Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = CuO nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 6070 KiB  
Review
A Comprehensive Review of Solar Still Technologies and Cost: Innovations in Materials, Design, and Techniques for Enhanced Water Desalination Efficiency
by Mohammed Oudah Khalaf, Mehmed Rafet Özdemir and Hussein S. Sultan
Water 2025, 17(10), 1515; https://doi.org/10.3390/w17101515 - 17 May 2025
Cited by 1 | Viewed by 1846
Abstract
The global scarcity of freshwater, particularly in arid regions, has intensified interest in sustainable desalination technologies. Among these, solar still (SS) systems stand out for their low operational costs and environmental compatibility. This review presents a comprehensive analysis of recent advancements in solar [...] Read more.
The global scarcity of freshwater, particularly in arid regions, has intensified interest in sustainable desalination technologies. Among these, solar still (SS) systems stand out for their low operational costs and environmental compatibility. This review presents a comprehensive analysis of recent advancements in solar still technologies, with a particular emphasis on innovative materials, thermal management strategies, and hybrid systems aimed at improving water productivity and cost-efficiency. Key technologies such as phase change materials (PCMs) and thermoelectric modules (TEMs) are examined in detail, showing up to 140% and 6.7-fold improvements in productivity, respectively, in select configurations. The review also synthesizes results from various studies using a comparative lens, highlighting combinations such as double-glazed glass with fins and TEMs (5.7-fold increase) and CuO–water nanofluids coupled with TEMs and vibration (5.3-fold increase). Cost analyses reveal that some configurations achieve water production at as low as 0.011 USD/L under real-world conditions in Rajshahi, Bangladesh, using an integrated system with an external condenser and solar collector. Unlike general reviews, this work systematically compares performance metrics, cost-effectiveness, and design innovations across multiple studies to provide a clearer perspective on technology viability. Future directions suggest the integration of hybrid approaches using PCM, TEM, nanotechnology, and advanced geometries to overcome current limitations and further advance solar desalination efficiency. Full article
Show Figures

Graphical abstract

36 pages, 10035 KiB  
Article
Effects of Porous Filling and Nanofluids on Heat Transfer in Intel i9 CPU Minichannel Heat Sinks
by Lie Li and Jik Chang Leong
Electronics 2025, 14(10), 1922; https://doi.org/10.3390/electronics14101922 - 9 May 2025
Viewed by 679
Abstract
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the [...] Read more.
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the current study targets this processor and explores the advantages of more complex minichannel path designs. In addition, this work investigates the enhanced heat transfer performance by integrating metal foams into microchannels. Using a computational approach, this study evaluates the thermal performance of uni-path, dual-path, and staggered-path (SP) minichannel heat sinks with water, Al2O3, and CuO nanofluids at varying Reynolds numbers. The impact of aluminum foam filling has also been examined. Results confirm that higher Reynolds numbers enhance fluid flow, reduce heat sink temperature, and improve temperature uniformity. Among the configurations, the SP heat sink combined with Al2O3 nanofluid achieves the best trade-off between cooling efficiency and energy consumption. While lower porosity foam and higher nanofluid volume fractions enhance heat transfer, they also increase flow resistance, leading to higher energy consumption. Due to its high specific heat capacity, Al2O3 nanofluid outperforms CuO, with optimal cooling observed at a 3–4% volume fraction. The performance evaluation criterion (PEC) captures the trade-off between heat dissipation and energy efficiency. It shows that the SP model with high-porosity aluminum foam and Al2O3 nanofluid turns out to be the most effective design. This combination maximizes cooling efficiency while minimizing excessive energy costs, demonstrating superior thermal management for high-performance microelectronic devices. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

