Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (591)

Search Parameters:
Keywords = CuO/Cu2(OH)3NO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4751 KiB  
Article
Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device
by Haozhen Liu, Mingxin Liu, Xiqiang Zhao, Ping Zhou, Zhanlong Song, Wenlong Wang, Jing Sun and Yanpeng Mao
Catalysts 2025, 15(8), 749; https://doi.org/10.3390/catal15080749 (registering DOI) - 5 Aug 2025
Abstract
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, [...] Read more.
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and Raman spectroscopy. The catalytic oxidation activity of catalytic Cu-MnOx/GF electrodes toward toluene was evaluated in an all-solid-state electrocatalytic device under mild operating conditions. The evaluation results demonstrated that the microwave-modified catalytic electrode exhibited high electrocatalytic activity toward toluene oxidation, with Cu-MnOx/700W-GF exhibiting significantly higher catalytic activity, indicating that an increase in catalyst loading capacity can promote the removal of toluene. Only CO2 and CO were detected, with no other intermediates observed in the reaction process. Moreover, the catalytic effect was significantly affected by the relative humidity. The catalytic oxidation of toluene can be fully realized under a certain humidity, indicating that the conversion of H2O to strongly oxidizing ·OH on the catalytic electrode is a key step in this reaction. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

16 pages, 2366 KiB  
Article
ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application
by Guang Yao Zhou, Jun Guo and Ji Hong Wu
Crystals 2025, 15(8), 710; https://doi.org/10.3390/cryst15080710 - 2 Aug 2025
Viewed by 162
Abstract
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol [...] Read more.
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol that was regularly carried out in alkaline solution (pH > 11). The rouaite multilayer nanoplates displayed exceptionally high catalytic activity in the catalytic wet peroxide oxidation (CWPO) of Congo red (CR). The catalytic efficiency for CR decolorization achieved an impressive 96.3% in 50 min under near-neutral (pH = 6.76) and ambient conditions (T = 20 °C, p = 1 atm), without increasing the temperature and/or decreasing the pH value to acidic region (pH = 2–3) as is commonly employed in CWPO process for improved degradation efficiency. Full article
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Viewed by 117
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

17 pages, 3073 KiB  
Article
Synthesis, Characterization, and Anticancer Activity of 3-Chlorothiophene-2-carboxylic Acid Transition Metal Complexes
by Baiquan Hu, Qianqian Kang, Xianggao Meng, Hao Yin, Xingzhi Yang, Yanting Yang and Mei Luo
Inorganics 2025, 13(7), 238; https://doi.org/10.3390/inorganics13070238 - 11 Jul 2025
Viewed by 526
Abstract
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py [...] Read more.
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py = pyridine), [{Ni(L)2(OH2)4}2{Ni(L)(OH2)5}]L•5H2O (3), and [{Co(L)2(OH2)4}2{Co(L)(OH2)5}]L•5H2O (4). All four compounds were identified by elemental analysis and ESI mass spectrometry, and subsequently characterized by IR spectroscopy, UV-visible diffuse reflectance spectroscopy, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography, and cyclic voltammetry. X-ray analyses revealed that complexes 1 and 2 exhibit a centrosymmetric pseudo-octahedral coordination geometry; the copper (II) and cobalt (II) metal ions, respectively, are located at the crystallographic center of inversion. The coordination sphere of the copper (II) complex is axially elongated in accordance with the Jahn–Teller effect. Intriguingly, for charge neutrality, compounds 3 and 4 crystallized as three independent mononuclear octahedrally coordinated metal centers, which are two [ML2(OH2)4] complex molecules and one [ML(OH2)5]+ complex cation (M = NiII and CoII, respectively), with the ligand anion L serving as the counter ion. The anticancer activities of these complexes were systematically assessed on human leukemia K562 cells, lung cancer A549 cells, liver cancer HepG2 cells, breast cancer MDA-MB-231 cells, and colon cancer SW480 cells. Among them, complex 4 shows significant inhibitory effects on leukemia K562 cells and colon cancer SW480 cells. Full article
Show Figures

