Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = DC side voltage balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9300 KiB  
Article
Decoupling Control for the HVAC Port of Power Electronic Transformer
by Wusong Wen, Tianwen Zhan, Yingchao Zhang and Jintong Nie
Energies 2025, 18(15), 4131; https://doi.org/10.3390/en18154131 - 4 Aug 2025
Abstract
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to [...] Read more.
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to simultaneously realize the functions of active power control, reactive power compensation, and active power filtering. In the outer power control loop, according to the distribution rule of decoupled average active power components in three phases, stability control for the sum of cluster average active power flows is realized by injecting positive-sequence active current, so as to control the average cluster voltage (i.e., the average of all the DC-link capacitor voltages), and by injecting negative-sequence current, the cluster average active power flows can be controlled individually to balance the three cluster voltages (i.e., the average of the DC-link capacitor voltages in each cluster). The negative-sequence reactive power component is considered to realize the reactive power compensation. In the inner current control loop, the fundamental and high-order harmonic components are uniformly controlled in the positive-sequence dq frame using the PI + VPIs (vector proportional integral) controller, and the harmonic filtering function is realized while the fundamental positive-sequence current is adjusted. Experiments performed on the 380 V/50 kVA laboratory HVAC-PET verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 205
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

23 pages, 6307 KiB  
Article
Enhanced Sliding Mode Control for Dual MPPT Systems Integrated with Three-Level T-Type PV Inverters
by Farzaneh Bagheri, Jakson Bonaldo, Naki Guler, Marco Rivera, Patrick Wheeler and Rogerio Lima
Energies 2025, 18(13), 3344; https://doi.org/10.3390/en18133344 - 26 Jun 2025
Viewed by 379
Abstract
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L [...] Read more.
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L T-Type VSI) is known for its reduced switching losses, improved harmonic distortion, and reduced part count in comparison to other three-level topologies. In this paper, a novel architecture is proposed to integrate the dual MPPT structure directly to each DC-side split capacitor of the 3L T-Type VSI, taking advantage of the intrinsic characteristics of the inverter’s topology. Further performance enhancement is achieved by integrating a classical MPPT strategy to the control framework to make it feasible for a real-case grid integration. The combination of these methods ensures faster and stable tracking under dynamic irradiance conditions. Considering that strategies dedicated to balancing the DC-link capacitor’s voltage slightly affect the AC-side current waveform, an enhanced sliding mode control (SMC) strategy tailored for dual MPPT and 3L T-Type VSI is deployed, combining the simplicity of conventional PI controllers used in the independent MPPT-based DC-DC converters with the superior robustness and dynamic performance of SMC. Real-time results obtained using the OPAL-RT Hardware-in-the-Loop platform validated the performance of the proposed control strategy under realistic test scenarios. The current THD was maintained below 4.8% even under highly distorted grid conditions, and the controller achieved a steady state within approximately 15 ms following perturbations in the DC-link voltage, sudden irradiance variations, and voltage sags and swells. Additionally, the power factor remained unitary, enhancing power transfer from the renewable source to the grid. The proposed system was able to achieve efficient power extraction while maintaining high power quality (PQ) standards for the output, positioning it as a practical and flexible solution for advanced solar PV systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 5182 KiB  
Article
Nominalization of Split DC Link Voltage Dynamics in Three-Phase Three-Level Converters Operating Under Arbitrary Power Factor with Restricted Zero-Sequence Component
by Yan Vule and Alon Kuperman
Electronics 2025, 14(13), 2524; https://doi.org/10.3390/electronics14132524 - 21 Jun 2025
Viewed by 470
Abstract
The paper focuses on linearization of split DC link voltage dynamics and balancing their respective average values in three-phase three-level AC/DC converters. It was recently demonstrated that both AC-side current magnitude and operating power factor impact the dynamics of partial DC link voltage [...] Read more.
The paper focuses on linearization of split DC link voltage dynamics and balancing their respective average values in three-phase three-level AC/DC converters. It was recently demonstrated that both AC-side current magnitude and operating power factor impact the dynamics of partial DC link voltage difference, imposing the time-varying behavior of split DC link voltages when a typical linear time-invariant compensator, e.g., proportional or proportional–integrative, is utilized. Consequently, robust split DC link voltage balancing loops would be beneficial. The case of a bandwidth-restricted (DC in a steady state) zero-sequence component employed as a control signal to equalize average partial DC link voltages is considered in this work. It is proposed to nominalize the dynamics of partial DC link voltage difference by means of a linear disturbance observer based on a frequency-selective filter so that the modified dynamics become linear and nearly nominal from a compensator point of view. As a result, the closed-loop response becomes time-invariant—a desirable characteristic of any practical system. Simulations validate the proposed methodology applied to a 10 kVA T-type converter model. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