19 pages, 4527 KiB  
Article
Experimental Investigation of the Effect of Nanofluid Utilization on Heat Transfer Performance in Unmanned Aircraft Radiators with Various Spring-Type Fins
by Beytullah Erdoğan, Abdulsamed Güneş and Gülşah Çakmak
Nanomaterials 2025, 15(7), 489; https://doi.org/10.3390/nano15070489 - 25 Mar 2025
Cited by 2 | Viewed by 754
Abstract
In the study conducted for the cooling systems of MALE class unmanned aerial vehicles using internal combustion engines, new type radiators were designed using spring-structure fins. Among the radiators formed with spring structures acting as fins, the radiator developed using springs with a [...] Read more.
In the study conducted for the cooling systems of MALE class unmanned aerial vehicles using internal combustion engines, new type radiators were designed using spring-structure fins. Among the radiators formed with spring structures acting as fins, the radiator developed using springs with a pitch of 2.25 mm was named Radiator-Y1, the radiator developed using springs with a pitch of 4.25 mm was named Radiator-Y2, and the radiator developed using springs with a pitch of 8.25 mm was named Radiator-Y3. This design change is seen as an innovative method that can increase heat transfer on the radiator surface and increase cooling performance by increasing the turbulence effect of the air affecting the radiator. Experimental studies were carried out using single type (Al2O3 and ZnO) and hybrid (ZnO-CuO) nanofluids in addition to pure water. Experiments were carried out using different air speeds (8–10–12 m/s) and different coolant flow rates (20–22 L/min) and radiator performance was investigated. The effects of the surface area created by the spring structure and the turbulence effect on heat transfer were evaluated. As a result of the studies, Radiator-Y1 showed the best cooling performance among the radiators developed with spring structures, followed by Radiator-Y2 and Radiator-Y3. It was observed that the nanofluids used had a positive effect on the cooling performance compared with pure water, as did the hybrid nanofluid compared when compared with single type nanofluids. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

18 pages, 6041 KiB  
Article
Neural Network Modeling of CuO/Au Hybrid Nanofluid Thermal Performance with Slip Effects for Advanced Process Applications
by Jyothi Kotike, Omprakash Beedalannagari, Leelavathi Rekapalli, Muhammad Usman and Kalyani Radha Kadavakollu
Processes 2025, 13(2), 516; https://doi.org/10.3390/pr13020516 - 12 Feb 2025
Cited by 1 | Viewed by 1014
Abstract
This study explores transient magnetohydrodynamic (MHD) heat and mass transfer in the flow of a hybrid nanofluid over a stretching surface, considering both steady and unsteady scenarios. The investigation incorporates chemical reactions, slip boundary conditions, and the effects of thermal radiation. The hybrid [...] Read more.
This study explores transient magnetohydrodynamic (MHD) heat and mass transfer in the flow of a hybrid nanofluid over a stretching surface, considering both steady and unsteady scenarios. The investigation incorporates chemical reactions, slip boundary conditions, and the effects of thermal radiation. The hybrid nanofluid, composed of copper oxide (CuO) and gold (Au) nanoparticles in a water-based fluid, demonstrates enhanced thermal performance compared with base fluids. Key findings reveal that higher nanoparticle concentrations significantly improve heat transfer, highlighting the potential of hybrid nanofluids in advanced thermal management applications. Additionally, machine learning models effectively predict heat transfer characteristics with high accuracy (R2 = 0.99), showcasing their effectiveness in complementing traditional numerical methods. These findings contribute to the understanding of hybrid nanofluids in complex thermal systems and highlight the utility of emerging computational tools for thermal analysis. Full article
Show Figures

