Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection
Abstract
:1. Introduction
2. Mathematical Formulation
Assumptions in the Mathematical Equations Describing the Physical Model
- The fluid phase and nanoparticles are in the thermal equilibrium state.
- Water is considered a conventional base fluid in which the copper (Cu), silver (Ag), and titanium dioxide () nanoparticles are submerged in the preparation of a ternary dusty nanofluid.
- An inclined magnetic field is introduced.
- No chemical reactions take place in the fluid layer.
- There is negligible viscous dissipation.
- The nanofluid is incompressible; Newtonian and laminar flow are considered.
- The Darcy–Brinkman model is examined.
- The fluid flow is generated by stretching/shrinking the sheet, and there is no pressure gradient affecting the fluid, i.e., .
- Finally, steady flow is considered, i.e., .
- A stretching velocity, , is also introduced.
- A.
- Governing equations
- a.
- Fluid phase:
- Continuity equation:
- Momentum equation:
- Temperature equation:
- b.
- Dusty phase:
- Continuity equation:
- Momentum equation:
- Temperature equation:
- B.
- Using the similarity transformation, Equations (2), (3), (5), and (6) can be written as
- c.
- Fluid phase:
- d.
- Dusty phase:
3. Analytic Solution for Velocity Equations for Fluid- and Dusty-Phase Flow
4. Analytic Solution for Temperature Equations for Fluid- and Dusty-Phase Flow
5. Results and Discussion
- Absence of heat source/sink, and the presence of hybrid nanoparticles: limiting case is the results of Sneha et al. [22].
- Absence of magnetic field, heat source/sink, Brinkman ratio: limiting case is the results of Farooq et al. [3].
- Absence of magnetic field, heat source/sink, Brinkman ratio, volume fraction: limiting case is the results of Turkyilmazoglu et al. [2].In the following sections, we will show the results of the analytic solution for a range of parameters.
- The electrical conductivities are given by
- f.
- Thermophysical properties of ternary nanofluid [17]:
Properties Cu 997.1 10,500 8993 4250 4179 235 385 12,686.2 0.613 429 401 8.95
6. Concluding Remarks
- An analytical approach can be used to solve the magnetic field with the Darcy–Brinkman model.
- The fluid- and dusty-phase velocity profiles decrease when increasing the inverse Darcy number.
- The momentum boundary layer becomes thicker as the Brinkman number rises.
- When increasing the solution domain thickness, the particle interaction parameters strength also increases.
- The analysis yields a unique solution when considering mass flow suction.
- Increasing the magnetic field decreases the velocity profile due to Lorentz’s force.
- The fluid-phase temperature in the boundary layer significantly increases compared to the dusty-phase temperature in the boundary layer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Constants | |
a | Stretching coefficient |
Magnetic parameter (Tesla) | |
Specific heat coefficient | |
d | Stretching/shrinking parameter |
Inverse Darcy number | |
Eckert number | |
Velocity function fluid phase | |
Velocity function dusty phase | |
Permeability of porous medium | |
Mass number | |
Stokes drag term (kg/s) | |
Mass of the dusty particles | |
M | dimensionless magnetic parameter |
Heat source/sink parameter | |
Thermal radiation parameter | |
Quantity of nanoparticles | |
Prandtl number | |
p | Pressure |
Radiative heat flux | |
Heat source/sink | |
S | Dimensionless mass suction/injection parameter |
Mass suction parameter | |
No permeability | |
Dusty-phase temperature | |
Surface temperature | |
T | Fluid temperature |
Ambient temperature | |
x, y-axis velocity of fluid phase | |
x, y-axis velocity of dusty phase | |
Wall velocity | |
Wall mass transfer velocity | |
x | Coordinate along the plate |
y | Coordinate normal to the plate |
Greek symbols | |
Stretching speed of dust particles | |
Fluid–particle interaction parameters | |
Solution parameters | |
, , | Solution roots |
Constants | |
Similarity variable | |
Heat coefficient | |
Brinkman number | |
Thermal conductivity | |
Absorption coefficient | |
Effective dynamic viscosity | |
