Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = DC power transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2727 KiB  
Article
Research on Power Transmission Capacity of Transmission Section for Grid-Forming Renewable Energy via AC/DC Parallel Transmission System Considering Synchronization and Frequency Stability Constraints
by Zhengnan Gao, Zengze Tu, Shaoyun Ding, Liqiang Wang, Haiyan Wu, Xiaoxiang Wei, Jiapeng Li and Yujun Li
Energies 2025, 18(15), 4202; https://doi.org/10.3390/en18154202 - 7 Aug 2025
Abstract
AC/DC parallel transmission is a critical approach for large-scale centralized transmission. Existing assessments of power transfer capability in AC/DC corridors rarely incorporate comprehensive security and stability constraints, potentially leading to overestimated results. This paper investigates a grid-forming renewable energy system integrated via AC/DC [...] Read more.
AC/DC parallel transmission is a critical approach for large-scale centralized transmission. Existing assessments of power transfer capability in AC/DC corridors rarely incorporate comprehensive security and stability constraints, potentially leading to overestimated results. This paper investigates a grid-forming renewable energy system integrated via AC/DC parallel transmission. First, the transmission section’s power transfer limit under N-1 static security constraints is determined. Subsequently, analytical conditions satisfying synchronization and frequency stability constraints are derived using the equal area criterion and frequency security indices, revealing the impacts of AC/DC power allocation and system parameters on transfer capability. Finally, by integrating static security, synchronization stability, and frequency stability constraints, an operational region for secure AC/DC power dispatch is established. Based on this region, an optimal power allocation scheme maximizing the corridor’s transfer capability is proposed. The theoretical framework and methodology enhance system transfer capacity while ensuring AC/DC parallel transmission security, with case studies validating the theory’s correctness and method’s effectiveness. Full article
Show Figures

Figure 1

23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 - 3 Aug 2025
Viewed by 225
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

20 pages, 6870 KiB  
Article
Stability Limit Analysis of DFIG Connected to Weak Grid in DC-Link Voltage Control Timescale
by Kezheng Jiang, Lie Li, Zhenyu He and Dan Liu
Electronics 2025, 14(15), 3022; https://doi.org/10.3390/electronics14153022 - 29 Jul 2025
Viewed by 190
Abstract
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines [...] Read more.
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines being integrated into a weak grid, which decreases the stability limits of wind turbines. To solve this problem, this study investigates the stability limits of a Doubly Fed Induction Generator (DFIG) connected to a weak grid in a DC-link voltage control timescale. To start with, a model of the DFIG in a DC-link voltage control timescale is presented for stability limit analysis, which facilitates profound physical understanding. Through steady-state stability analysis based on sensitivity evaluation, it is found that the critical factor restricting the stability limit of the DFIG connected to a weak grid is ∂Pe/∂ (−ird), changing from positive to negative. As ∂Pe/∂ (−ird) reaches zero, the system reaches its stability limit. Furthermore, by considering control loop dynamics and grid strength, the stability limit of the DFIG is investigated based on eigenvalue analysis with multiple physical scenarios. The results of root locus analysis show that, when the DFIG is connected to an extremely weak grid, reducing the bandwidth of the PLL or increasing the bandwidth of the AVC with equal damping can increase the stability limit. The aforesaid theoretical analysis is verified through both time domain simulation and physical experiments. Full article
Show Figures