Figure 1

16 pages, 11088 KiB  
Article
Thermal Performance Analysis of Nanofluids for Heat Dissipation Based on Fluent
by Junqiang Xu, Zemin Shang and Shan Qing
Energies 2025, 18(1), 204; https://doi.org/10.3390/en18010204 - 6 Jan 2025
Cited by 1 | Viewed by 3231
Abstract
With the increasing demand for thermal management in electronic devices and industrial systems, nanofluids have emerged as a research hotspot due to their superior thermal conductivity and heat transfer efficiency. Among them, CuO-H2O demonstrates excellent heat transfer performance due to its [...] Read more.
With the increasing demand for thermal management in electronic devices and industrial systems, nanofluids have emerged as a research hotspot due to their superior thermal conductivity and heat transfer efficiency. Among them, CuO-H2O demonstrates excellent heat transfer performance due to its high thermal conductivity, Fe3O4-H2O offers potential for further optimization by combining thermal and magnetic properties, and Al2O3-H2O exhibits strong chemical stability, making it suitable for a wide range of applications. These three nanofluids are representative in terms of particle dispersibility, thermal conductivity, and physical properties, providing a comprehensive perspective on the impact of nanofluids on microchannel heat exchangers. This study investigates the heat transfer performance and flow characteristics of various types and volume fractions of nanofluids in microchannel heat exchangers. The results reveal that with increasing flow rates, the convective heat transfer coefficient and Nusselt number of nanofluids exhibit an approximately linear growth trend, primarily attributed to the turbulence enhancement effect caused by higher flow rates. Among the tested nanofluids, CuO-H2O demonstrates the best performance, achieving a 4.89% improvement in the heat transfer coefficient and a 1.64% increase in the Nusselt number compared to pure water. Moreover, CuO-H2O nanofluid significantly reduces wall temperatures, showcasing its superior thermal management capabilities. In comparison, the performance of Al2O3-H2O and Fe3O4-H2O nanofluids is slightly inferior. In terms of flow characteristics, the pressure drop and friction factor of nanofluids exhibit nonlinear variations with increasing flow rates. High-concentration CuO-H2O nanofluid shows a substantial pressure drop, with an increase of 7.33% compared to pure water, but its friction factor remains relatively low and stabilizes at higher flow rates. Additionally, increasing the nanoparticle volume fraction enhances the convective heat transfer performance; however, excessively high concentrations may suppress heat transfer efficiency due to increased viscosity, leading to a decrease in the Nusselt number. Overall, CuO-H2O nanofluid exhibits excellent thermal conductivity and flow optimization potential, making it a promising candidate for efficient thermal management in MCHEs. However, its application at high concentrations may face challenges related to increased flow resistance. These findings provide valuable theoretical support and optimization directions for the development of advanced thermal management technologies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

44 pages, 9048 KiB  
Article
Artificial Neural Network and Response Surface Methodology-Driven Optimization of Cu–Al2O3/Water Hybrid Nanofluid Flow in a Wavy Enclosure with Inclined Periodic Magnetohydrodynamic Effects
by Tarikul Islam, Sílvio Gama and Marco Martins Afonso
Mathematics 2025, 13(1), 78; https://doi.org/10.3390/math13010078 - 28 Dec 2024
Cited by 3 | Viewed by 2119
Abstract
This study explores the optimization of a Cu–Al2O3/water hybrid nanofluid within an irregular wavy enclosure under inclined periodic MHD effects. Hybrid nanofluids, with different mixture ratios of copper (Cu) and alumina (Al2O3) nanoparticles in water, [...] Read more.
This study explores the optimization of a Cu–Al2O3/water hybrid nanofluid within an irregular wavy enclosure under inclined periodic MHD effects. Hybrid nanofluids, with different mixture ratios of copper (Cu) and alumina (Al2O3) nanoparticles in water, are used in this study. Numerical simulations using the Galerkin residual-based finite-element method (FEM) are conducted to solve the governing PDEs. At the same time, artificial neural networks (ANNs) and response surface methodology (RSM) are employed to optimize thermal performance by maximizing the average Nusselt number (Nuav), the key indicator of thermal transport efficiency. Thermophysical properties such as viscosity and thermal conductivity are evaluated for validation against experimental data. The results include visual representations of heatlines, streamlines, and isotherms for various physical parameters. Additionally, Nuav, friction factors, and thermal efficiency index are analyzed using different nanoparticle ratios. The findings show that buoyancy and MHD parameters significantly influence heat transfer, friction, and thermal efficiency. The addition of Cu nanoparticles improves heat transport compared to Al2O3 nanofluid, demonstrating the superior thermal conductivity of the Cu–Al2O3/water hybrid nanofluid. The results also indicate that adding Al2O3 nanoparticles to the Cu/water nanofluid diminishes the heat transport rate. The waviness of the geometry shows a significant impact on thermal management as well. Moreover, the statistical RSM analysis indicates a high R2 value of 98.88% for the response function, which suggests that the model is well suited for predicting Nuav. Furthermore, the ANN model demonstrates high accuracy with a mean squared error (MSE) of 0.00018, making it a strong alternative to RSM analysis. Finally, this study focuses on the interaction between the hybrid nanofluid, a wavy geometry, and MHD effects, which can optimize heat transfer and contribute to energy-efficient cooling or heating technologies. Full article
(This article belongs to the Special Issue Artificial Intelligence for Fluid Mechanics)
Show Figures