Dynamic viscosity of the fluid and dusty phase | |
Kinematic viscosity of fluid and dusty phase | |
Fluid density | |
Particle phase density | |
Stream function | |
Electrical conductivity | |
Stephen–Boltzmann constant | |
Heat equilibrium time | |
Relaxation time parameter | |
Fluid nanoparticle volume fraction ratio | |
Dimensionless temperature of fluid phase | |
Dimensionless temperature of dusty phase | |
Abbreviations | |
HNF | Hybrid nanofluid |
ODE | Ordinary differential equation |
PDE | Partial differential equation |
MHD | Magnetohydrodynamics |
BCs | Boundary conditions |
TNF | Ternary nanofluid |
References
- Saffman, P.G. On the stability of laminar flow of a dusty gas. J. Fluid Mech. 1962, 13, 120–128. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys. Fluids 2017, 29, 013302. [Google Scholar] [CrossRef]
- Farooq, U.; Irfan, M.; Khalid, S.; Jan, A.; Hussain, M. Computational convection analysis of second grade MHD nanofluid flow through porous medium across a stretching surface. ZAMM-J. Appl. Math. Mech. Z. Angew. Math. Mech. 2024, 104, e202300401. [Google Scholar] [CrossRef]
- Jalil, M.; Asghar, S.; Yasmeen, S. An Exact Solution of MHD Boundary Layer Flow of Dusty Fluid over a Stretching Surface. Math. Probl. Eng. 2017, 2017, e2307469. [Google Scholar] [CrossRef]
- Datta, N.; Mishra, S.K. Boundary layer flow of a dusty fluid over a semi-infinite flat plate. Acta Mech. 1982, 42, 71–83. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Carragher, P.; Crane, L.J. Heat Transfer on a Continuous Stretching Sheet. ZAMM-J. Appl. Math. Mech. Z. Angew. Math. Mech. 1982, 62, 564–565. [Google Scholar] [CrossRef]
- Dutta, B.K.; Roy, P.; Gupta, A.S. Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transf. 1985, 12, 89–94. [Google Scholar] [CrossRef]
- Pradhan, S.R.; Baag, S.; Mishra, S.R. Influences of first order slip and heat source/sink on the entropy generation of NHD Micropolar fluid flow through a porous medium. Int. J. Appl. Comput. Math. 2022, 8, 63. [Google Scholar] [CrossRef]
- Aly, E.H.; Pop, I. MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technol. 2020, 367, 192–205. [Google Scholar] [CrossRef]
- Sheu, L.J. Thermal Instability in a Porous Medium Layer Saturated with a Viscoelastic Nanofluid. Transp. Porous Media 2011, 88, 461–477. [Google Scholar] [CrossRef]
- Pop, I.; Cheng, P. Flow past a circular cylinder embedded in a porous medium based on the brinkman model. Int. J. Eng. Sci. 1992, 30, 257–262. [Google Scholar] [CrossRef]
- Zhang, J.; Ijaz Khan, M.; Al-Khaled, K.; El-Zahar, E.R.; Acharya, N.; Raza, A.; Khan, S.U.; Xia, W.F.; Tao, N.X. Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: A fractional derivative concept. Waves Random Complex Media 2022, 1–20. [Google Scholar] [CrossRef]
- Hsu, C.T.; Cheng, P. The Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous medium. Int. J. Heat Mass Transf. 1985, 28, 683–697. [Google Scholar] [CrossRef]
- Sachhin, S.M.; Mahabaleshwar, U.S.; Chan, A. Effect of slip and thermal gradient on micropolar nano suspension flow across a moving hydrogen fuel-cell membrane. Int. J. Hydrogen Energy 2024, 63, 59–81. [Google Scholar] [CrossRef]
- Adun, H.; Kavaz, D.; Dagbasi, M. Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J. Clean. Prod. 2021, 328, 129525. [Google Scholar] [CrossRef]
- Sarwar, N.; Jahangir, S.; Asjad, M.I.; Eldin, S.M. Application of Ternary Nanoparticles in the Heat Transfer of an MHD Non-Newtonian Fluid Flow. Micromachines 2022, 13, 2149. [Google Scholar] [CrossRef] [PubMed]
- Mahabaleshwar, U.S.; Sachhin, S.M.; Pérez, L.M.; Oztop, H.F. An impact of inclined MHD on biviscosity Bingham hybrid nanofluid flow over porous stretching/shrinking sheet with heat transfer. J. Mol. Liq. 2024, 398, 124244. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Kumar, V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int. Commun. Heat Mass Transf. 2020, 111, 104451. [Google Scholar] [CrossRef]
- Abbasi, A.; Ashraf, W. Analysis of heat transfer performance for ternary nanofluid flow in radiated channel under different physical parameters using GFEM. J. Taiwan Inst. Chem. Eng. 2023, 146, 104887. [Google Scholar] [CrossRef]