Figure 1

10 pages, 2622 KiB  
Article
Optical and Structural Characterization of Cu-Doped Ga2O3 Nanostructures Synthesized via Hydrothermal Method
by Jiwoo Kim, Heejoong Ryou, Janghun Lee, Sunjae Kim and Wan Sik Hwang
Inorganics 2025, 13(7), 231; https://doi.org/10.3390/inorganics13070231 - 7 Jul 2025
Viewed by 418
Abstract
In this study, we investigate the optical and structural properties of Cu-doped β-Ga2O3 nanostructures synthesized via a hydrothermal method, followed by annealing in ambient O2. Different Cu doping concentrations (0, 1.6, and 4.8 at.%) are introduced to [...] Read more.
In this study, we investigate the optical and structural properties of Cu-doped β-Ga2O3 nanostructures synthesized via a hydrothermal method, followed by annealing in ambient O2. Different Cu doping concentrations (0, 1.6, and 4.8 at.%) are introduced to examine their effects on the crystal structure, chemical state, and optical bandgap of β-Ga2O3. X-ray diffraction (XRD) analysis reveals that the host β-Ga2O3 crystal structure is preserved at lower doping levels, whereas secondary phases (Ga2CuO4) appear at higher doping concentrations (4.8 at.%). X-ray photoelectron spectroscopy (XPS) confirms the presence of Cu2+ ions in both lattice substitution sites and surface-adsorbed hydroxylated species (Cu(OH)2). The optical bandgap of β-Ga2O3 is found to decrease with increasing Cu concentration, likely due to the formation of localized states or secondary phases. These findings demonstrate the tunability of the optical properties of β-Ga2O3 via Cu doping, providing insights into the incorporation mechanisms and their impact on structural and electronic properties. Full article
Show Figures

Graphical abstract

14 pages, 4290 KiB  
Article
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Viewed by 358
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and [...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes. Full article
Show Figures

Figure 1

12 pages, 9078 KiB  
Article
High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate
by Ying-Chu Chen, Michael Chen and Yu-Kuei Hsu
Nanomaterials 2025, 15(13), 998; https://doi.org/10.3390/nano15130998 - 27 Jun 2025
Viewed by 276
Abstract
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the [...] Read more.
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the preparation of Cu(OH)2 nanowires (NWs) via electrochemical oxidation, followed by chemical conversion to Cu1.8Se through a selenization process. The morphology, composition, and microstructure of the resulting Cu1.8Se NSs were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Cu1.8Se NSs exhibited excellent electrocatalytic activity for H2O2 reduction, achieving a notably low detection limit of 1.25 μM and demonstrating rapid response and high sensitivity with a linear relationship in amperometric detection. Additionally, SERS experiments using Rhodamine B as a probe molecule and the Cu1.8Se NS/Cu foil as a substrate displayed outstanding performance, with a detection limit as low as 1 μM. The flower-like structure of the Cu1.8Se NSs exhibited linear dependence between analyte concentration and detection signals, along with satisfactory reproducibility in dual-sensing applications. These findings underscore the scalability and potential of this fabrication approach for advanced sensor development. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

12 pages, 2780 KiB  
Article
Catalytic Ozonation of Diclofenac Using CuO/Al2O3- and MnO2/Al2O3-Supported Catalysts
by Wenli Zhou, Xiaoxia Wang, Yanghong Xu, Qingsong Xu, Zheng Shen and Junlian Qiao
Chemistry 2025, 7(4), 107; https://doi.org/10.3390/chemistry7040107 - 25 Jun 2025
Viewed by 510
Abstract
Pharmaceuticals such as diclofenac (DCF), a widely used anti-inflammatory drug, are frequently detected in water bodies and pose serious environmental and health risks due to their persistence and low biodegradability. Although ozonation is an effective method for pollutant removal, its efficiency is often [...] Read more.
Pharmaceuticals such as diclofenac (DCF), a widely used anti-inflammatory drug, are frequently detected in water bodies and pose serious environmental and health risks due to their persistence and low biodegradability. Although ozonation is an effective method for pollutant removal, its efficiency is often limited by low ozone utilization and incomplete mineralization. In this work, CuO/Al2O3- and MnO2/Al2O3-supported catalysts were prepared via an impregnation method and evaluated for their performance in catalytic ozonation of diclofenac (DCF) in an aqueous solution. The catalysts were characterized by TEM, N2 adsorption–desorption, FTIR, and XPS analyses. The effects of catalyst type, dosage, initial pH, and ozone flow rate on degradation efficiency were systematically investigated. Under optimal conditions, the DCF removal efficiencies reached 73.99% and 76.33% using CuO/Al2O3 and MnO2/Al2O3, respectively, while COD removal efficiencies were 77.6% and 89.3%. Quenching experiments indicated that hydroxyl radicals (•OH) were the predominant reactive species involved in the catalytic ozonation process. The results demonstrate that supported CuO and MnO2 catalysts can effectively enhance diclofenac degradation by ozone, offering potential for advanced water treatment applications. Full article
Show Figures