Figure 1

25 pages, 8275 KiB  
Article
Numerical Analysis of Magnetohydrodynamic Convection in an Inclined Cavity with Three Fins and a Ternary Composition of Nanoparticles
by Huda Alfannakh
Processes 2024, 12(12), 2889; https://doi.org/10.3390/pr12122889 - 17 Dec 2024
Viewed by 967
Abstract
The natural convection heat transfer of a trihybrid nanofluid comprising Fe2O3, MoS2, and CuO nanoparticles dispersed in water (Fe2O3 + MoS2 + CuO/H2O) has been investigated within a cavity exposed to [...] Read more.
The natural convection heat transfer of a trihybrid nanofluid comprising Fe2O3, MoS2, and CuO nanoparticles dispersed in water (Fe2O3 + MoS2 + CuO/H2O) has been investigated within a cavity exposed to a uniform magnetic field. Three cold fins were strategically positioned on the top, right, and left walls of the enclosure. The study employs numerical simulations conducted using a custom-developed FORTRAN code. The computational approach integrates the finite volume method and full multigrid acceleration to solve the coupled governing equations for continuity, momentum, energy, and entropy generation, along with the associated boundary conditions. Prior to obtaining the results, a meticulous parameterization process was undertaken to accurately capture the fluid dynamics and thermal behavior characteristic of this geometric configuration. The findings underscored the key parameters’ significant impact on the flow structure and thermal performance. The results revealed that natural convection is more dominant at high Rayleigh and low Hartmann numbers, leading to higher Nusselt numbers and stronger dependence on the tilt angle α. Moreover, the optimal heat transfer conditions were obtained for the following parameters: Ha = 25, α = 45°, ϕ = 6%, and Ra = 106 with a rate of 4.985. This study offers valuable insights into achieving a balance between these competing factors by determining the optimal conditions for maximizing heat transfer while minimizing entropy generation. The findings contribute to enhancing the design of thermal systems that utilize magnetic nanofluids for efficient heat dissipation, making the research particularly relevant to advanced cooling technologies and compact thermal management solutions. Full article
(This article belongs to the Special Issue Flow, Heat and Mass Transfer in Energy Utilization)
Show Figures

Figure 1

30 pages, 10922 KiB  
Article
Chemically Reactive Micropolar Hybrid Nanofluid Flow over a Porous Surface in the Presence of an Inclined Magnetic Field and Radiation with Entropy Generation
by Sudha Mahanthesh Sachhin, Parashurampura Karibasavanaika Ankitha, Gadhigeppa Myacher Sachin, Ulavathi Shettar Mahabaleshwar, Igor Vladimirovich Shevchuk, Sunnapagutta Narasimhappa Ravichandra Nayakar and Rachappa Kadli
Physics 2024, 6(4), 1315-1344; https://doi.org/10.3390/physics6040082 - 13 Dec 2024
Viewed by 1502
Abstract
The present study investigates the entropy generation of chemically reactive micropolar hybrid nanoparticle motion with mass transfer. Magnetic oxide (Fe3O4) and copper oxide (CuO) nanoparticles were mixed in water to form a hybrid nanofluid. The governing equations for velocity, [...] Read more.
The present study investigates the entropy generation of chemically reactive micropolar hybrid nanoparticle motion with mass transfer. Magnetic oxide (Fe3O4) and copper oxide (CuO) nanoparticles were mixed in water to form a hybrid nanofluid. The governing equations for velocity, concentration, and temperature are transformed into ordinary differential equations along with the boundary conditions. In the fluid region, the heat balance is kept conservative with a source/sink that relies on the temperature. In the case of radiation, there is a differential equation along with several characteristic coefficients that transform hypergeometric and Kummer’s differential equations by a new variable. Furthermore, the results of the current problem can be discussed by implementing a graphical representation with different factors, namely the Brinkman number, porosity parameter, magnetic field, micropolar parameter, thermal radiation, Schmidt number, heat source/sink parameter, and mass transpiration. The results of this study are presented through graphical representations that depict various factors influencing the flow profiles and physical characteristics. The results reveal that an increase in the magnetic field leads to a reduction in velocity and entropy production. Furthermore, temperature and entropy generation rise with a stronger radiation parameter, whereas the Nusselt number experiences a decline. This study has several industrial applications in technology and manufacturing processes, including paper production, polymer extrusion, and the development of specialized materials. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