13 pages, 2572 KiB  
Article
Predictive Control for Grid-Forming Single-Stage PV System Without Energy Storage
by Xiao Zeng, Pengcheng Yang, Hongda Cai, Jing Li, Yanghong Xia and Wei Wei
Sustainability 2025, 17(11), 5227; https://doi.org/10.3390/su17115227 - 5 Jun 2025
Viewed by 541
Abstract
Unlike diesel generators or energy storage systems, photovoltaic (PV) arrays lack inherent rotational inertia and have output limitations due to their operational environmental dependencies. These characteristics restrict their suitability as primary power system backbone components. This study proposes a grid-forming (GF) control strategy [...] Read more.
Unlike diesel generators or energy storage systems, photovoltaic (PV) arrays lack inherent rotational inertia and have output limitations due to their operational environmental dependencies. These characteristics restrict their suitability as primary power system backbone components. This study proposes a grid-forming (GF) control strategy for PV inverters in low voltage grid (LVG) using a model predictive control (MPC) approach. The proposed method introduces a novel predictive model accounting for capacitor dynamics to precisely regulate both AC-side output voltage and DC-side voltage. Furthermore, in this paper, P-V droop control replaces the traditional frequency regulation, achieving the real-time balance of DC/AC power and seamless sharing of multiple photovoltaic power sources. By integrating a modified cost function, the controller can flexibly switch between maximum power point tracking (MPPT) mode and power reserve mode according to varying output demands. The proposed strategy can provide advanced frequency stability, MPPT accuracy, and fast dynamic response under rapidly changing solar irradiance and load conditions. Simulation and experimental tests are carried out to validate the effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

31 pages, 11718 KiB  
Article
Performance Evaluation of LMPO-Based MPPT Technique for Two-Stage GIPV System with LCL Under Various Meteorological Conditions
by Jaswant Singh, Surya Prakash Singh and Kripa S. Verma
Processes 2025, 13(3), 849; https://doi.org/10.3390/pr13030849 - 14 Mar 2025
Viewed by 661
Abstract
This paper presents a variable step-size efficient learning modified P&O (LMPO) MPPT algorithm and adaptive proportional–integral (API)-based control techniques for a two-stage three-phase grid-integrated photovoltaic (TS-GIPV) system using an LCL filter. The proposed novel controlled technique introduces two-stage systems under different meteorological conditions [...] Read more.
This paper presents a variable step-size efficient learning modified P&O (LMPO) MPPT algorithm and adaptive proportional–integral (API)-based control techniques for a two-stage three-phase grid-integrated photovoltaic (TS-GIPV) system using an LCL filter. The proposed novel controlled technique introduces two-stage systems under different meteorological conditions and load deviations. The two-stage system with the presented control technique includes maximum power point tracking (MPPT) techniques, intermediate DC-link voltage, and grid current synchronization with a voltage source converter (VSC), respectively. This technique is implemented to improve the extract MPP of the solar PV generator system. An innovative grid-side VSC control technique addresses DC link regulation. Furthermore, this method regulates DC link voltage with an outer voltage loop and an inner current loop controller. Distinctively, the proposed technique regulates the inner loop while avoiding the outer loop. A control mechanism uses an API controller to regulate DC link voltage, distribute power, and synchronize grid current in the face of different scenarios. The fluctuating voltage of the DC link will be kept stable through power balancing. Hence, this technique improves the system stability, dynamic response, and component longevity by effectively reducing oscillations in the fluctuating DC link voltage at twice the grid frequency. The total harmonic distortion (THD%) of the grid currents of the PV power generated in the grid is maintained within the recommended limits. The proposed technique is simulated and verified through MATLAB/Simulink 2019b under different scenarios. Full article
Show Figures

