Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (973)

Search Parameters:
Keywords = DNA libraries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 616 KiB  
Article
Alterations in the Microbiome of Horses Affected with Fecal Water Syndrome
by Madison M. Porter, Daniel J. Davis, Zachary L. McAdams, Kile S. Townsend, Lynn M. Martin, Christopher Wilhite, Philip J. Johnson and Aaron C. Ericsson
Vet. Sci. 2025, 12(8), 724; https://doi.org/10.3390/vetsci12080724 (registering DOI) - 31 Jul 2025
Abstract
Fecal water syndrome (FWS) in horses is characterized by two-phase defecation, including both solid and liquid phases. While satisfactory explanations for FWS are unavailable, bacterial dysbiosis has been suggested as a contributing or causative factor. The objectives of this study were to determine [...] Read more.
Fecal water syndrome (FWS) in horses is characterized by two-phase defecation, including both solid and liquid phases. While satisfactory explanations for FWS are unavailable, bacterial dysbiosis has been suggested as a contributing or causative factor. The objectives of this study were to determine whether fecal bacterial dysbiosis is associated with FWS in horses in the midwestern USA. Fecal samples were collected from horses with FWS and from unaffected horses at the same location. In total, 16S rRNA amplicon libraries produced from fecal bacterial DNA were sequenced using the Illumina sequencing platform. Significant differences in beta diversity were detected between affected and control horses (p = 7 × 10−4, F = 1.51), and differential abundance testing identified several features enriched in affected and control horses. These results agree with prior work regarding specific features in the bacterial microbiome associated with FWS, including Alloprevotella spp., and suggest fecal dysbiosis is associated with FWS. Full article
20 pages, 5587 KiB  
Article
Rapid and Robust Generation of Homozygous Fluorescent Reporter Knock-In Cell Pools by CRISPR-Cas9
by Jicheng Yang, Fusheng Guo, Hui San Chin, Gao Bin Chen, Ziyan Zhang, Lewis Williams, Andrew J. Kueh, Pierce K. H. Chow, Marco J. Herold and Nai Yang Fu
Cells 2025, 14(15), 1165; https://doi.org/10.3390/cells14151165 - 29 Jul 2025
Viewed by 241
Abstract
Conventional methods for generating knock-out or knock-in mammalian cell models using CRISPR-Cas9 genome editing often require tedious single-cell clone selection and expansion. In this study, we develop and optimise rapid and robust strategies to engineer homozygous fluorescent reporter knock-in cell pools with precise [...] Read more.
Conventional methods for generating knock-out or knock-in mammalian cell models using CRISPR-Cas9 genome editing often require tedious single-cell clone selection and expansion. In this study, we develop and optimise rapid and robust strategies to engineer homozygous fluorescent reporter knock-in cell pools with precise genome editing, circumventing clonal variability inherent to traditional approaches. To reduce false-positive cells associated with random integration, we optimise the design of donor DNA by removing the start codon of the fluorescent reporter and incorporating a self-cleaving T2A peptide system. Using fluorescence-assisted cell sorting (FACS), we efficiently identify and isolate the desired homozygous fluorescent knock-in clones, establishing stable cell pools that preserve parental cell line heterogeneity and faithfully reflect endogenous transcriptional regulation of the target gene. We evaluate the knock-in efficiency and rate of undesired random integration in the electroporation method with either a dual-plasmid system (sgRNA and donor DNA in two separate vectors) or a single-plasmid system (sgRNA and donor DNA combined in one vector). We further demonstrate that coupling our single-plasmid construct with an integrase-deficient lentivirus vector (IDLV) packaging system efficiently generates fluorescent knock-in reporter cell pools, offering flexibility between electroporation and lentivirus transduction methods. Notably, compared to the electroporation methods, the IDLV system significantly minimises random integration. Moreover, the resulting reporter cell lines are compatible with most of the available genome-wide sgRNA libraries, enabling unbiased CRISPR screens to identify key transcriptional regulators of a gene of interest. Overall, our methodologies provide a powerful genetic tool for rapid and robust generation of fluorescent reporter knock-in cell pools with precise genome editing by CRISPR-Cas9 for various research purposes. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Viewed by 443
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Graphical abstract