21 pages, 12291 KiB  
Article
The Role of Heater Size and Location in Modulating Natural Convection Behavior in Cu-Water Nanofluid-Loaded Square Enclosures
by Abdulaziz Alasiri
Sustainability 2024, 16(22), 9648; https://doi.org/10.3390/su16229648 - 6 Nov 2024
Viewed by 1287
Abstract
Enhancing the energy efficiency of thermal systems reduces their consumption, lowers costs, and reduces undesired environmental impact, thus making these systems more sustainable. The current work introduces a passive method for heat transfer enhancement that is carried out using natural convection by nanofluid. [...] Read more.
Enhancing the energy efficiency of thermal systems reduces their consumption, lowers costs, and reduces undesired environmental impact, thus making these systems more sustainable. The current work introduces a passive method for heat transfer enhancement that is carried out using natural convection by nanofluid. This work introduces a computational study of the process of natural convection within a square cavity containing Cu/H2O nanofluid. The cavity wall on the left side undergoes partial isothermal heating, while the opposing side is fully cooled isothermally, with all other boundaries maintained adiabatic. A mathematical model formulated based on a 2-D model was used to provide the solution for the system of governing equations of mass, momentum, and energy conservation, employing the finite element technique. A commercial CFD package is utilized to perform the computational simulation. The present investigation delves into the impact of the Rayleigh number, nanoparticle concentration, heater length, and heater location on the flow field and heat transfer characteristics. The model outcomes were displayed for a wide range of the pertinent parameters as 103 ≤ Ra ≤ 106, 0.25 ≤ lh ≤ 1.0, 0.125 ≤ hc ≤ 0.875, and 0.02 ≤ ϕ ≤ 0.10. Also, correlation equations relating the average Nusselt number to these crucial parameters are derived. These equations are simple and can be applied in practice easily in many fields, such as electric and electronic equipment cooling and thermal management of heat sources. Also, these equations gather all the parameters that affect the heat transfer process. They are shedding light on the intricate interplay between these parameters in the natural convection heat transfer process. Full article
Show Figures

Figure 1

16 pages, 5874 KiB  
Article
Comparative Numerical and Experimental Analyses of Conical Solar Collector and Spot Fresnel Concentrator
by Haedr Abdalha Mahmood Alsalame, Kang Kyeong Sik and Gwi Hyun Lee
Energies 2024, 17(21), 5437; https://doi.org/10.3390/en17215437 - 31 Oct 2024
Cited by 1 | Viewed by 1005
Abstract
This paper aims to compare the thermal performances of the conical solar collector (CSC) system and the spot Fresnel lens system (SFL) using water and CuO nanofluid as the working fluids. The studied CFD models for both systems were validated using experimental data. [...] Read more.
This paper aims to compare the thermal performances of the conical solar collector (CSC) system and the spot Fresnel lens system (SFL) using water and CuO nanofluid as the working fluids. The studied CFD models for both systems were validated using experimental data. At an optimal flow rate of 6 L/min, the SFL system showed higher optical and thermal performance in comparison with that of the CSC system. In the case of the SFL system, the availability of a greater amount of solar energy per unit collector area caused an increase in thermal energy. Moreover, in the case of the CSC system, the non-uniform distribution of solar flux on the absorber’s outer surface leads to an increase in temperature gradient and heat losses. As a heating medium, the CuO nanofluid outperformed the water in terms of higher thermal conductivity and heat capacity. The average thermal efficiencies of 64.7% and 61.2% were achieved using SFL with and without CuO nanofluid, respectively, which were 2.4% and 0.5% higher than those of the CSC with and without nanofluid. CFD simulations show a 2.80% deviation for SFL and 2.92% for CSC, indicating acceptable accuracy compared to experimental data. Full article
(This article belongs to the Special Issue Thermal Energy Storage Systems Modeling and Experimentation)
Show Figures