Figure 1

33 pages, 709 KiB  
Article
Integrated Generation and Transmission Expansion Planning Through Mixed-Integer Nonlinear Programming in Dynamic Load Scenarios
by Edison W. Intriago Ponce and Alexander Aguila Téllez
Energies 2025, 18(15), 4027; https://doi.org/10.3390/en18154027 - 29 Jul 2025
Viewed by 253
Abstract
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a [...] Read more.
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a deterministic MINLP solver, which ensures the identification of truly optimal expansion strategies, overcoming the limitations of heuristic approaches that may converge to local optima. This approach is employed to establish a definitive, high-fidelity economic and technical benchmark, addressing the limitations of commonly used DC approximations and metaheuristic methods that often fail to capture the nonlinearities and interdependencies inherent in power system planning. The co-optimization model is formulated to simultaneously minimize the total annualized costs, which include investment in new generation and transmission assets, the operating costs of the entire generator fleet, and the cost of unsupplied energy. The model’s effectiveness is demonstrated on the IEEE 14-bus system under various dynamic load growth scenarios and planning horizons. A key finding is the model’s ability to identify the most economic expansion pathway; for shorter horizons, the optimal solution prioritizes strategic transmission reinforcements to unlock existing generation capacity, thereby deferring capital-intensive generation investments. However, over longer horizons with higher demand growth, the model correctly identifies the necessity for combined investments in both significant new generation capacity and further network expansion. These results underscore the value of an integrated, AC-based approach, demonstrating its capacity to reveal non-intuitive, economically superior expansion strategies that would be missed by decoupled or simplified models. The framework thus provides a crucial, high-fidelity benchmark for the validation of more scalable planning tools. Full article
Show Figures

Figure 1

13 pages, 2428 KiB  
Article
A Novel Low-Power Bipolar DC–DC Converter with Voltage Self-Balancing
by Yangfan Liu, Qixiao Li and Zhongxuan Wang
J. Low Power Electron. Appl. 2025, 15(3), 43; https://doi.org/10.3390/jlpea15030043 - 24 Jul 2025
Viewed by 240
Abstract
Bipolar power supply can effectively reduce line losses and optimize power transmission. This paper proposes a low-power bipolar DC–DC converter with voltage self-balancing, which not only achieves bipolar output but also automatically balances the inter-pole voltage under load imbalance conditions without requiring additional [...] Read more.
Bipolar power supply can effectively reduce line losses and optimize power transmission. This paper proposes a low-power bipolar DC–DC converter with voltage self-balancing, which not only achieves bipolar output but also automatically balances the inter-pole voltage under load imbalance conditions without requiring additional voltage balancing control. This paper first elaborates on the derivation process of the proposed converter, then analyzes its working principles and performance characteristics. A 400 W experimental prototype is built to validate the correctness of the theoretical analysis and the voltage self-balancing capability. Finally, loss analysis and conclusions are presented. Full article
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 284
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

15 pages, 3025 KiB  
Article
High-Power-Density Miniaturized VLF Antenna with Nanocrystalline Core for Enhanced Field Strength
by Wencheng Ai, Huaning Wu, Lin Zhao and Hui Xie
Nanomaterials 2025, 15(14), 1062; https://doi.org/10.3390/nano15141062 - 9 Jul 2025
Viewed by 319
Abstract
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μ [...] Read more.
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μr = 50,000, Bs = 1.2 T) is used to optimize the thickness-to-diameter ratio (t = 0.08) and increase the effective permeability to 11,000. The Leeds wires, characterized by their substantial carrying capacity, are manufactured through a toroidal winding process. This method results in a 68% reduction in leakage compared to traditional radial winding techniques and enhances magnetic induction strength by a factor of 1.5. Additionally, this approach effectively minimizes losses, thereby facilitating support for kilowatt-level power inputs. A cascaded LC resonant network (resonant capacitance 2.3 μF) and ferrite balun transformer (power capacity 3.37 kW) realize a 20-times amplification of the input current. A series connection of a high-voltage isolation capacitor blocks DC bias noise, guaranteeing the stable transmission of 1200 W power, which is 6 times higher than the power capacity of traditional ring antenna. At 7.8 kHz frequency, the magnetic field strength at 120 m reaches 47.32 dBμA/m, and, if 0.16 pT is used as the threshold, the communication distance can reach 1446 m, which is significantly better than the traditional solution. This design marks the first instance of achieving kilowatt-class VLF effective radiation in a compact 51 cm-diameter magnetic loop antenna, offering a highly efficient solution for applications such as mine communication and geological exploration. Full article
Show Figures