- Naramgari, S.; Sulochana, C. MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Ain Shams Eng. J. 2016, 7, 709–716. [Google Scholar] [CrossRef]
- Sneha, K.N.; Mahabaleshwar, U.S.; Bennacer, R.; Ganaoui, M.E. Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow with Heat Transfer and Mass Transpiration. Computation 2021, 9, 118. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Thermal management for conjugate heat transfer of curved solid conductive panel coupled with different cooling systems using non-Newtonian power law nanofluid applicable to photovoltaic panel systems. Int. J. Therm. Sci. 2022, 173, 107390. [Google Scholar] [CrossRef]
- Hayat, T.; Qayyum, S.; Imtiaz, M.; Alsaedi, A. Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. Int. J. Heat Mass Transf. 2016, 102, 723–732. [Google Scholar] [CrossRef]
- Roy, N.C.; Hossain, A.; Pop, I. Flow and heat transfer of MHD dusty hybrid nanofluids over a shrinking sheet. Chin. J. Phys. 2022, 77, 1342–1356. [Google Scholar] [CrossRef]
- Animasaun, I.L.; Yook, S.-J.; Muhammad, T.; Mathew, A. Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf. Interfaces 2022, 28, 101654. [Google Scholar] [CrossRef]
- Ariel, P.D. Axisymmetric flow due to a stretching sheet with partial slip. Comput. Math. Appl. 2007, 54, 1169–1183. [Google Scholar] [CrossRef]
- Jalili, P.; Azar, A.A.; Jalili, B.; Ganji, D.D. Heat Transfer Analysis in Cylindrical Polar System with Magnetic Field: A Novel Hybrid Analytical and Numerical Technique. SSRN Electron. J. 2022, 40, 102524. [Google Scholar] [CrossRef]
- Nawaz, M.; Naz, R.; Awais, M. Magnetohydrodynamic axisymmetric flow of Casson fluid with variable thermal conductivity and free stream. Alex. Eng. J. 2018, 57, 2043–2050. [Google Scholar] [CrossRef]
- Sachhin, S.M.; Mahabaleshwar, U.S.; Zeidan, D.; Joo, S.W.; Manca, O. An effect of velocity slip and MHD on Hiemenz stagnation flow of ternary nanofluid with heat and mass transfer. J. Therm. Anal. Calorim. 2024. [Google Scholar] [CrossRef]
- HamaSalih, H.A.; Abdalrahman, R.M.; Rostam, S. Optimizing the blending ratio and processing parameters for ternary blends of recycled polypropylene with recycled high and virgin linear low-densities polyethylene. Results Eng. 2023, 18, 101171. [Google Scholar] [CrossRef]
- Mishra, N.K.; Muthukumar, P.; Panigrahy, S. A Review on Clean Combustion Within Porous Media. In Air Pollution and Control; Sharma, N., Agarwal, A.K., Eastwood, P., Gupta, T., Singh, A.P., Eds.; Energy, Environment, and Sustainability; Springer: Singapore, 2018; pp. 209–224. [Google Scholar] [CrossRef]
- Gamaoun, F.; Ullah, Z.; Ahammad, N.A.; Fadhl, B.M.; Makhdoum, B.M.; Khan, A.A. Effects of thermal radiation and variable density of nanofluid heat transfer along a stretching sheet by using Keller Box approach under magnetic field. Therm. Sci. Eng. Prog. 2023, 41, 101815. [Google Scholar] [CrossRef]
- Aman, S.; Khan, I.; Ismail, Z.; Salleh, M.Z. Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput. Appl. 2018, 30, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Hussain, M. Impression of nonlinear radiation and Stefan blowing on the magneto cross nano-Williamson fluid above exponentially stretching sheet. Results Eng. 2023, 17, 100864. [Google Scholar] [CrossRef]
- Saghir, M.Z.; Bayomy, A.M. Heat enhancement and heat storage for a ternary mixture in a circular pipe. Therm. Sci. Eng. Prog. 2018, 5, 32–43. [Google Scholar] [CrossRef]
- Kalidasan, K.; Velkennedy, R.; Kanna, P.R. Laminar natural convection of Copper - Titania/Water hybrid nanofluid in an open ended C - shaped enclosure with an isothermal block. J. Mol. Liq. 2017, 246, 251–258. [Google Scholar] [CrossRef]
- Sachhin, S.M.; Mahabaleshwar, U.S.; Huang, H.-N.; Sunden, B.; Zeidan, D. An influence of temperature jump and Navier’s slip-on hybrid nano fluid flow over a permeable stretching/shrinking sheet with heat transfer and inclined MHD. Nanotechnology 2023, 35, 115401. [Google Scholar] [CrossRef]
- Bhandari, D.S.; Tripathi, D. Study of entropy generation and heat flow through a microtube induced by the membrane-based thermofluidics systems. Therm. Sci. Eng. Prog. 2023, 34, 101395. [Google Scholar] [CrossRef]
