | 4 |
Ar II (ion) | 487.986 | 8.23 × 107 | 17.140 | 19.680 | 6 |
Ar II (ion) | 427.752 | 8.00 × 107 | 18.450 | 21.352 | 4 |
Ar II (ion) | 420.197 | 2.10 × 106 | 16.812 | 19.762 | 4 |
Position | T (K) | ne (cm−1) |
---|---|---|
Center of the sphere | 5939 | 1.45 × 109 |
In the orifice | 6000 | 3.56 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enescu, F.; Ionita, C.; Dimitriu, D.G.; Schrittwieser, R. Space Charge Structures on Spherical Hollow Electrodes. Plasma 2025, 8, 30. https://doi.org/10.3390/plasma8030030
Enescu F, Ionita C, Dimitriu DG, Schrittwieser R. Space Charge Structures on Spherical Hollow Electrodes. Plasma. 2025; 8(3):30. https://doi.org/10.3390/plasma8030030
Chicago/Turabian StyleEnescu, Florin, Codrina Ionita, Dan Gheorghe Dimitriu, and Roman Schrittwieser. 2025. "Space Charge Structures on Spherical Hollow Electrodes" Plasma 8, no. 3: 30. https://doi.org/10.3390/plasma8030030
APA StyleEnescu, F., Ionita, C., Dimitriu, D. G., & Schrittwieser, R. (2025). Space Charge Structures on Spherical Hollow Electrodes. Plasma, 8(3), 30. https://doi.org/10.3390/plasma8030030