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 157
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 2062 KiB  
Article
Building a DNA Reference for Madagascar’s Marine Fishes: Expanding the COI Barcode Library and Establishing the First 12S Dataset for eDNA Monitoring
by Jean Jubrice Anissa Volanandiana, Dominique Ponton, Eliot Ruiz, Andriamahazosoa Elisé Marcel Fiadanamiarinjato, Fabien Rieuvilleneuve, Daniel Raberinary, Adeline Collet, Faustinato Behivoke, Henitsoa Jaonalison, Sandra Ranaivomanana, Marc Leopold, Roddy Michel Randriatsara, Jovial Mbony, Jamal Mahafina, Aaron Hartmann, Gildas Todinanahary and Jean-Dominique Durand
Diversity 2025, 17(7), 495; https://doi.org/10.3390/d17070495 - 18 Jul 2025
Viewed by 436
Abstract
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, [...] Read more.
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, this study aims to strengthen biodiversity monitoring tools. Its objectives were to enrich the COI database for Malagasy marine fishes, create the first 12S reference library, and evaluate the taxonomic resolution of different 12S metabarcodes for eDNA analysis, namely MiFish, Teleo1, AcMDB, Ac12S, and 12SF1/R1. An integrated approach combining morphological, molecular, and phylogenetic analyses was applied for specimen identification of fish captured using various types of fishing gear in Toliara and Ranobe Bays from 2018 to 2023. The Malagasy COI database now includes 2146 sequences grouped into 502 Barcode Index Numbers (BINs) from 82 families, with 14 BINs newly added to BOLD (The Barcode of Life Data Systems), and 133 cryptic species. The 12S library comprises 524 sequences representing 446 species from 78 families. Together, the genetic datasets cover 514 species from 84 families, with the most diverse being Labridae, Apogonidae, Gobiidae, Pomacentridae, and Carangidae. However, the two markers show variable taxonomic resolution: 67 species belonging to 35 families were represented solely in the COI dataset, while 10 species from nine families were identified exclusively in the 12S dataset. For 319 species with complete 12S gene sequences associated with COI BINs (Barcode Index Numbers), 12S primer sets were used to evaluate the taxonomic resolution of five 12S metabarcodes. The MiFish marker proved to be the most effective, with an optimal similarity threshold of 98.5%. This study represents a major step forward in documenting and monitoring Madagascar’s marine biodiversity and provides a valuable genetic reference for future environmental DNA (eDNA) applications. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

16 pages, 810 KiB  
Review
Synergizing Liquid Biopsy and Hybrid PET Imaging for Prognostic Assessment in Prostate Cancer: A Focus Review
by Federica Stracuzzi, Sara Dall’ Armellina, Gayane Aghakhanyan, Salvatore C. Fanni, Giacomo Aringhieri, Lorenzo Faggioni, Emanuele Neri, Duccio Volterrani and Dania Cioni
Biomolecules 2025, 15(7), 1041; https://doi.org/10.3390/biom15071041 - 18 Jul 2025
Viewed by 350
Abstract
Positron emission tomography (PET) and liquid biopsy have independently transformed prostate cancer management. This review explores the complementary roles of PET imaging and liquid biopsy in prostate cancer, focusing on their combined diagnostic, monitoring, and prognostic potential. A systematic search of PubMed, Scopus, [...] Read more.
Positron emission tomography (PET) and liquid biopsy have independently transformed prostate cancer management. This review explores the complementary roles of PET imaging and liquid biopsy in prostate cancer, focusing on their combined diagnostic, monitoring, and prognostic potential. A systematic search of PubMed, Scopus, and Cochrane Library databases was conducted to identify human studies published in English up to January 2025. Seventeen studies met the inclusion criteria and were analyzed according to PRISMA guidelines. Across the included studies, PET-derived imaging metrics, such as metabolic activity and radiotracer uptake, correlated consistently with liquid biopsy biomarkers, including circulating tumor cells and cell-free DNA. Their joint application demonstrated added value in early detection, treatment monitoring, and outcome prediction, particularly in castration-resistant prostate cancer. Independent and synergistic prognostic value was noted for both modalities, including survival outcomes such as overall survival and progression-free survival. Combining PET imaging and liquid biopsy emerges as a promising, non-invasive strategy for improving prostate cancer diagnosis, monitoring, and therapeutic stratification. While preliminary findings are encouraging, large-scale prospective studies are essential to validate their integrated clinical utility. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