Figure 1

16 pages, 4578 KiB  
Article
Corrosion Behavior Analysis of Novel Sn-2.5Ag-1.0Bi-0.8Cu-0.05Ni and Sn-1.8Bi-0.75Cu-0.065Ni Pb-Free Solder Alloys via Potentiodynamic Polarization Test
by Sang Hoon Jung and Jong-Hyun Lee
Metals 2025, 15(6), 670; https://doi.org/10.3390/met15060670 - 17 Jun 2025
Viewed by 271
Abstract
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A [...] Read more.
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A potentiodynamic polarization test is conducted on these compositions in a NaCl electrolyte solution, the results of which are compared with those of conventional Sn-3.0 (wt%) Ag-0.5Cu and Sn-1.2Ag-0.5Cu-0.05Ni alloys. The results indicate that SBC15075N exhibits the lowest corrosion potential and highest corrosion current density, thus signifying the lowest corrosion resistance. By contrast, SABC25108N exhibits the lowest corrosion current density and highest corrosion resistance. Notably, SABC25108N shows a slower corrosion progression in the active state and exhibits the longest passive state. The difference in corrosion resistance is affected more significantly by the formation and distribution of the Ag3Sn intermetallic compound phase owing to the high Ag content instead of by the presence of Bi or Ni. This uniform dispersion of Ag3Sn IMC phases in the SABC25108N alloy effectively suppressed corrosion propagation along the grain boundaries and reduced the formation of corrosion products, such as Sn3O(OH)2Cl2, thereby enhancing the overall corrosion resistance. These findings provide valuable insights into the optimal design of solder alloys and highlight the importance of incorporating sufficient Ag content into multicomponent compositions to improve corrosion resistance. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology—2nd Edition)
Show Figures

Figure 1

22 pages, 4656 KiB  
Article
Optimization of Sustainable Copper Leaching Using Glycine and Oxidizing Agents in an Alkaline Medium
by Jesús I. Martínez, Aislinn M. Teja, Martín Reyes, Norman Toro, Gabriel Cisneros, Uriel M. Flores, Miguel Pérez Labra, Gustavo Urbano and Julio C. Juarez
Metals 2025, 15(6), 617; https://doi.org/10.3390/met15060617 - 30 May 2025
Viewed by 802
Abstract
The increasing global demand for copper has driven the search for more efficient and sustainable extraction methods, particularly due to the environmental concerns associated with conventional processes. This study investigated the leaching of copper minerals MC (Cu2O) and malachite (Cu2 [...] Read more.
The increasing global demand for copper has driven the search for more efficient and sustainable extraction methods, particularly due to the environmental concerns associated with conventional processes. This study investigated the leaching of copper minerals MC (Cu2O) and malachite (Cu2CO3(OH)2) using glycine as an organic ligand in an alkaline medium, and evaluated the efficiency of hydrogen peroxide (H2O2) and ozone (O3) as oxidizing agents. Chemical and mineralogical characterization using XRD, XRF, ICP, and SEM confirmed the predominance of MC and malachite, along with secondary phases such as hematite and calcite. Leaching experiments were carried out by varying glycine and oxidant concentrations at pH 10, with a reaction time of 240 min, agitation at 800 min−1, a solution volume of 300 mL, and a mineral sample concentration of 0.33 g·L−1. The results showed that O3 exhibited low efficiency due to its limited solubility, whereas H2O2 achieved dissolution rates of 69.7% for MC in 150 min and 96.3% for MMin just 60 min. The glycine-H2O2 system optimized reaction time by 84% compared to conventional methods, emerging as a sustainable alternative due to the low toxicity and biodegradability of glycine. Full article
Show Figures