Figure 1

17 pages, 6095 KiB  
Article
The Coordinated Control Strategy of Cascaded Voltage-Source Converter
by Hong Shen, Qinghua Kuang, Kailong Chen, Xiaofeng Sun and Kedi Guan
Electronics 2025, 14(3), 576; https://doi.org/10.3390/electronics14030576 - 31 Jan 2025
Cited by 1 | Viewed by 769
Abstract
In the field of electric vehicle charging, achieving fast charging at the current mainstream voltage levels of 800 V or 1000 V typically requires the use of a cascaded voltage-source converter to generate higher output voltages. However, traditional cascaded voltage-source converters often rely [...] Read more.
In the field of electric vehicle charging, achieving fast charging at the current mainstream voltage levels of 800 V or 1000 V typically requires the use of a cascaded voltage-source converter to generate higher output voltages. However, traditional cascaded voltage-source converters often rely on two-stage independent control, making them vulnerable to voltage imbalances in the power grid. To address these challenges and simplify control while reducing current distortion and imbalance on the grid side, this paper proposes a coordinated control strategy for cascaded voltage-source converters. The proposed strategy unifies the control of both the front and rear stages, allowing for coordinated adjustment of the grid-side current and output voltage by leveraging the degrees of freedom of both stages. Notably, this approach eliminates the need to sample the DC link voltage, resulting in improved stability and balance in the grid-side current and output voltage. Simulations and experimental results demonstrate the effectiveness and superiority of the proposed control strategy. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

16 pages, 4182 KiB  
Article
A Power Circulating Suppression Method for Parallel Transient Inverters with Instantaneous Phase Angle Compensation
by Shengxian Ji, Fei Xiao, Guisheng Jie, Shan Gao and Jiamin Ye
Energies 2024, 17(17), 4368; https://doi.org/10.3390/en17174368 - 1 Sep 2024
Cited by 1 | Viewed by 980
Abstract
A unidirectional link is typically incorporated into the DC input side of an inverter to ensure the reliability and stability of the microgrid power supply. Due to impedance and control variations among inverters, circulating currents may rapidly arise during the operation of parallel [...] Read more.
A unidirectional link is typically incorporated into the DC input side of an inverter to ensure the reliability and stability of the microgrid power supply. Due to impedance and control variations among inverters, circulating currents may rapidly arise during the operation of parallel transient inverters. Nonetheless, the unidirectional power circulating in a DC unidirectional link results in energy accumulation on the DC side, causing DC bus voltage pumping and affecting MGs’ operation safety and stability. This paper proposes a non-communication-based circulation suppression strategy to suppress power circulation in parallel transients based on the local information of inverters. First, a parallel transient is modeled, and the power circulation phenomenon and its influencing factors are analyzed. Then, the instantaneous power and absorbed active energy are calculated to adjust the phase of the inverter output voltage and suppress power circulation. Moreover, the output frequency is adjusted to balance the DC-side voltage of each inverter. Then, the stability of the parallel system after adding the circulation suppression control strategy is verified using the Lyapunov function method. Finally, simulation and experimental results verify the effectiveness of the proposed power circulation suppression strategy. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 12090 KiB  
Article
Modulation and Control Schemes of Parallel FCC-CSC with DC Current Balance
by Xuehan Chen, Qiang Gao, Siqi Wang and Dianguo Xu
Energies 2024, 17(17), 4212; https://doi.org/10.3390/en17174212 - 23 Aug 2024
Viewed by 919
Abstract
Incorporating AC-type flying capacitors (FC) between series-connected devices is an effective way to enhance the rated voltage for high-power applications based on current source converters (CSCs). Through appropriate modulation and FC voltage control, it is possible to achieve improved DC bus voltage quality [...] Read more.
Incorporating AC-type flying capacitors (FC) between series-connected devices is an effective way to enhance the rated voltage for high-power applications based on current source converters (CSCs). Through appropriate modulation and FC voltage control, it is possible to achieve improved DC bus voltage quality with reduced common-mode voltage (CMV) and low dv/dt. On the other hand, the parallel CSC is a popular choice for increasing the system’s rated current to accommodate higher power applications. The use of interleaved modulation techniques can improve the harmonic performance of parallel converters while reducing the need for passive filters. The modular flying capacitor clamped (FCC)-CSC structure can combine these advantages, achieving higher rated power along with improved power quality on both the DC and AC sides. Moreover, the enhanced AC quality contributes to the regulation of FC voltage and further improves the DC-side voltage quality. This paper analyzes the operation principle of the parallel FCC-CSC structure and proposes an interleaved space vector modulation (SVM) method to enhance the harmonic performance of the AC output. Additionally, an optimized zero-state replacement (ZSR) based FC voltage control and a DC-link current balance strategy built on this control are introduced. Simulation and experimental results validate the effectiveness of the proposed methods. Full article
(This article belongs to the Special Issue Advanced Control of Electrical Drives and Power Converters)
Show Figures