- Azese, M. Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid. Phys. Fluids 2018, 30, 023103. [Google Scholar] [CrossRef]
- Takabi, B.; Salehi, S. Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid. Adv. Mech. Eng. 2014, 6, 147059. [Google Scholar] [CrossRef]
- Fujioka, H.; Wei, H.-H. Letter: New boundary layer structures due to strong wall slippage. Phys. Fluids 2018, 30, 121702. [Google Scholar] [CrossRef]
- Huang, P.; Breuer, K.S. Direct measurement of slip length in electrolyte solutions. Phys. Fluids 2007, 19, 028104. [Google Scholar] [CrossRef]
- Navardi, S.; Bhattacharya, S. Axial pressure-difference between far-fields across a sphere in viscous flow bounded by a cylinder. Phys. Fluids 2010, 22, 103305. [Google Scholar] [CrossRef]
- Azese, M.N. On the detection, measurement, and characterization of slip-velocity in Couette-rheology involving viscoelastic liquids. Phys. Fluids 2019, 31, 023101. [Google Scholar] [CrossRef]
- Ferrás, L.L.; Afonso, A.M.; Nóbrega, J.M.; Pinho, F.T. A numerical and theoretical study on viscoelastic fluid slip flows. Phys. Fluids 2017, 29, 053102. [Google Scholar] [CrossRef]
- Pavlov, K.B. Magnetohydrodynamic flow of incompressible viscous fluid caused by of a surface. Magn. Gidrodin. 1974, 4, 146–147. [Google Scholar]
- Khan, U.; Zaib, A.; Ishak, A.; Roy, N.C.; Bakar, S.A.; Muhammad, T.; Abdel-Aty, A.H.; Yahia, I.S. Exact solutions for MHD axisymmetric hybrid nanofluid flow and heat transfer over a permeable non-linear radially shrinking/stretching surface with mutual impacts of thermal radiation. Eur. Phys. J. Spec. Top. 2022, 231, 1195–1204. [Google Scholar] [CrossRef]
- Hamid, M.; Usman, M.; Khan, Z.H.; Ahmad, R.; Wang, W. Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet. Phys. Let. A 2019, 38, 2400–2408. [Google Scholar] [CrossRef]
- Kalweit, M.; Drikakis, D. Collision Dynamics of Nanoscale Lennard-Jones Clusters. Phys. Rev. 2006, 74, 235415. [Google Scholar] [CrossRef]
- Frank, M.; Drikakis, D.; Asproulis, N. Thermal Conductivity of Nanofluid in Nanochannels. Microfluid. Nanofluidics 2015, 19, 1011–1017. [Google Scholar] [CrossRef]
- Jan, A.; Mushtaq, M.; Hussain, M. Heat transfer enhancement of forced convection magnetized cross model ternary hybrid nanofluid flow over a stretching cylinder: Non-similar analysis. Int. J. Heat Fluid Flow 2024, 106, 109302. [Google Scholar] [CrossRef]
- Jan, A.; Afzaal, M.F.; Mushtaq, M.; Farooq, U.; Hussain, M. Nonsimilar analysis of ternary hybrid Eyring–Powell nanofluid flow over a linearly stretching surface. Multidiscip. Model. Mater. Struct. 2024, 20, 295–316. [Google Scholar] [CrossRef]
- Farooq, U.; Bibi, A.; Abbasi, J.N.; Jan, A.; Hussain, M. Nonsimilar mixed convection analysis of ternary hybrid nanofluid flow near stagnation point over vertical Riga plate. Multidiscip. Model. Mater. Struct. 2024, 20, 261–278. [Google Scholar] [CrossRef]
M and | Turkyilmazoglu [2] | Present Results |
---|---|---|
0.0 | 1.0000 | 1.0000 |
0.5 | 1.2247 | 1.22451 |
1.0 | 1.4142 | 1.4142 |
1.5 | 1.5811 | 1.5812 |
2.0 | 1.7320 | 1.7322 |
M and | Turkyilmazoglu [2] | Present Results |
---|---|---|
0.0 | 1.0380 | 1.03772 |
0.5 | 1.251167 | 1.25118 |
1.0 | 1.43759 | 1.43728 |
1.5 | 1.60208 | 1.59902 |
2.0 | 1.75119 | 1.75121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachhin, S.M.; Mahabaleshwar, U.S.; Laroze, D.; Drikakis, D. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. Fluids 2024, 9, 94. https://doi.org/10.3390/fluids9040094
Sachhin SM, Mahabaleshwar US, Laroze D, Drikakis D. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. Fluids. 2024; 9(4):94. https://doi.org/10.3390/fluids9040094
Chicago/Turabian StyleSachhin, Sudha Mahanthesh, Ulavathi Shettar Mahabaleshwar, David Laroze, and Dimitris Drikakis. 2024. "Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection" Fluids 9, no. 4: 94. https://doi.org/10.3390/fluids9040094
APA StyleSachhin, S. M., Mahabaleshwar, U. S., Laroze, D., & Drikakis, D. (2024). Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. Fluids, 9(4), 94. https://doi.org/10.3390/fluids9040094