22 pages, 1889 KiB  
Review
DNA-Barcoding for Cultivar Identification and Intraspecific Diversity Analysis of Agricultural Crops
by Lidiia S. Samarina, Natalia G. Koninskaya, Ruset M. Shkhalakhova, Taisiya A. Simonyan and Daria O. Kuzmina
Int. J. Mol. Sci. 2025, 26(14), 6808; https://doi.org/10.3390/ijms26146808 - 16 Jul 2025
Viewed by 239
Abstract
DNA barcoding of intraspecific diversity of agricultural crops is important to develop the genetic passports of valuable genotypes and cultivars. The advantage of DNA-barcoding as compared to traditional genotyping of cultivars is that the procedure can be unified and applied for the broad [...] Read more.
DNA barcoding of intraspecific diversity of agricultural crops is important to develop the genetic passports of valuable genotypes and cultivars. The advantage of DNA-barcoding as compared to traditional genotyping of cultivars is that the procedure can be unified and applied for the broad range of accessions. This not only makes it cost efficient, but also allows to develop open access genetic databases to accumulate information of the world’s germplasm collections of different crops. In this regard, the aim of the review was to analyze the latest research in this field, including the selection of loci, universal primers, strategies of amplicons analysis, bioinformatic tools, and the development of databases. We reviewed the advantages and disadvantages of each strategy with the focus of cultivars identification. The data indicates that following chloroplast loci are the most prominent for the intraspecific diversity analysis: (trnE-UUC/trnT-GUU, rpl23/rpl2.l, psbA-trnH, trnL-trnF, trnK, rpoC1, ycf1-a, rpl32-trnL, trnH-psbA and matK). We suggest that the combination of three or four of these loci can be a sufficient DNA barcode for cultivar-level identification. This combination has to be selected for each crop. Advantages and disadvantages of different approaches of amplicons analysis are discussed. The bioinformatic tools and databases for the plant barcoding are reviewed. This review will be useful for selecting appropriate strategies for barcoding of intraspecific diversity of agricultural crops to develop genetic passports of valuable cultivars in germplasm collections worldwide. Full article
Show Figures

Figure 1

18 pages, 3021 KiB  
Article
Pseudohypoxia-Stabilized HIF2α Transcriptionally Inhibits MNRR1, a Druggable Target in MELAS
by Neeraja Purandare, Vignesh Pasupathi, Yue Xi, Vikram Rajan, Caleb Vegh, Steven Firestine, Tamas Kozicz, Andrew M. Fribley, Lawrence I. Grossman and Siddhesh Aras
Cells 2025, 14(14), 1078; https://doi.org/10.3390/cells14141078 - 15 Jul 2025
Viewed by 560
Abstract
The mitochondrial regulator MNRR1 is reduced in several pathologies, including the mitochondrial heteroplasmic disease MELAS, and genetic restoration of its level normalizes the pathological phenotype. Here, we investigate the upstream mechanism that reduces MNRR1 levels. We have identified the hypoxic regulator HIF2α to [...] Read more.
The mitochondrial regulator MNRR1 is reduced in several pathologies, including the mitochondrial heteroplasmic disease MELAS, and genetic restoration of its level normalizes the pathological phenotype. Here, we investigate the upstream mechanism that reduces MNRR1 levels. We have identified the hypoxic regulator HIF2α to bind the MNRR1 promoter and inhibit transcription by competing with RBPJκ. In MELAS cells, there is a pseudohypoxic state that transcriptionally induces HIF2α and stabilizes HIF2α protein. MELAS cybrids harboring the m.3243A > G mutation display reduced levels of prolyl hydroxylase 3 (PHD3), which contributes to the HIF2α stabilization. These results prompted a search for compounds that could increase MNRR1 levels pharmacologically. The screening of a 2400-compound library uncovered the antifungal drug nitazoxanide and its metabolite tizoxanide as enhancers of MNRR1 transcription. We show that treating MELAS cybrids with tizoxanide restores cellular respiration, enhances mitophagy, and, importantly, shifts heteroplasmy toward wild-type mtDNA. Furthermore, in fibroblasts from MELAS patients, the compound improves mitochondrial biogenesis, enhances autophagy, and protects from LPS-induced inflammation. Mechanistically, nitazoxanide reduces HIF2α levels by increasing PHD3. Chemical activation of MNRR1 is thus a potential strategy to improve mitochondrial deficits seen in MELAS. Finally, our data suggests a broader physiological pathway wherein two proteins, induced under severe (1% O2; HIF2α) and moderate (4% O2; MNRR1) hypoxic conditions, regulate each other inversely. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