Graphical abstract

14 pages, 1557 KiB  
Article
Lignin Extracted from Green Coconut Waste Impregnated with Sodium Octanoate for Removal of Cu2+ in Aqueous Solution
by Jéssyca E. S. Pereira, Eduardo L. Barros Neto, Lindemberg J. N. Duarte, Ruan L. S. Ferreira, Ricardo P. F. Melo and Paula F. P. Nascimento
Processes 2025, 13(5), 1590; https://doi.org/10.3390/pr13051590 - 20 May 2025
Viewed by 649
Abstract
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly [...] Read more.
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly environmental ones. Its structure and composition make lignin compatible with the concept of sustainability, since it can be used to produce new chemical products with high added value. As such, this study aims to extract lignin from green coconut fiber (LIG), with the subsequent impregnation of a sodium-octanoate-based surfactant (LIG-SUR), and determine its applicability as an adsorbent for removing copper ions from synthetic waste. To this end, the green coconut fiber lignocellulosic biomass was initially subjected to alkaline pre-treatment with 2% (w/v) sodium hydroxide in an autoclave. Next, the surface of the lignin was modified by impregnating it with sodium octanoate, synthesized from the reaction of octanoic acid and NaOH. The physical and chemical traits of the lignin were studied before and after surfactant impregnation, as well as after copper ion adsorption. The lignin was analyzed by X-ray fluorescence (XRF), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The adsorption tests were carried out using lignin pre-treated with surfactant in a batch system, where the effects of pH and adsorbent concentration were investigated. XRF and SEM analyses confirmed surfactant impregnation, with Na2O partially replaced by CuO after Cu2+ adsorption. FTIR analysis revealed shifts in O–H, C–H, C=O, and C=C bands, indicating electrostatic interactions with lignin. Adsorption kinetics followed the pseudo-second-order model, suggesting chemisorption, with equilibrium reached in approximately 10 and 60 min for LIG-SUR and LIG, respectively. The Langmuir model best described the isotherm data, indicating monolayer adsorption. LIG-SUR removed 91.57% of Cu2+ and reached a maximum capacity of 30.7 mg·g−1 at 25 °C and a pH of 6. The results of this research showed that pre-treatment with NaOH, followed by impregnation with surfactant, significantly increased the adsorption capacity of copper ions in solution. This technique is a viable and sustainable alternative to the traditional adsorbents used to treat liquid waste. In addition, by using green coconut fiber lignin more efficiently, the research contributes to adding value to this material and strengthening practices in line with the circular economy and environmental preservation. Full article
(This article belongs to the Special Issue Emerging Technologies in Solid Waste Recycling and Reuse)
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Kinetic Understanding of the Enhanced Electroreduction of Nitrate to Ammonia for Co3O4–Modified Cu2+1O Nanowire Electrocatalyst
by Hao Yu, Shen Yan, Jiahua Zhang and Hua Wang
Catalysts 2025, 15(5), 491; https://doi.org/10.3390/catal15050491 - 19 May 2025
Viewed by 657
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3) presents an alternative, sustainable approach to ammonia production. However, the existing catalysts suffer from poor NH3 yield under lower concentrations of NO3, and the kinetic understanding [...] Read more.
Electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3) presents an alternative, sustainable approach to ammonia production. However, the existing catalysts suffer from poor NH3 yield under lower concentrations of NO3, and the kinetic understanding of bimetal catalysis is lacking. In this study, a Co3O4–modified Cu2+1O nanowire (CoCuNWs) catalyst with a high specific surface area was synthesized to effectively produce NH3 from a 10 mM KNO3 basic solution. CoCuNWs demonstrated a high NH3 yield rate of 0.30 mmol h−1 cm−2 with an NH3 Faradaic efficiency (FE) of 96.7% at −0.2 V vs. RHE, which is 1.5 times higher than the bare Cu2+1O NWs. The synergistic effect between Co3O4 and Cu2+1O significantly enhanced both the nitrate conversion and ammonia yield. Importantly, it is revealed that the surface of CoCuNWs is kinetically more easily saturated with NO3 (NO2) ions than that of Cu2+1O NWs, as evidenced by both the higher current density and the plateau occurring at higher NOx concentrations. In addition, CoCuNWs exhibit a higher diffusion coefficient of NO3, being 1.6 times higher than that of Cu2+1O NWs, which also indicates that the presence of Co3O4 could promote the diffusion and adsorption of NO3 on CoCuNWs. Moreover, the ATR–SEIRAS analysis was applied to illustrate the reduction pathway of NO3 to NH3 on CoCuNWs, which follows the formation of the key intermediate from *NO2, *NO, *NH2OH to *NH3. This work presents a strategy for constructing dual–metal catalysts for NO3RR and provides an insight to understand the catalysis from the perspective of the kinetics. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Graphical abstract