Figure 1

36 pages, 28072 KiB  
Article
Four-Wire Three-Level NPC Shunt Active Power Filter Using Model Predictive Control Based on the Grid-Tied PV System for Power Quality Enhancement
by Zoubida Amrani, Abdelkader Beladel, Abdellah Kouzou, Jose Rodriguez and Mohamed Abdelrahem
Energies 2024, 17(15), 3822; https://doi.org/10.3390/en17153822 - 2 Aug 2024
Cited by 1 | Viewed by 1751
Abstract
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the [...] Read more.
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the used 3LNPC-SAPF topology, aims to ensure the seamless integration of a photovoltaic system into the three-phase four-wire grid while effectively mitigating grid harmonics, grid current unbalance, ensuring grid unit power factor by compensating the load reactive power, and allowing power sharing with the grid in case of an excess of generated power from the PV system, leading to overall high power quality at the grid side. This developed approach is based initially on the application of the four-wire instantaneous p-q theory for the identification of the reference currents that have to be injected by the 3LNPC-SAPF in the grid point of common coupling (PCC). Whereas, the 3LNPC is controlled based on using the finite control set model predictive control (FCS-MPC), which can be accomplished by determining the convenient set of switch states leading to the voltage vector, which is the most suitable to ensure the minimization of the selected cost function. Furthermore, the used topology requires a constant DC-link voltage and balanced split-capacitor voltages at the input side of the 3LNPN. Hence, the cost function is adjusted by the addition of another term with a selected weighting factor related to these voltages to ensure their precise control following the required reference values. However, due to the random changes in solar irradiance and, furthermore, to ensure efficient operation of the proposed topology, the PV system is connected to the 3LNPN-SAPF via a DC/DC boost converter to ensure the stability of the 3LNPN input voltage within the reference value, which is achieved in this paper based on the use of the maximum power point tracking (MPPT) technique. For the validation of the proposed control technique and the functionality of the used topology, a set of simulations has been presented and investigated in this paper following different irradiance profile scenarios such as a constant irradiance profile and a variables irradiance profile where the main aim is to prove the effectiveness and flexibility of the proposed approach under variable irradiance conditions. The obtained results based on the simulations carried out in this study demonstrate that the proposed control approach with the used topology under different loads such as linear, non-linear, and unbalanced can effectively reduce the harmonics, eliminating the unbalance in the currents and compensating for the reactive component contained in the grid side. The obtained results prove also that the proposed control ensures a consistent flow of power based on the sharing principle between the grid and the PV system as well as enabling the efficient satisfaction of the load demand. It can be said that the proposal presented in this paper has been proven to have many dominant features such as the ability to accurately estimate the power sharing between the grid and the PV system for ensuring the harmonics elimination, the reactive power compensation, and the elimination of the neutral current based on the zero-sequence component compensation, even under variable irradiance conditions. This feature makes the used topology and the developed control a valuable tool for power quality improvement and grid stability enhancement with low cost and under clean energy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 12225 KiB  
Article
A Modified SVPWM Strategy for Reducing PWM Voltage Noise and Balancing Neutral Point Potential
by Renxi Gong, Hao Wu, Jing Tang and Xingyuan Wan
Electronics 2024, 13(9), 1656; https://doi.org/10.3390/electronics13091656 - 25 Apr 2024
Cited by 2 | Viewed by 1876
Abstract
PWM (pulse width modulation) is the most widely applied current conversion technology, but the high-frequency harmonics it causes have a significant negative impact on inverter system performance. This paper focuses on the three-phase T-type three-level inverter as the research object and addresses existing [...] Read more.
PWM (pulse width modulation) is the most widely applied current conversion technology, but the high-frequency harmonics it causes have a significant negative impact on inverter system performance. This paper focuses on the three-phase T-type three-level inverter as the research object and addresses existing PWM voltage noise and midpoint potential imbalance issues by proposing an improved random SVPWM strategy, named Neutral Point Potential Balance Random Space Vector PWM (NPB–RSVPWM). The NPB–RSVPWM strategy includes three main steps: (1) introducing a midpoint potential balancing control loop to adjust the synthesis timing of the effective vectors to generate pulse signals, optimizing midpoint potential balance; (2) employing a randomly varying carrier frequency in place of the carrier used in the SVPWM strategy to generate the driving signals for switching devices; and (3) controlling the inverter through the driving pulse signals. This strategy optimizes the synthesis sequence of traditional SVPWM strategy vectors and incorporates random frequency modulation techniques. The mathematical model analyzes PWM harmonic expressions corresponding to fixed switching frequencies, and a random frequency carrier is chosen to suppress these PWM harmonics. The effective vector’s equivalent circuit is analyzed, proposing a technique for optimized vector synthesis timing. The simulation and experimental results verify that the NPB–RSVPWM technique can disperse PWM harmonic energy, reduce voltage noise, and optimize midpoint potential balance. Under the NPB–RSVPWM strategy, the line voltage spectrum becomes uniform, the maximum harmonic content is greatly reduced, and the fluctuation in the DC side midpoint potential is significantly improved. Compared with the traditional SVPWM strategy and random PWM strategy, the NPB–RSVPWM strategy has a lower voltage noise, smaller total harmonic distortion, and a more stable midpoint potential. The effectiveness and feasibility of the NPB–RSVPWM strategy are verified by simulation and experimental results. Full article
Show Figures