13 pages, 2331 KiB  
Communication
The Power of Old Hats: Rediscovering Inosine-EpPCR to Create Starting Libraries for Whole-Cell-SELEX
by Grigory Bolotnikov, Ann-Kathrin Kissmann, Daniel Gruber, Andreas Bellmann, Roger Hasler, Christoph Kleber, Wolfgang Knoll and Frank Rosenau
Biosensors 2025, 15(7), 448; https://doi.org/10.3390/bios15070448 - 12 Jul 2025
Viewed by 404
Abstract
Shaking off the forgetfulness towards the methodological power of inosine-mediated error-prone PCR (epPCR), this study reintroduces an often-underappreciated method as a considerably powerful approach for generating aptamer libraries from a single decameric ATCG-repeat-oligonucleotide. The aim was to demonstrate that this simple way of [...] Read more.
Shaking off the forgetfulness towards the methodological power of inosine-mediated error-prone PCR (epPCR), this study reintroduces an often-underappreciated method as a considerably powerful approach for generating aptamer libraries from a single decameric ATCG-repeat-oligonucleotide. The aim was to demonstrate that this simple way of creating sequence diversity was suitable for delivering functional starting libraries for a set of ten whole-cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) processes. This epPCR method uses inosine to introduce targeted mutations, avoiding the need for commercial oligo pools or large-scale synthesis. We applied this method to a “universal aptamer” and subjected the three resulting libraries to two rounds of selection against ten diverse targets including probiotic and pathogenic bacteria (Gram-negative and -positive) as well as human cell lines. The enriched aptamers exhibited new binding specificities, demonstrating that the approach supports functional selection. Much like dusting off an old tool and finding it perfectly suited for a modern task, this work shows that revisiting established techniques can address current challenges in aptamer development. Our main finding is that epPCR provides a robust, cost-effective strategy for generating starting libraries and lowers the barrier for initiating successful SELEX campaigns. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

13 pages, 1496 KiB  
Article
Yeast Surface Display of Protein Addresses Confers Robust Storage and Access of DNA-Based Data
by Magdelene N. Lee, Gunavaran Brihadiswaran, Balaji M. Rao, James M. Tuck and Albert J. Keung
DNA 2025, 5(3), 34; https://doi.org/10.3390/dna5030034 - 9 Jul 2025
Viewed by 262
Abstract
Background/Objectives: The potential of DNA as an information-dense storage medium has inspired a broad spectrum of creative systems. In particular, hybrid biomolecular systems that integrate new materials and chemistries with DNA could drive novel functions. In this work, we explore the potential [...] Read more.
Background/Objectives: The potential of DNA as an information-dense storage medium has inspired a broad spectrum of creative systems. In particular, hybrid biomolecular systems that integrate new materials and chemistries with DNA could drive novel functions. In this work, we explore the potential for proteins to serve as molecular file addresses. We stored DNA-encoded data in yeast and leveraged yeast surface display to readily produce the protein addresses and make them easy to access on the cell surface. Methods: We generated yeast populations that each displayed a distinct protein on their cell surfaces. These proteins included binding partners for cognate antibodies as well as chromatin-associated proteins that bind post-translationally modified histone peptides. For each specific yeast population, we transformed a library of hundreds of DNA sequences collectively encoding a specific image file. Results: We first demonstrated that the yeast retained file-encoded DNA through multiple cell divisions without a noticeable skew in their distribution or a loss in file integrity. Second, we showed that the physical act of sorting yeast displaying a specific file address was able to recover the desired data without a loss in file fidelity. Finally, we showed that analog addresses can be achieved by using addresses that have overlapping binding specificities for target peptides. Conclusions: These results motivate further exploration into the advantages proteins may confer in molecular information storage. Full article
Show Figures