Figure 1

17 pages, 980 KiB  
Article
Non-Contact Current Measurement Method Based on Field-Source Inversion for DC Rectangular Busbars
by Qishuai Liang, Zhongchen Xia, Jiang Ye, Yufeng Wu, Jie Li, Zhao Zhang, Xiaohu Liu and Shisong Li
Energies 2025, 18(14), 3606; https://doi.org/10.3390/en18143606 - 8 Jul 2025
Viewed by 271
Abstract
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints [...] Read more.
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints make the deployment of conventional sensors challenging, highlighting the urgent need for miniaturized, non-contact current measurement technologies to meet the integration requirements of smart distribution systems. This paper proposes a field-source inversion-based contactless DC measurement method for rectangular busbars. The mathematical model of the magnetic field near the surface of the DC rectangular busbar is first established, incorporating the busbar eccentricity, rotation, and geomagnetic interference into the model framework. Subsequently, a magnetic field–current inversion model is constructed, and the DC measurement of the rectangular busbar is achieved by performing an inverse calculation. The effectiveness of the proposed method is validated by both simulation studies and physical experiments. Full article
(This article belongs to the Special Issue Electrical Equipment State Measurement and Intelligent Calculation)
Show Figures

Figure 1

20 pages, 4500 KiB  
Article
Analysis and Performance Evaluation of CLCC Applications in Key Power Transmission Channels
by Kang Liu, Baohong Li and Qin Jiang
Energies 2025, 18(13), 3514; https://doi.org/10.3390/en18133514 - 3 Jul 2025
Viewed by 305
Abstract
The YZ-ZJ DC transmission project addresses significant power transmission challenges in a specific region’s power grid, which faces unique pressures due to overlapping “growth” and “transition” periods in energy demand. This study focuses on the integration of Controllable-Line-Commutated Converters (CLCCs) into the YZ-ZJ [...] Read more.
The YZ-ZJ DC transmission project addresses significant power transmission challenges in a specific region’s power grid, which faces unique pressures due to overlapping “growth” and “transition” periods in energy demand. This study focuses on the integration of Controllable-Line-Commutated Converters (CLCCs) into the YZ-ZJ DC transmission project at the receiving end, replacing the traditional LCCs to mitigate commutation failures during AC system faults. The main innovation lies in the development of a hybrid electromechanical–electromagnetic simulation model based on actual engineering parameters that provides a comprehensive analysis of the CLCC’s electromagnetic characteristics and system-level behavior under fault conditions. This is a significant advancement over previous research, which mainly focused on discrete electromagnetic modeling in ideal or simplified scenarios without considering the full complexity of real-world regional power grids. The research demonstrates that integrating CLCCs into the regional power grid not only prevents commutation failures but also enhances the overall reliability of the transmission system. The results show that CLCCs significantly improve fault tolerance, stabilize power transmission during faults, reduce power fluctuations in neighboring transmission lines, and enhance grid stability. Furthermore, this study confirms that the CLCC-based YZ-ZJ DC project outperforms the traditional LCC system, maintaining stable power transmission even under fault conditions. In conclusion, this study validates the feasibility of CLCCs in resisting commutation failures when integrated into a large power grid and reveals their positive impact on the regional grid. Full article
Show Figures

Figure 1

28 pages, 6299 KiB  
Article
DC Microgrid Enhancement via Chaos Game Optimization Algorithm
by Abdelrahman S. Heikal, Ibrahim Mohamed Diaaeldin, Niveen M. Badra, Mahmoud A. Attia, Ahmed O. Badr, Othman A. M. Omar, Ahmed H. EL-Ebiary and Hyun-Soo Kang
Processes 2025, 13(7), 2042; https://doi.org/10.3390/pr13072042 - 27 Jun 2025
Viewed by 378
Abstract
Microgrids are increasingly being adopted as alternatives to traditional power transmission networks, necessitating improved performance strategies. Various mathematical optimization techniques are used to determine optimal controller parameters for these systems. These optimization methods can generally be categorized into natural, biological, and engineering-based approaches. [...] Read more.
Microgrids are increasingly being adopted as alternatives to traditional power transmission networks, necessitating improved performance strategies. Various mathematical optimization techniques are used to determine optimal controller parameters for these systems. These optimization methods can generally be categorized into natural, biological, and engineering-based approaches. In this research, the authors evaluated and compared several optimization techniques to enhance the secondary controller of DC microgrids, focusing on reducing operating time and minimizing error rates. Optimization tools were utilized to identify the optimal gain control parameters, aiming to achieve the best possible system performance. The enhanced controller response enables quicker recovery to steady-state conditions during sudden disturbances. The root-mean-square error (RMSE) served as a performance metric, with the proposed approach achieving a 15% reduction in RMSE compared to previous models. This improvement contributes to faster response times and lower energy consumption in microgrid operation. Full article
(This article belongs to the Special Issue Smart Optimization Techniques for Microgrid Management)
Show Figures