Figure 1

22 pages, 9448 KiB  
Article
Numerical Analysis of Natural Convection in an Annular Cavity Filled with Hybrid Nanofluids under Magnetic Field
by Souad Benkherbache, Salah Amroune, Ahmed Belaadi, Said Zergane and Chouki Farsi
Energies 2024, 17(18), 4671; https://doi.org/10.3390/en17184671 - 19 Sep 2024
Cited by 2 | Viewed by 1148
Abstract
This paper presents a numerical study of natural convection in an annular cavity filled with a hybrid nanofluid under the influence of a magnetic field. This study is significant for applications requiring enhanced thermal management, such as in heat exchangers, electronics cooling, and [...] Read more.
This paper presents a numerical study of natural convection in an annular cavity filled with a hybrid nanofluid under the influence of a magnetic field. This study is significant for applications requiring enhanced thermal management, such as in heat exchangers, electronics cooling, and energy systems. The inner cylinder, equipped with fins and subjected to uniform volumetric heat generation, contrasts with the adiabatic outer cylinder. This study aims to investigate how different nanoparticle combinations (Fe3O4 with Cu, Ag, and Al2O3) and varying Hartmann and Rayleigh numbers impact heat transfer efficiency. The finite volume method is employed to solve the governing equations, with simulations conducted using Fluent 6.3.26. Parameters such as volume fraction (ϕ2 = 0.001, 0.004, 0.006), Hartmann number (0 ≤ Ha ≤ 100), Rayleigh number (3 × 103 ≤ Ra ≤ 2.4 × 104), and fin number (N = 0, 2, 4, 6, 8) are analyzed. Streamlines, isotherms, and induced magnetic field contours are utilized to assess flow structure and heat transfer. The results reveal that increasing the Rayleigh number and magnetic field enhances heat transfer, while the presence of fins, especially at N = 2, may inhibit convection currents and reduce heat transfer efficiency. These findings provide valuable insights into optimizing nanofluid-based cooling systems and highlight the trade-offs in incorporating fins in thermal management designs. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 12067 KiB  
Article
Numerical Analysis on Heat Collecting Performance of Novel Corrugated Flat Plate Solar Collector Using Nanofluids
by Xingwang Tang, Chenchen Tan, Yan Liu, Chuanyu Sun and Sichuan Xu
Sustainability 2024, 16(14), 5924; https://doi.org/10.3390/su16145924 - 11 Jul 2024
Cited by 1 | Viewed by 1461
Abstract
To improve the heat collection performance of flat plate solar collectors, a corrugated flat plate solar collector (CFPSC) with a triangular collector tube was first innovatively designed in this paper. The effect of various nanofluids that are used as working fluid on the [...] Read more.
To improve the heat collection performance of flat plate solar collectors, a corrugated flat plate solar collector (CFPSC) with a triangular collector tube was first innovatively designed in this paper. The effect of various nanofluids that are used as working fluid on the heat collection performance of CFPSC was comprehensively analyzed based on the heat collection characteristics test system and numerical simulation model. The results indicate that when CuO and Al2O3 were used as nanoparticles, the heat collection stabilization time of the nanofluids for which ethylene glycol (EG) was used as the base fluid was 12.4~28.6% longer than that of the nanofluids for which water was used as the base fluid. Moreover, when the base fluid was EG, the temperature difference of CuO-EG nanofluid under different radiation intensities was about 5.8~19.2% higher than that of water. Furthermore, the heat collection performance of CuO nanofluids and Al2O3 nanofluids was superior to TiN nanofluids. Specifically, the heat collection of CuO-EG nanofluid was 2.9~4% higher than that of TiN-EG nanofluid at different radiation intensities. Therefore, using nanofluids as a working medium and designing a flat plate solar collector with triangular collector tubes can significantly improve the collector performance. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

14 pages, 2795 KiB  
Article
Hybrid Nanofluid Flow over a Shrinking Rotating Disk: Response Surface Methodology
by Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa
Computation 2024, 12(7), 141; https://doi.org/10.3390/computation12070141 - 10 Jul 2024
Cited by 2 | Viewed by 1406
Abstract
For efficient heating and cooling applications, minimum wall shear stress and maximum heat transfer rate are desired. The current study optimized the local skin friction coefficient and Nusselt number in Al2O3-Cu/water hybrid nanofluid flow over a permeable shrinking rotating [...] Read more.
For efficient heating and cooling applications, minimum wall shear stress and maximum heat transfer rate are desired. The current study optimized the local skin friction coefficient and Nusselt number in Al2O3-Cu/water hybrid nanofluid flow over a permeable shrinking rotating disk. First, the governing equations and boundary conditions are solved numerically using the bvp4c solver in MATLAB. Von Kármán’s transformations are used to reduce the partial differential equations into solvable non-linear ordinary differential equations. The augmentation of the mass transfer parameter is found to reduce the local skin friction coefficient and Nusselt number. Higher values of these physical quantities of interest are observed in the injection case than in the suction case. Meanwhile, the increase in the magnitude of the shrinking parameter improved and reduced the local skin friction coefficient and Nusselt number, respectively. Then, response surface methodology (RSM) is conducted to understand the interactive impacts of the controlling parameters in optimizing the physical quantities of interest. With a desirability of 66%, the local skin friction coefficient and Nusselt number are optimized at 1.528780016 and 0.888353037 when the shrinking parameter (λ) and mass transfer parameter (S) are −0.8 and −0.6, respectively. Full article
Show Figures