Figure 1

19 pages, 1875 KiB  
Systematic Review
PARP Inhibitors for Metastatic CRPC: More Answers than Questions, a Systematic Review and Meta-Analysis
by Ray Manneh, Javier Molina-Cerrillo, Guillermo de Velasco, Linda Ibatá, Susan Martínez, Álvaro Ruiz-Granados and Teresa Alonso-Gordoa
Pharmaceuticals 2025, 18(7), 1015; https://doi.org/10.3390/ph18071015 - 8 Jul 2025
Viewed by 439
Abstract
PARP inhibitors (PARPi), alone or in combination with androgen receptor signaling inhibitors (ARSi), have shown clinical benefit in metastatic castration-resistant prostate cancer (mCRPC), particularly in tumors with homologous recombination repair (HRR) gene alterations. Recent data from the TALAPRO-2 trial complete the current evidence [...] Read more.
PARP inhibitors (PARPi), alone or in combination with androgen receptor signaling inhibitors (ARSi), have shown clinical benefit in metastatic castration-resistant prostate cancer (mCRPC), particularly in tumors with homologous recombination repair (HRR) gene alterations. Recent data from the TALAPRO-2 trial complete the current evidence on PARPi–ARSi combination strategies in this setting. Background/Objectives: To evaluate the efficacy and safety of PARPi-based therapies—monotherapy and combination with ARSi—in patients with mCRPC, focusing on molecular subgroups defined by DNA repair alterations. Methods: We conducted a systematic review and meta-analysis of phase III randomized controlled trials (RCTs) assessing PARPi as monotherapy or in combination with ARSi. Searches were performed in PubMed, EMBASE, the Cochrane Library, and oncology conference proceedings up to February 2025. Outcomes included radiographic progression-free survival (rPFS), overall survival (OS), second progression-free survival (PFS2), and grade ≥3 adverse events (AEs). Data were pooled using a random-effects model, with subgroup analyses by DNA repair status. Results: Five RCTs (n = 2921) were I confirmincluded: three on combination therapy (n = 2271) and two on monotherapy (n = 650). Combination therapy improved rPFS in the ITT (HR = 0.64; 95% CI: 0.56–0.74), HRRm (HR = 0.55; 95% CI: 0.44–0.68), and BRCAm (HR = 0.33; 95% CI: 0.18–0.58) subgroups. OS was also improved in the ITT (HR = 0.80; 95% CI: 0.70–0.92), HRRm (HR = 0.68; 95% CI: 0.55–0.83), and BRCAm (HR = 0.54; 95% CI: 0.34–0.85) groups. No benefit was observed in non-HRRm patients. PFS2 favored combination therapy (HR = 0.77; 95% CI: 0.64–0.91). Grade ≥3 AEs were more frequent (RR = 1.44; 95% CI: 1.20–1.73). Monotherapy improved rPFS in ITT (HR = 0.46; 95% CI: 0.20–0.81) and BRCAm (HR = 0.33; 95% CI: 0.15–0.75); OS benefit was seen only in BRCAm (HR = 0.73; 95% CI: 0.57–0.95). Conclusions: PARPi therapies improve outcomes mainly in HRR- and BRCA-mutated mCRPC. Molecular selection is key to optimizing benefit and minimizing toxicity. Further research on the activity of PARPi combinations in non-HRR mutated mCRPC is needed to better understand the underlying mechanisms of efficacy. Full article
(This article belongs to the Special Issue Advances in Prostate Cancer Therapeutics)
Show Figures