Figure 1

17 pages, 4822 KiB  
Article
Black-Start Strategy for Offshore Wind Power Delivery System Based on Series-Connected DRU-MMC Hybrid Converter
by Feng Li, Danqing Chen, Honglin Chen, Shuxin Luo, Hao Yu, Tian Hou, Guoteng Wang and Ying Huang
Electronics 2025, 14(13), 2543; https://doi.org/10.3390/electronics14132543 - 23 Jun 2025
Viewed by 265
Abstract
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore [...] Read more.
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore MMC during black-start operations. To overcome these challenges, a four-stage black-start strategy utilizing an auxiliary step-down transformer connected to the onshore MMC is proposed. The proposed strategy operates as follows: The onshore MMC first lowers its valve-side voltage via an auxiliary transformer, enabling reduced DC-side voltage. With the DRU bypassed, the offshore MMC draws startup power through the DC link, then switches to V/f mode with wind turbine curtailment to reduce DC current below the DRU bypass threshold. After stable, low-power operation, the DRU is integrated. The onshore MMC then restores rated DC voltage and disconnects the transformer, allowing gradual wind turbine reconnection to complete black-start. The simulation results confirm the approach’s feasibility under conditions where all wind turbines operate in grid-following mode. Full article
Show Figures

Figure 1

16 pages, 6177 KiB  
Article
Topology and Control Strategies for Offshore Wind Farms with DC Collection Systems Based on Parallel–Series Connected and Distributed Diodes
by Lijun Xie, Zhengang Lu, Ruixiang Hao, Bao Liu and Yingpei Wang
Appl. Sci. 2025, 15(11), 6166; https://doi.org/10.3390/app15116166 - 30 May 2025
Viewed by 412
Abstract
A diode-based rectifier (DR) is an attractive transmission technology for offshore wind farms, which reduces the volume of large bulk platforms. A novel parallel–series DC wind farm based on a distributed DR is proposed, which meets the requirements of high voltage and high [...] Read more.
A diode-based rectifier (DR) is an attractive transmission technology for offshore wind farms, which reduces the volume of large bulk platforms. A novel parallel–series DC wind farm based on a distributed DR is proposed, which meets the requirements of high voltage and high power with an isolation capability from other units. The coupling mechanism between a modular multilevel converter (MMC) and a DR has been built, and the coordinate control strategy for the whole system has been proposed based on the MMC triple control targets with intermediate variables. Under the proposed control strategy, the system automatically operates at maximum power point tracking (MPPT). The feasibility of topology and the effectiveness of the control strategy are verified under start-up, power fluctuation, onshore alternating current (AC) fault, and direct current (DC) fault based on the power systems computer-aided design (PSCAD)/electromagnetic transients including direct current (EMTDC) simulation. Full article
(This article belongs to the Special Issue Advanced Studies in Power Electronics for Renewable Energy Systems)
Show Figures

Figure 1

24 pages, 2174 KiB  
Article
Diode Rectifier-Based Low-Cost Delivery System for Marine Medium Frequency Wind Power Generation
by Tao Xia, Yangtao Zhou, Qifu Zhang, Haitao Liu and Lei Huang
J. Mar. Sci. Eng. 2025, 13(6), 1062; https://doi.org/10.3390/jmse13061062 - 28 May 2025
Viewed by 387
Abstract
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible [...] Read more.
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible DC transmission system applying modular multilevel converter is a common scheme for offshore wind power, which has been put into use in actual projects, but it is still facing the problems of high cost of offshore converter station platforms and high loss of collector systems. In order to improve the economy and reliability of the medium- and long-distance offshore wind power delivery systems, this paper proposes a diode rectifier-based medium-frequency AC pooling soft-direct low-cost delivery system for medium- and long-distance offshore wind power. Firstly, the mid-frequency equivalent model of the diode converter is established, and the influence of topology and frequency enhancement on the parameters of the main circuit equipment is analysed; then, the distribution parameters and transmission capacity of the mid-frequency cable are calculated based on the finite element modelling of the marine cable, and the transmission losses of the mid-frequency AC pooling system are then calculated, including the collector losses, converter valve losses, and transformer losses, etc. Finally, an economic analysis is carried out based on a specific example, comparing with the Jiangsu Rudong offshore wind power transmission project, in order to verify the economy of the medium-frequency AC flexible and direct transmission system of the medium- and long-distance offshore wind power using diode rectifier technology. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