Figure 1

18 pages, 5928 KiB  
Article
Enhanced Efficiency of MHD-Driven Double-Diffusive Natural Convection in Ternary Hybrid Nanofluid-Filled Quadrantal Enclosure: A Numerical Study
by Saleh Mousa Alzahrani and Talal Ali Alzahrani
Mathematics 2024, 12(10), 1423; https://doi.org/10.3390/math12101423 - 7 May 2024
Cited by 6 | Viewed by 1323
Abstract
The study investigates the performance of fluid flow, thermal, and mass transport within a cavity, highlighting its application in various engineering sectors like nuclear reactors and solar collectors. Currently, the focus is on enhancing heat and mass transfer through the use of ternary [...] Read more.
The study investigates the performance of fluid flow, thermal, and mass transport within a cavity, highlighting its application in various engineering sectors like nuclear reactors and solar collectors. Currently, the focus is on enhancing heat and mass transfer through the use of ternary hybrid nanofluid. Motivated by this, our research delves into the efficiency of double-diffusive natural convective (DDNC) flow, heat, and mass transfer of a ternary hybrid nanosuspension (a mixture of Cu-CuO-Al2O3 in water) in a quadrantal enclosure. The enclosure’s lower wall is set to high temperatures and concentrations (Th and Ch), while the vertical wall is kept at lower levels (Tc and Cc). The curved wall is thermally insulated, with no temperature or concentration gradients. We utilize the finite element method, a distinguished numerical approach, to solve the dimensionless partial differential equations governing the system. Our analysis examines the effects of nanoparticle volume fraction, Rayleigh number, Hartmann number, and Lewis number on flow and thermal patterns, assessed through Nusselt and Sherwood numbers using streamlines, isotherms, isoconcentration, and other appropriate representations. The results show that ternary hybrid nanofluid outperforms both nanofluid and hybrid nanofluid, exhibiting a more substantial enhancement in heat transfer efficiency with increasing volume concentration of nanoparticles. Full article
Show Figures

Figure 1

21 pages, 4977 KiB  
Article
Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection
by Sudha Mahanthesh Sachhin, Ulavathi Shettar Mahabaleshwar, David Laroze and Dimitris Drikakis
Fluids 2024, 9(4), 94; https://doi.org/10.3390/fluids9040094 - 18 Apr 2024
Cited by 12 | Viewed by 2030 | Correction
Abstract
Understanding of dusty fluids for different Brinkman numbers in porous media is limited. This study examines the Darcy–Brinkman model for two-dimensional magneto-hydrodynamic fluid flow across permeable stretching/shrinking surfaces with heat transfer. Water was considered as a conventional base fluid in which the copper [...] Read more.
Understanding of dusty fluids for different Brinkman numbers in porous media is limited. This study examines the Darcy–Brinkman model for two-dimensional magneto-hydrodynamic fluid flow across permeable stretching/shrinking surfaces with heat transfer. Water was considered as a conventional base fluid in which the copper (Cu), silver (Ag), and titanium dioxide (TiO2) nanoparticles were submerged in a preparation of a ternary dusty nanofluid. The governing nonlinear partial differential equations are converted to ordinary differential equations through suitable similarity conversions. Under radiation and mass transpiration, analytical solutions for stretching sheets/shrinking sheets are obtained. Several parameters are investigated, including the magnetic field, Darcy–Brinkman model, solution domain, and inverse Darcy number. The outcomes of the present article reveal that increasing the Brinkman number and inverse Darcy number decreases the velocity of the fluid and dusty phase. Increasing the magnetic field decreases the momentum of the boundary layer. Ternary dusty nanofluids have significantly improved the heat transmission process for manufacturing with applications in engineering, and biological and physical sciences. The findings of this study demonstrate that the ternary nanofluid phase’s heat and mass transpiration performance is better than the dusty phase’s performance. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

Back to TopTop