15 pages, 6161 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 488
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

10 pages, 1735 KiB  
Communication
Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring
by Si Hyeok Yang, Lim Kyung Oh, Dong Ho Lee, Donghoon Gwak, Nara Song, Bowon Oh, Na Young Lee, Hongki Kim, Han Seul Kim and Jin Woo Choi
Biosensors 2025, 15(5), 311; https://doi.org/10.3390/bios15050311 - 13 May 2025
Viewed by 690
Abstract
The low-dimensional metal halide Cs3Cu2I5 exhibits unique electrical and chemical properties. Notably, it undergoes a phase transition to CsCu2I3 upon exposure to hydroxyl (-OH) gas, resulting in significant changes in its electrical characteristics. In this [...] Read more.
The low-dimensional metal halide Cs3Cu2I5 exhibits unique electrical and chemical properties. Notably, it undergoes a phase transition to CsCu2I3 upon exposure to hydroxyl (-OH) gas, resulting in significant changes in its electrical characteristics. In this study, we developed a highly selective semiconductor-based gas sensor utilizing Cs3Cu2I5. The material was synthesized on an Al2O3 substrate with carbon electrodes using a solution-based process, enabling gas sensing based on its electrical properties. The sensor was further integrated into an Arduino-based real-time monitoring system for wearable applications. The final system was mounted onto a face mask, enabling the real-time detection of human respiration. This research presents a next-generation sensor platform for real-time respiratory monitoring, demonstrating the potential of Cs3Cu2I5 in advanced wearable bio-gas sensing applications. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

15 pages, 4407 KiB  
Article
Sustainable Hydrogen from Methanol: NiCuCe Catalyst Design with CO2-Driven Regeneration for Carbon-Neutral Energy Systems
by Yankun Jiang, Liangdong Zhao and Siqi Li
Catalysts 2025, 15(5), 478; https://doi.org/10.3390/catal15050478 - 13 May 2025
Viewed by 514
Abstract
This study addresses energy transition challenges through the development of NiCuCe catalysts for high-purity hydrogen production via methanol decomposition, with carbon deposition issues mitigated by CO2-assisted regeneration. As fossil fuel depletion advances and the urgency of climate change increases, methanol-derived hydrogen [...] Read more.
This study addresses energy transition challenges through the development of NiCuCe catalysts for high-purity hydrogen production via methanol decomposition, with carbon deposition issues mitigated by CO2-assisted regeneration. As fossil fuel depletion advances and the urgency of climate change increases, methanol-derived hydrogen (CH3OH → CO + 2H2) emerges as a carbon-neutral alternative to conventional fossil fuel-based energy systems. The catalyst’s dual Cu2+/Ni2+ active sites facilitate selective C–O bond cleavage, achieving more than 80% methanol conversion at temperatures exceeding 280 °C without the need for fossil methane inputs. Crucially, CO2 gasification enables catalyst regeneration through the conversion of 90% carbon deposits into reusable media, circumventing energy-intensive combustion processes. This dual-function system couples carbon capture to hydrogen infrastructure, thereby stabilizing production while valorizing waste CO2. This innovation minimizes reliance on rare metals through efficient regeneration cycles, mitigating resource constraints during energy crises. Full article
(This article belongs to the Special Issue Catalytic Gasification)
Show Figures

Graphical abstract

Back to TopTop