Figure 1

15 pages, 3189 KiB  
Article
Cryptic Diversity and Climatic Niche Divergence of Brillia Kieffer (Diptera: Chironomidae): Insights from a Global DNA Barcode Dataset
by Hai-Feng Xu, Meng-Yu Lv, Yu Zhao, Zhi-Chao Zhang, Zheng Liu and Xiao-Long Lin
Insects 2025, 16(7), 675; https://doi.org/10.3390/insects16070675 - 27 Jun 2025
Viewed by 517
Abstract
Accurate species identification of small aquatic insects remains challenging due to their morphological similarities. This study addresses this issue by developing a DNA barcode reference library for the globally distributed Brillia (Diptera: Chironomidae). We analyzed cytochrome c oxidase subunit I (COI) sequences of [...] Read more.
Accurate species identification of small aquatic insects remains challenging due to their morphological similarities. This study addresses this issue by developing a DNA barcode reference library for the globally distributed Brillia (Diptera: Chironomidae). We analyzed cytochrome c oxidase subunit I (COI) sequences of 241 specimens belonging to 13 Brillia species from 18 countries, including 56 newly generated and 185 publicly available COI barcodes. Our integrated approach included genetic distance analysis, haplotype network construction, and ecological niche modeling. The results revealed remarkable cryptic diversity, with sequences clustering into 30 Barcode Index Numbers and 158 unique haplotypes, most being region-specific. Notably, East Asian and North American populations showed complete genetic distinctness, suggesting long-term isolation. Environmental factors, particularly temperature and precipitation gradients, were identified as key drivers of this diversification. The study also corrected several misidentifications in existing databases. These findings significantly advance our understanding of Brillia diversity and provide a reliable molecular tool for freshwater ecosystem monitoring, with important implications for biodiversity conservation and environmental assessment. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

15 pages, 2600 KiB  
Article
Substituted Triazole-3,5-Diamine Compounds as Novel Human Topoisomerase III Beta Inhibitors
by Yasir Mamun, Somaia Haque Chadni, Ramanjaneyulu Rayala, Hasham Shafi, Shomita Ferdous, Rudramani Pokhrel, Adel Nefzi, Prem Chapagain and Yuk-Ching Tse-Dinh
Int. J. Mol. Sci. 2025, 26(13), 6193; https://doi.org/10.3390/ijms26136193 - 27 Jun 2025
Viewed by 438
Abstract
Human topoisomerase III beta (hTOP3B) is a unique and important enzyme in human cells that plays a role in maintaining genome stability, affecting cellular aging, and potentially impacting viral replication. Its dual activity on both DNA and RNA makes it a valuable target [...] Read more.
Human topoisomerase III beta (hTOP3B) is a unique and important enzyme in human cells that plays a role in maintaining genome stability, affecting cellular aging, and potentially impacting viral replication. Its dual activity on both DNA and RNA makes it a valuable target for therapeutic interventions. hTOP3B has been shown to be required for the efficient replication of certain positive-sense ssRNA viruses including Dengue. We performed in silico screening of a library comprising drugs that are FDA-approved or undergoing clinical trials as potential drugs to identify potential inhibitors of hTOP3B. The topoisomerase activity assay of the identified virtual hits showed that bemcentinib, a compound known to target the AXL receptor tyrosine kinase, can inhibit hTOP3B relaxation activity. This is the first small molecule shown to inhibit the complete catalytic cycle of hTOP3B for the potential interference of the function of hTOP3B in antiviral application. Additional small molecules that share the N5,N3-1H-1,2,4-triazole-3,5-diamine moiety of bemcentinib were synthesized and tested for the inhibition of hTOP3B relaxation activity. Five compounds with comparable IC50 to that of bemcentinib for the inhibition of hTOP3B were identified. These results suggest that the exploration of tyrosine kinase inhibitors and their analogs may allow the identification of novel potential topoisomerase inhibitors. Full article
(This article belongs to the Special Issue Small Molecule Drug Design and Research: 3rd Edition)
Show Figures