Figure 1

19 pages, 7526 KiB  
Article
Operational Strategy of a DC Inverter Heat Pump System Considering PV Power Fluctuation and Demand-Side Load Characteristics
by Yilin Li, Yang Lu, Jie Sun, Tianhang Wang, Shiji Zong, Tongyu Zhou and Xin Wang
Buildings 2024, 14(4), 1139; https://doi.org/10.3390/buildings14041139 - 18 Apr 2024
Cited by 3 | Viewed by 2424
Abstract
With the increase in application of solar PV systems, it is of great significance to develop and investigate direct current (DC)-powered equipment in buildings with flexible operational strategies. A promising piece of building equipment integrated in PV-powered buildings, DC inverter heat pump systems [...] Read more.
With the increase in application of solar PV systems, it is of great significance to develop and investigate direct current (DC)-powered equipment in buildings with flexible operational strategies. A promising piece of building equipment integrated in PV-powered buildings, DC inverter heat pump systems often operate with strategies either focused on the power supply side or on the building demand side. In this regard, the aim of this study was to investigate the operational strategy of a DC inverter heat pump system for application in an office building with a PV power system. Firstly, the PV power fluctuation and demand-side load characteristics were analyzed. Then, a series of heat transfer and heat pump system models were developed. A reference building model was developed for simulating the performance of the system. A control logic of the DC inverter heat pump was proposed with a certain level of flexibility and capability considering both the characteristics of the PV power generation and the demand-side heating load. MATLAB/Simulink 2021 software was used for simulation. The simulation results show that the DC inverter heat pump is able to regulate its own power according to the change signal of the bus voltage such that the DC distribution network can achieve power balance and thus provide enough energy for a room. This study can provide a reference for developing flexible operational strategies for DC inverter heat pump systems. The proposed strategy can also help to improve the systems’ performance when they are applied in buildings with distributed PV systems. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—2nd Edition)
Show Figures

Figure 1

9 pages, 4989 KiB  
Proceeding Paper
Optimization of Waterblock Cooling Water Flow Rate in a Thermoelectric Generator Charcoal Furnace
by Hendi Lilih Wijayanto, Angga Tegar Setiawan, Amiruddin, Yusdianto and Nugroho Tri Atmoko
Eng. Proc. 2024, 63(1), 21; https://doi.org/10.3390/engproc2024063021 - 6 Mar 2024
Cited by 1 | Viewed by 1085
Abstract
In this research, a thermoelectric generator is used to absorb waste heat on the walls of a wood charcoal burning stove to produce electrical energy. The research was carried out using 4 Thermoelectric Generators (TEGs) attached to the outer wall of the furnace. [...] Read more.
In this research, a thermoelectric generator is used to absorb waste heat on the walls of a wood charcoal burning stove to produce electrical energy. The research was carried out using 4 Thermoelectric Generators (TEGs) attached to the outer wall of the furnace. The walls of the charcoal stove’s combustion chamber are designed with aluminum plates. A water block cooling system with water flow is used to overcome the increase in heat at the cold side of TEG. The DC water pump power used to circulate the water block is 215 L/h, 275 L/h, 320 L/h, 350 L/h, 375 L/h, and 400 L/h. This research aims to find the most optimal water flow rate at a water block. Temperature measurements are carried out on the recent and bloodless facets of the TEG, and the temperature of the inlet and outlet water of the water block. Changes in TEG voltage, current, and output power are recorded with a multimeter connected to the acquisition data. Analysis of energy balance and heat transfer was carried out in the furnace’s combustion chamber. The experimental results show that the cooling water flow rate of 275 L/h can produce the highest electrical power, around 11.17 W. The use of TEGs as a medium for generating electrical energy from wasted heat through the furnace’s walls can meet some of a household’s electrical energy needs. Full article
Show Figures