15 pages, 2450 KiB  
Article
Study on High Efficiency Control of Four-Switch Buck-Boost Converter Based on Whale Migration Optimization Algorithm
by Zhencheng Hao, Yu Xu and Jing Bai
Energies 2025, 18(11), 2807; https://doi.org/10.3390/en18112807 - 28 May 2025
Viewed by 381
Abstract
With the growing demand for high-efficiency DC-DC converters with a wide input voltage range for wireless power transmission, four-switch boost converters (FSBBs) are attracting attention due to their low current stress and flexible mode switching characteristics. However, their complex operating modes and nonlinear [...] Read more.
With the growing demand for high-efficiency DC-DC converters with a wide input voltage range for wireless power transmission, four-switch boost converters (FSBBs) are attracting attention due to their low current stress and flexible mode switching characteristics. However, their complex operating modes and nonlinear dynamic characteristics lead to high switching losses and limited efficiency of the system under conventional control. In this paper, an optimization algorithm is combined with the multi-mode control of an FSBB converter for the first time, and a combined optimization and voltage closed-loop control strategy based on the Whale Migration Algorithm (WMA) is proposed. Under the four-mode operation conditions of the FSBB converter, the duty cycle and phase shift parameters of the switching devices are dynamically adjusted by optimizing the values to maximize the efficiency under different operation conditions, with the premise of achieving zero-voltage switching (ZVS) and the optimization objective of minimizing the inductor current as much as possible. Simulation results show that the proposed FSBB switching control strategy combined with the WMA algorithm improves the efficiency significantly over a wide voltage range (120–480 V) and under variable load conditions, and the transfer efficiency is improved by about 1.19% compared with that of the traditional three-mode control, and the maximum transfer efficiency is 99.34%, which verifies the validity and feasibility of the proposed strategy and provides a new approach to the high-efficiency control and application of FSBB converters. Full article
Show Figures

Figure 1

37 pages, 9314 KiB  
Article
A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers
by Sung Won Kim and Young Il Kim
Energies 2025, 18(11), 2779; https://doi.org/10.3390/en18112779 - 27 May 2025
Viewed by 362
Abstract
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data [...] Read more.
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data is present, the reliability of data analysis decreases, leading to potential distortions in the results. To address this issue, it is necessary to either minimize missing occurrences by utilizing high-precision measurement equipment or apply reliable imputation techniques to compensate for missing values. This study focuses on two water-cooled turbo chillers installed in Tower A, Seoul, collecting a total of 118,464 data points over 3 years and 4 months. The dataset includes chilled water inlet and outlet temperatures (T1 and T2) and flow rate (V˙1) and cooling water inlet and outlet temperatures (T3 and T4) and flow rate (V˙3), as well as chiller power consumption (W˙c). To evaluate the performance of various imputation techniques, we introduced missing values at a rate of 10–30% under the assumption of a missing-at-random (MAR) mechanism. Seven different imputation methods—mean, median, linear interpolation, multiple imputation, simple random imputation, k-nearest neighbors (KNN), and the dynamically clustered KNN (DC-KNN)—were applied, and their imputation performance was validated using MAPE and CVRMSE metrics. The DC-KNN method, developed in this study, improves upon conventional KNN imputation by integrating clustering and dynamic weighting mechanisms. The results indicate that DC-KNN achieved the highest predictive performance, with MAPE ranging from 9.74% to 10.30% and CVRMSE ranging from 12.19% to 13.43%. Finally, for the missing data recorded in July 2023, we applied the most effective DC-KNN method to generate imputed values that reflect the characteristics of the studied site, which employs an ice thermal energy storage system. Full article
Show Figures

Figure 1

Back to TopTop