Figure 1

14 pages, 4745 KiB  
Article
Development of Detection Method Using Dried Blood Spot with Next-Generation Sequencing and LabDroid for Gene Doping Control
by Kiyoshi Maehara, Atsushi Hirokawa, Hinata Watanabe, Norihiro Otani, Jiawei Wan, Takanaga Shirai, Tohru Takemasa, Koichi Watanabe, Takeki Nishi, Ken Sato, Suzuka Shimmura, Kieu D. M. Nguyen, Yoichiro Takahashi and Takehito Sugasawa
Int. J. Mol. Sci. 2025, 26(13), 6129; https://doi.org/10.3390/ijms26136129 - 26 Jun 2025
Viewed by 511
Abstract
In recent years, as gene therapy technology has rapidly developed, there has been growing concern that it could be misused by athletes as a means of doping. However, current testing methods for gene doping have a range of limitations and require further improvement. [...] Read more.
In recent years, as gene therapy technology has rapidly developed, there has been growing concern that it could be misused by athletes as a means of doping. However, current testing methods for gene doping have a range of limitations and require further improvement. Furthermore, significant progress has been made in the fields of blood storage, next-generation sequencing (NGS), and LabDroid (experimental robots). Against this background, this study was implemented to develop a test method for gene doping using dried blood spot (DBS), NGS, and the LabDroid ”Maholo”. As a first step, recombinant adeno-associated virus containing the human erythropoietin gene (hEPO) was injected into mice to establish a gene doping model. Subsequently, DBS was created using whole blood. Maholo was used to extract DNA from the DBS and to create DNA libraries for NGS. NGS in combination with bioinformatic analysis clearly identified DNA fragments that provided definitive evidence of gene doping in the mouse model, which were absent in the control mouse. To the best of our knowledge, this is the first attempt to use a biological model of hEPO gene doping in conjunction with Maholo, NGS, and DBS. This method should facilitate the further development of gene doping tests. Full article
(This article belongs to the Special Issue Gene Doping Control)
Show Figures

Graphical abstract

19 pages, 3395 KiB  
Article
Identification and Characterization of Novel Inhibitors of Human Poly(ADP-Ribose) Polymerase-1
by Ibrahim Morgan, Robert Rennert, Robert Berger, Ahmed Hassanin, Mehdi D. Davari, Daniela Eisenschmidt-Bönn and Ludger A. Wessjohann
Molecules 2025, 30(13), 2728; https://doi.org/10.3390/molecules30132728 - 25 Jun 2025
Viewed by 615
Abstract
Poly(ADP-ribose) polymerases (PARP) are a family of enzymes that were proven to play an essential role in the initiation and activation of DNA repair processes in the case of DNA single-strand breaks. The inhibition of PARP enzymes might be a promising option for [...] Read more.
Poly(ADP-ribose) polymerases (PARP) are a family of enzymes that were proven to play an essential role in the initiation and activation of DNA repair processes in the case of DNA single-strand breaks. The inhibition of PARP enzymes might be a promising option for the treatment of several challenging types of cancers, including triple-negative breast cancer (TNBC) and non-small cell lung carcinoma (NSCLC). This study utilizes several techniques to screen the compound collection of the Leibniz Institute of Plant Biochemistry (IPB) to identify novel hPARP-1 inhibitors. First, an in silico pharmacophore-based docking study was conducted to virtually screen compounds with potential inhibitory effects. To evaluate these compounds in vitro, a cell-free enzyme assay was developed, optimized, and employed to identify hPARP-1 inhibitors, resulting in the discovery of two novel scaffolds represented by compounds 54 and 57, with the latter being the most active one from the compound library. Furthermore, fluorescence microscopy and synergism assays were performed to investigate the cellular and nuclear pathways of hPARP-1 inhibitor 57 and its potential synergistic effect with the DNA-damaging agent temozolomide. The findings suggest that the compound requires further lead optimization to enhance its ability to target the nuclear PARP enzyme effectively. Nonetheless, this new scaffold demonstrated a five-fold higher PARP inhibitory activity at the enzyme level compared to the core structure of olaparib (OLP), phthalazin-1(2H)-one. Full article
Show Figures

Figure 1

Back to TopTop