Figure 1

17 pages, 8456 KiB  
Article
SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range
by Hong Cheng, Xin Li, Cong Wang, Zhihao Zhao, Yucheng Shen and Wei Yuan
Electronics 2024, 13(2), 357; https://doi.org/10.3390/electronics13020357 - 15 Jan 2024
Viewed by 1743
Abstract
A novel unidirectional hybrid PFC rectifier topology based on SEPIC and boost converters is proposed, which is applicable to various industrial applications such as electric vehicle charging stations, variable speed AC drives, and energy storage systems. Compared to other rectifiers, the proposed SEPIC-boost-based [...] Read more.
A novel unidirectional hybrid PFC rectifier topology based on SEPIC and boost converters is proposed, which is applicable to various industrial applications such as electric vehicle charging stations, variable speed AC drives, and energy storage systems. Compared to other rectifiers, the proposed SEPIC-boost-based rectifier exhibits continuous current on the AC side, lower voltage stress on the active switches, a wider range of DC output voltage, no auxiliary DC-DC converters, and a high step-up static voltage gain operating with low input voltage and a low step-up static gain for the high-input-voltage operation. These traits allow the SEPIC-boost-based rectifier to utilize smaller input-side harmonic filtering inductors and adopt active switches with lower voltage ratings, resulting in reduced conduction losses. Additionally, the proposed rectifier features power factor correction and high boost/buck voltage-gain capabilities, simplifying control for electric vehicle charging and expanding its range of applications. In this paper, the operating principle of the novel topology is presented first, and then the mathematical model of the proposed rectifier is built. Based on this, the comparison between the proposed topology and conventional boost and SEPIC converters is given. Furthermore, the control strategy, including the high-power-factor control and the balancing control to the DC capacitor voltages, is discussed. Finally, to validate the accuracy of the proposed rectifier’s theoretical research, a 500-W SEPIC-boost rectifier system has been constructed in the laboratory, generating a 200/120 Vdc output voltage from a 155 Vpk/50 Hz power source. Full article
(This article belongs to the Topic Power Electronics Converters)
Show Figures

Figure 1

19 pages, 6455 KiB  
Article
An Energy-Feed Type Split-Capacitor Three-Phase Four-Wire Power Electronic Load Compatible with Various Load Demands
by Shiyi Sun, Qingjun Huang, Bingyang Luo, Jianghua Lu, Jiapeng Luo, Zexu Ma and Guorong Zhu
Energies 2024, 17(1), 119; https://doi.org/10.3390/en17010119 - 25 Dec 2023
Cited by 1 | Viewed by 1458
Abstract
Energy-feed power electronic loads can precisely control the phase and magnitude of the power supply output current, achieving the emulation of loads. Moreover, they can feed energy back to the grid for energy regeneration, demonstrating significant research value. This article proposes an energy-fed [...] Read more.
Energy-feed power electronic loads can precisely control the phase and magnitude of the power supply output current, achieving the emulation of loads. Moreover, they can feed energy back to the grid for energy regeneration, demonstrating significant research value. This article proposes an energy-fed power electronic load topology and control method that can realize the static and dynamic simulation of linear and non-linear loads and take into account the simulation needs of single-phase, three-phase three-wire, and three-phase four-wire loads. The main circuit uses a two-stage back-to-back AC/DC/AC structure: the front side is a three-phase four-wire split capacitor PWM rectifier bridge, which is used to simulate loads under various operating conditions; the back side is a three-phase three-wire PWM inverter bridge, which realizes the energy feeding back to the grid and reduces the waste of energy; and the intermediate side uses a split capacitor to equalize the voltage and achieve voltage stabilization. The topology is analyzed under the simulation demands of three-phase balanced, three-phase unbalanced, single-phase and non-linear loads. Finally, a MATLAB(R2022a)/Simulink simulation platform is built for a power electronic load with a rated capacity of 200 kVA. The simulation results verify the effectiveness, feasibility, and advancement of the power electronic load proposed in this article. Full article
(This article belongs to the Special Issue Advances in Power Electronics Technologies)
Show Figures

Figure 1

Back to TopTop